Skip to main content
Top
Published in: European Journal of Medical Research 1/2023

Open Access 01-12-2023 | Laminectomy | Research

Identification of milling status based on vibration signals using artificial intelligence in robot-assisted cervical laminectomy

Authors: Rui Wang, He Bai, Guangming Xia, Jiaming Zhou, Yu Dai, Yuan Xue

Published in: European Journal of Medical Research | Issue 1/2023

Login to get access

Abstract

Background

With advances in science and technology, the application of artificial intelligence in medicine has significantly progressed. The purpose of this study is to explore whether the k-nearest neighbors (KNN) machine learning method can identify three milling states based on vibration signals: cancellous bone (CCB), ventral cortical bone (VCB), and penetration (PT) in robot-assisted cervical laminectomy.

Methods

Cervical laminectomies were performed on the cervical segments of eight pigs using a robot. First, the bilateral dorsal cortical bone and part of the CCB were milled with a 5 mm blade and then the bilateral laminae were milled to penetration with a 2 mm blade. During the milling process using the 2 mm blade, the vibration signals were collected by the acceleration sensor, and the harmonic components were extracted using fast Fourier transform. The feature vectors were constructed with vibration signal amplitudes of 0.5, 1.0, and 1.5 kHz and the KNN was then trained by the features vector to predict the milling states.

Results

The amplitudes of the vibration signals between VCB and PT were statistically different at 0.5, 1.0, and 1.5 kHz (P < 0.05), and the amplitudes of the vibration signals between CCB and VCB were significantly different at 0.5 and 1.5 kHz (P < 0.05). The KNN recognition success rates for the CCB, VCB, and PT were 92%, 98%, and 100%, respectively. A total of 6% and 2% of the CCB cases were identified as VCB and PT, respectively; 2% of VCB cases were identified as PT.

Conclusions

The KNN can distinguish different milling states of a high-speed bur in robot-assisted cervical laminectomy based on vibration signals. This method is feasible for improving the safety of posterior cervical decompression surgery.
Literature
2.
go back to reference Rao RD, Gourab K, David KS. Operative treatment of cervical spondylotic myelopathy. J Bone Joint Surg Am. 2006;88(7):1619–40.CrossRefPubMed Rao RD, Gourab K, David KS. Operative treatment of cervical spondylotic myelopathy. J Bone Joint Surg Am. 2006;88(7):1619–40.CrossRefPubMed
3.
go back to reference Brinjikji W, Luetmer PH, Comstock B, Bresnahan BW, Chen LE, Deyo RA, Halabi S, Turner JA, Avins AL, James K, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol. 2015;36(4):811–6.CrossRefPubMedPubMedCentral Brinjikji W, Luetmer PH, Comstock B, Bresnahan BW, Chen LE, Deyo RA, Halabi S, Turner JA, Avins AL, James K, et al. Systematic literature review of imaging features of spinal degeneration in asymptomatic populations. AJNR Am J Neuroradiol. 2015;36(4):811–6.CrossRefPubMedPubMedCentral
4.
go back to reference Teraguchi M, Yoshimura N, Hashizume H, Muraki S, Yamada H, Minamide A, Oka H, Ishimoto Y, Nagata K, Kagotani R, et al. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: the Wakayama Spine Study. Osteoarthritis Cartilage. 2014;22(1):104–10.CrossRefPubMed Teraguchi M, Yoshimura N, Hashizume H, Muraki S, Yamada H, Minamide A, Oka H, Ishimoto Y, Nagata K, Kagotani R, et al. Prevalence and distribution of intervertebral disc degeneration over the entire spine in a population-based cohort: the Wakayama Spine Study. Osteoarthritis Cartilage. 2014;22(1):104–10.CrossRefPubMed
5.
go back to reference Ghogawala Z, Terrin N, Dunbar MR, Breeze JL, Freund KM, Kanter AS, Mummaneni PV, Bisson EF, Barker FG 2nd, Schwartz JS, et al. Effect of ventral vs dorsal spinal surgery on patient-reported physical functioning in patients with cervical spondylotic myelopathy: a randomized clinical trial. JAMA. 2021;325(10):942–51.CrossRefPubMedPubMedCentral Ghogawala Z, Terrin N, Dunbar MR, Breeze JL, Freund KM, Kanter AS, Mummaneni PV, Bisson EF, Barker FG 2nd, Schwartz JS, et al. Effect of ventral vs dorsal spinal surgery on patient-reported physical functioning in patients with cervical spondylotic myelopathy: a randomized clinical trial. JAMA. 2021;325(10):942–51.CrossRefPubMedPubMedCentral
6.
7.
go back to reference Konya D, Ozgen S, Gercek A, Pamir MN. Outcomes for combined anterior and posterior surgical approaches for patients with multisegmental cervical spondylotic myelopathy. J Clin Neurosci. 2009;16(3):404–9.CrossRefPubMed Konya D, Ozgen S, Gercek A, Pamir MN. Outcomes for combined anterior and posterior surgical approaches for patients with multisegmental cervical spondylotic myelopathy. J Clin Neurosci. 2009;16(3):404–9.CrossRefPubMed
8.
go back to reference Mummaneni PV, Kaiser MG, Matz PG, Anderson PA, Groff MW, Heary RF, Holly LT, Ryken TC, Choudhri TF, Vresilovic EJ, et al. Cervical surgical techniques for the treatment of cervical spondylotic myelopathy. J Neurosurg Spine. 2009;11(2):130–41.CrossRefPubMed Mummaneni PV, Kaiser MG, Matz PG, Anderson PA, Groff MW, Heary RF, Holly LT, Ryken TC, Choudhri TF, Vresilovic EJ, et al. Cervical surgical techniques for the treatment of cervical spondylotic myelopathy. J Neurosurg Spine. 2009;11(2):130–41.CrossRefPubMed
9.
go back to reference Li Z, Xue Y, He D, Tang Y, Ding H, Wang Y, Zong Y, Zhao Y. Extensive laminectomy for multilevel cervical stenosis with ligamentum flavum hypertrophy: more than 10 years follow-up. Eur Spine J. 2015;24(8):1605–12.CrossRefPubMed Li Z, Xue Y, He D, Tang Y, Ding H, Wang Y, Zong Y, Zhao Y. Extensive laminectomy for multilevel cervical stenosis with ligamentum flavum hypertrophy: more than 10 years follow-up. Eur Spine J. 2015;24(8):1605–12.CrossRefPubMed
10.
go back to reference Shao F, Tang M, Bai H, Xue Y, Dai Y, Zhang J. Drilling condition identification based on sound pressure signal in anterior cervical discectomy surgery. Med Sci Monit. 2019;25:6574–80.CrossRefPubMedPubMedCentral Shao F, Tang M, Bai H, Xue Y, Dai Y, Zhang J. Drilling condition identification based on sound pressure signal in anterior cervical discectomy surgery. Med Sci Monit. 2019;25:6574–80.CrossRefPubMedPubMedCentral
11.
go back to reference Bai H, Wang R, Wang Q, Xia GM, Xue Y, Dai Y, Zhang JX. Motor bur milling state identification via fast fourier transform analyzing sound signal in cervical spine posterior decompression surgery. Orthop Surg. 2021;13(8):2382–95.CrossRefPubMedPubMedCentral Bai H, Wang R, Wang Q, Xia GM, Xue Y, Dai Y, Zhang JX. Motor bur milling state identification via fast fourier transform analyzing sound signal in cervical spine posterior decompression surgery. Orthop Surg. 2021;13(8):2382–95.CrossRefPubMedPubMedCentral
12.
go back to reference Dai Y, Zhang J, Xue Y. Use of wavelet energy for spinal cord vibration analysis during spinal surgery. Int J Med Robot. 2013;9(4):433–40.CrossRefPubMed Dai Y, Zhang J, Xue Y. Use of wavelet energy for spinal cord vibration analysis during spinal surgery. Int J Med Robot. 2013;9(4):433–40.CrossRefPubMed
13.
go back to reference Federspil PA, Geisthoff UW, Henrich D, Plinkert PK. Development of the first force-controlled robot for otoneurosurgery. Laryngoscope. 2003;113(3):465–71.CrossRefPubMed Federspil PA, Geisthoff UW, Henrich D, Plinkert PK. Development of the first force-controlled robot for otoneurosurgery. Laryngoscope. 2003;113(3):465–71.CrossRefPubMed
14.
go back to reference Coulson CJ, Taylor RP, Reid AP, Griffiths MV, Proops DW, Brett PN. An autonomous surgical robot for drilling a cochleostomy: preliminary porcine trial. Clin Otolaryngol. 2008;33(4):343–7.CrossRefPubMed Coulson CJ, Taylor RP, Reid AP, Griffiths MV, Proops DW, Brett PN. An autonomous surgical robot for drilling a cochleostomy: preliminary porcine trial. Clin Otolaryngol. 2008;33(4):343–7.CrossRefPubMed
15.
go back to reference Dillon NP, Fichera L, Wellborn PS, Labadie RF, Webster RJ 3rd. Making robots mill bone more like human surgeons: using bone density and anatomic information to mill safely and efficiently. Rep U S. 2016;2016:1837–43.PubMedPubMedCentral Dillon NP, Fichera L, Wellborn PS, Labadie RF, Webster RJ 3rd. Making robots mill bone more like human surgeons: using bone density and anatomic information to mill safely and efficiently. Rep U S. 2016;2016:1837–43.PubMedPubMedCentral
16.
go back to reference Dai Y, Xue Y, Zhang J. Drilling electrode for real-time measurement of electrical impedance in bone tissues. Ann Biomed Eng. 2014;42(3):579–88.CrossRefPubMed Dai Y, Xue Y, Zhang J. Drilling electrode for real-time measurement of electrical impedance in bone tissues. Ann Biomed Eng. 2014;42(3):579–88.CrossRefPubMed
17.
go back to reference Shao F, Bai H, Tang M, Xue Y, Dai Y, Zhang J. Tissue discrimination by bioelectrical impedance during PLL resection in anterior decompression surgery for treatment of cervical spondylotic myelopathy. J Orthop Surg Res. 2019;14(1):341.CrossRefPubMedPubMedCentral Shao F, Bai H, Tang M, Xue Y, Dai Y, Zhang J. Tissue discrimination by bioelectrical impedance during PLL resection in anterior decompression surgery for treatment of cervical spondylotic myelopathy. J Orthop Surg Res. 2019;14(1):341.CrossRefPubMedPubMedCentral
18.
go back to reference Wallace SB, Cherkashin A, Samchukov M, Wimberly RL, Riccio AI. Real-time monitoring with a controlled advancement drill may decrease plunge depth. J Bone Joint Surg Am. 2019;101(13):1213–8.CrossRefPubMed Wallace SB, Cherkashin A, Samchukov M, Wimberly RL, Riccio AI. Real-time monitoring with a controlled advancement drill may decrease plunge depth. J Bone Joint Surg Am. 2019;101(13):1213–8.CrossRefPubMed
19.
go back to reference Dai Y, Xue Y, Zhang J. Milling State Identification Based on Vibration Sense of a Robotic Surgical System. IEEE Transactions on Industrial Electronics. 2016;63(10):6184-6193. Dai Y, Xue Y, Zhang J. Milling State Identification Based on Vibration Sense of a Robotic Surgical System. IEEE Transactions on Industrial Electronics. 2016;63(10):6184-6193.
20.
go back to reference Wolfram M, Bräutigam R, Engl T, Bentas W, Heitkamp S, Ostwald M, Kramer W, Binder J, Blaheta R, Jonas D, et al. Robotic-assisted laparoscopic radical prostatectomy: the Frankfurt technique. World J Urol. 2003;21(3):128–32.CrossRefPubMed Wolfram M, Bräutigam R, Engl T, Bentas W, Heitkamp S, Ostwald M, Kramer W, Binder J, Blaheta R, Jonas D, et al. Robotic-assisted laparoscopic radical prostatectomy: the Frankfurt technique. World J Urol. 2003;21(3):128–32.CrossRefPubMed
21.
go back to reference Hockstein NG, Nolan JP, O’Malley BW, Woo YJ. Robotic microlaryngeal surgery: a technical feasibility study using the daVinci surgical robot and an airway mannequin. Laryngoscope. 2005;115(5):780–5.CrossRefPubMed Hockstein NG, Nolan JP, O’Malley BW, Woo YJ. Robotic microlaryngeal surgery: a technical feasibility study using the daVinci surgical robot and an airway mannequin. Laryngoscope. 2005;115(5):780–5.CrossRefPubMed
22.
go back to reference Ringel F, Stüer C, Reinke A, Preuss A, Behr M, Auer F, Stoffel M, Meyer B. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976). 2012;37(8):E496-501.CrossRefPubMed Ringel F, Stüer C, Reinke A, Preuss A, Behr M, Auer F, Stoffel M, Meyer B. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976). 2012;37(8):E496-501.CrossRefPubMed
23.
go back to reference Overley SC, Cho SK, Mehta AI, Arnold PM. Navigation and robotics in spinal surgery: where are we now? Neurosurgery. 2017;80(3s):S86-s99.CrossRefPubMed Overley SC, Cho SK, Mehta AI, Arnold PM. Navigation and robotics in spinal surgery: where are we now? Neurosurgery. 2017;80(3s):S86-s99.CrossRefPubMed
24.
go back to reference Lonjon N, Chan-Seng E, Costalat V, Bonnafoux B, Vassal M, Boetto J. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J. 2016;25(3):947–55.CrossRefPubMed Lonjon N, Chan-Seng E, Costalat V, Bonnafoux B, Vassal M, Boetto J. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J. 2016;25(3):947–55.CrossRefPubMed
25.
go back to reference Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J. 2013;22(3):661–6.CrossRefPubMed Hu X, Ohnmeiss DD, Lieberman IH. Robotic-assisted pedicle screw placement: lessons learned from the first 102 patients. Eur Spine J. 2013;22(3):661–6.CrossRefPubMed
26.
go back to reference Dai Y, Xue Y, Zhang J. Human-Inspired Haptic Perception and Control in Robot-Assisted Milling Surgery. IEEE Trans Haptics. 2021;14(2):359-370. Dai Y, Xue Y, Zhang J. Human-Inspired Haptic Perception and Control in Robot-Assisted Milling Surgery. IEEE Trans Haptics. 2021;14(2):359-370.
27.
go back to reference Dai Y, Xue Y, Zhang J. Bioinspired integration of auditory and haptic perception in bone milling surgery. IEEE/ASME Transactions on Mechatronics. 2018;23(2):614-623. Dai Y, Xue Y, Zhang J. Bioinspired integration of auditory and haptic perception in bone milling surgery. IEEE/ASME Transactions on Mechatronics. 2018;23(2):614-623.
28.
go back to reference Williamson TM, Bell BJ, Gerber N, Salas L, Zysset P, Caversaccio M, Weber S. Estimation of tool pose based on force-density correlation during robotic drilling. Ieee T Bio-Med Eng. 2013;60(4):969–76.CrossRef Williamson TM, Bell BJ, Gerber N, Salas L, Zysset P, Caversaccio M, Weber S. Estimation of tool pose based on force-density correlation during robotic drilling. Ieee T Bio-Med Eng. 2013;60(4):969–76.CrossRef
29.
go back to reference Busscher I, Ploegmakers JJ, Verkerke GJ, Veldhuizen AG. Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J. 2010;19(7):1104–14.CrossRefPubMedPubMedCentral Busscher I, Ploegmakers JJ, Verkerke GJ, Veldhuizen AG. Comparative anatomical dimensions of the complete human and porcine spine. Eur Spine J. 2010;19(7):1104–14.CrossRefPubMedPubMedCentral
30.
go back to reference Patil PG, Turner DA, Pietrobon R. National trends in surgical procedures for degenerative cervical spine disease: 1990–2000. Neurosurgery. 2005;57(4):753–8 (discussion 753-758).CrossRefPubMed Patil PG, Turner DA, Pietrobon R. National trends in surgical procedures for degenerative cervical spine disease: 1990–2000. Neurosurgery. 2005;57(4):753–8 (discussion 753-758).CrossRefPubMed
31.
go back to reference Fehlings MG, Barry S, Kopjar B, Yoon ST, Arnold P, Massicotte EM, Vaccaro A, Brodke DS, Shaffrey C, Smith JS, et al. Anterior versus posterior surgical approaches to treat cervical spondylotic myelopathy: outcomes of the prospective multicenter AOSpine North America CSM study in 264 patients. Spine (Phila Pa 1976). 2013;38(26):2247–52.CrossRefPubMed Fehlings MG, Barry S, Kopjar B, Yoon ST, Arnold P, Massicotte EM, Vaccaro A, Brodke DS, Shaffrey C, Smith JS, et al. Anterior versus posterior surgical approaches to treat cervical spondylotic myelopathy: outcomes of the prospective multicenter AOSpine North America CSM study in 264 patients. Spine (Phila Pa 1976). 2013;38(26):2247–52.CrossRefPubMed
32.
go back to reference Wang MC, Chan L, Maiman DJ, Kreuter W, Deyo RA. Complications and mortality associated with cervical spine surgery for degenerative disease in the United States. Spine (Phila Pa 1976). 2007;32(3):342–7.CrossRefPubMed Wang MC, Chan L, Maiman DJ, Kreuter W, Deyo RA. Complications and mortality associated with cervical spine surgery for degenerative disease in the United States. Spine (Phila Pa 1976). 2007;32(3):342–7.CrossRefPubMed
33.
go back to reference Singh J, Podolsky ER, Castellanos AE, Stein DE. Optimizing single port surgery: a case report and review of technique in colon resection. Int J Med Robotics Comput Assist Surg. 2011;7(2):127–30.CrossRef Singh J, Podolsky ER, Castellanos AE, Stein DE. Optimizing single port surgery: a case report and review of technique in colon resection. Int J Med Robotics Comput Assist Surg. 2011;7(2):127–30.CrossRef
34.
go back to reference Dobbs RW, Halgrimson WR, Talamini S, Vigneswaran HT, Wilson JO, Crivellaro S. Single-port robotic surgery: the next generation of minimally invasive urology. World J Urol. 2020;38(4):897–905.CrossRefPubMed Dobbs RW, Halgrimson WR, Talamini S, Vigneswaran HT, Wilson JO, Crivellaro S. Single-port robotic surgery: the next generation of minimally invasive urology. World J Urol. 2020;38(4):897–905.CrossRefPubMed
35.
go back to reference Kaouk J, Valero R, Sawczyn G, Garisto J. Extraperitoneal single-port robot-assisted radical prostatectomy: initial experience and description of technique. BJU Int. 2020;125(1):182–9.CrossRefPubMed Kaouk J, Valero R, Sawczyn G, Garisto J. Extraperitoneal single-port robot-assisted radical prostatectomy: initial experience and description of technique. BJU Int. 2020;125(1):182–9.CrossRefPubMed
36.
go back to reference Grochola LF, Soll C, Zehnder A, Wyss R, Herzog P, Breitenstein S. Robot-assisted versus laparoscopic single-incision cholecystectomy: results of a randomized controlled trial. Surg Endosc. 2019;33(5):1482–90.CrossRefPubMed Grochola LF, Soll C, Zehnder A, Wyss R, Herzog P, Breitenstein S. Robot-assisted versus laparoscopic single-incision cholecystectomy: results of a randomized controlled trial. Surg Endosc. 2019;33(5):1482–90.CrossRefPubMed
37.
go back to reference Gomes MTV, Machado AMN, Podgaec S, Barison GAS. Initial experience with single-port robotic hysterectomy. Einstein (Sao Paulo, Brazil). 2017;15(4):476–80.CrossRefPubMed Gomes MTV, Machado AMN, Podgaec S, Barison GAS. Initial experience with single-port robotic hysterectomy. Einstein (Sao Paulo, Brazil). 2017;15(4):476–80.CrossRefPubMed
38.
go back to reference Yang MS, Yoon DH, Kim KN, Kim H, Yang JW, Yi S, Lee JY, Jung WJ, Rha KH, Ha Y. Robot-assisted anterior lumbar interbody fusion in a Swine model in vivo test of the da vinci surgical-assisted spinal surgery system. Spine (Phila Pa 1976). 2011;36(2):E139-143.CrossRefPubMed Yang MS, Yoon DH, Kim KN, Kim H, Yang JW, Yi S, Lee JY, Jung WJ, Rha KH, Ha Y. Robot-assisted anterior lumbar interbody fusion in a Swine model in vivo test of the da vinci surgical-assisted spinal surgery system. Spine (Phila Pa 1976). 2011;36(2):E139-143.CrossRefPubMed
39.
go back to reference Beutler WJ, Peppelman WC, DiMarco LA. The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report. Spine (Phila Pa 1976). 2013;38(4):356–63.CrossRefPubMed Beutler WJ, Peppelman WC, DiMarco LA. The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report. Spine (Phila Pa 1976). 2013;38(4):356–63.CrossRefPubMed
40.
go back to reference Moskowitz RM, Young JL, Box GN, Paré LS, Clayman RV. Retroperitoneal transdiaphragmatic robotic-assisted laparoscopic resection of a left thoracolumbar neurofibroma. JSLS. 2009;13(1):64–8.PubMedPubMedCentral Moskowitz RM, Young JL, Box GN, Paré LS, Clayman RV. Retroperitoneal transdiaphragmatic robotic-assisted laparoscopic resection of a left thoracolumbar neurofibroma. JSLS. 2009;13(1):64–8.PubMedPubMedCentral
41.
go back to reference Shweikeh F, Amadio JP, Arnell M, Barnard ZR, Kim TT, Johnson JP, Drazin D. Robotics and the spine: a review of current and ongoing applications. Neurosurg Focus. 2014;36(3):E10.CrossRefPubMed Shweikeh F, Amadio JP, Arnell M, Barnard ZR, Kim TT, Johnson JP, Drazin D. Robotics and the spine: a review of current and ongoing applications. Neurosurg Focus. 2014;36(3):E10.CrossRefPubMed
42.
go back to reference Dogangil G, Davies BL, Rodriguez y Baena F. A review of medical robotics for minimally invasive soft tissue surgery. Proc Inst Mech Eng H 2010, 224(5):653-679. Dogangil G, Davies BL, Rodriguez y Baena F. A review of medical robotics for minimally invasive soft tissue surgery. Proc Inst Mech Eng H 2010, 224(5):653-679.
43.
go back to reference Theodore N, Ahmed AK. The History of Robotics in Spine Surgery. Spine. 2018;43(7S):S23.CrossRef Theodore N, Ahmed AK. The History of Robotics in Spine Surgery. Spine. 2018;43(7S):S23.CrossRef
Metadata
Title
Identification of milling status based on vibration signals using artificial intelligence in robot-assisted cervical laminectomy
Authors
Rui Wang
He Bai
Guangming Xia
Jiaming Zhou
Yu Dai
Yuan Xue
Publication date
01-12-2023
Publisher
BioMed Central
Published in
European Journal of Medical Research / Issue 1/2023
Electronic ISSN: 2047-783X
DOI
https://doi.org/10.1186/s40001-023-01154-y

Other articles of this Issue 1/2023

European Journal of Medical Research 1/2023 Go to the issue