Skip to main content
Top
Published in: BMC Infectious Diseases 1/2021

Open Access 01-12-2021 | Cholera | Research

Exploring relationships between drought and epidemic cholera in Africa using generalised linear models

Authors: Gina E. C. Charnley, Ilan Kelman, Nathan Green, Wes Hinsley, Katy A. M. Gaythorpe, Kris A. Murray

Published in: BMC Infectious Diseases | Issue 1/2021

Login to get access

Abstract

Background

Temperature and precipitation are known to affect Vibrio cholerae outbreaks. Despite this, the impact of drought on outbreaks has been largely understudied. Africa is both drought and cholera prone and more research is needed in Africa to understand cholera dynamics in relation to drought.

Methods

Here, we analyse a range of environmental and socioeconomic covariates and fit generalised linear models to publicly available national data, to test for associations with several indices of drought and make cholera outbreak projections to 2070 under three scenarios of global change, reflecting varying trajectories of CO2 emissions, socio-economic development, and population growth.

Results

The best-fit model implies that drought is a significant risk factor for African cholera outbreaks, alongside positive effects of population, temperature and poverty and a negative effect of freshwater withdrawal. The projections show that following stringent emissions pathways and expanding sustainable development may reduce cholera outbreak occurrence in Africa, although these changes were spatially heterogeneous.

Conclusions

Despite an effect of drought in explaining recent cholera outbreaks, future projections highlighted the potential for sustainable development gains to offset drought-related impacts on cholera risk. Future work should build on this research investigating the impacts of drought on cholera on a finer spatial scale and potential non-linear relationships, especially in high-burden countries which saw little cholera change in the scenario analysis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Mendelsohn J, Dawson T. Climate and cholera in KwaZulu-Natal, South Africa: the role of environmental factors and implications for epidemic preparedness. Int J Hyg Environ Health. 2008;211(1–2):156–62.CrossRef Mendelsohn J, Dawson T. Climate and cholera in KwaZulu-Natal, South Africa: the role of environmental factors and implications for epidemic preparedness. Int J Hyg Environ Health. 2008;211(1–2):156–62.CrossRef
2.
go back to reference Tauxe RV, Holmberg SD, Dodin A, Wells JV, Blake PA. Epidemic cholera in Mali: high mortality and multiple routes of transmission in a famine area. Epidemiol Infect. 1988;100(2):279–89.CrossRef Tauxe RV, Holmberg SD, Dodin A, Wells JV, Blake PA. Epidemic cholera in Mali: high mortality and multiple routes of transmission in a famine area. Epidemiol Infect. 1988;100(2):279–89.CrossRef
3.
go back to reference Germani Y, Quilici ML, Glaziou P, Mattera D, Morvan J, Fournier JM. Emergence of cholera in the Central African Republic. Eur J Clin Microbiol Infect Dis. 1998;17(12):888.CrossRef Germani Y, Quilici ML, Glaziou P, Mattera D, Morvan J, Fournier JM. Emergence of cholera in the Central African Republic. Eur J Clin Microbiol Infect Dis. 1998;17(12):888.CrossRef
5.
go back to reference Nkoko DB, Giraudoux P, Plisnier PD, Tinda AM, Piarroux M, Sudre B, et al. Dynamics of cholera outbreaks in Great Lakes region of Africa, 1978–2008. Emerg Infect Dis. 2011;17(11):2026.CrossRef Nkoko DB, Giraudoux P, Plisnier PD, Tinda AM, Piarroux M, Sudre B, et al. Dynamics of cholera outbreaks in Great Lakes region of Africa, 1978–2008. Emerg Infect Dis. 2011;17(11):2026.CrossRef
6.
go back to reference De Magny GC, Thiaw W, Kumar V, Manga NM, Diop BM, Gueye L, et al. Cholera outbreak in Senegal in 2005: was climate a factor? PLoS ONE. 2012;7(8):e44577.CrossRef De Magny GC, Thiaw W, Kumar V, Manga NM, Diop BM, Gueye L, et al. Cholera outbreak in Senegal in 2005: was climate a factor? PLoS ONE. 2012;7(8):e44577.CrossRef
7.
go back to reference Rebaudet S, Sudre B, Faucher B, Piarroux R. Environmental determinants of cholera outbreaks in inland Africa: a systematic review of main transmission foci and propagation routes. J Infect Dis. 2013;208(Suppl 1):S46–54.CrossRef Rebaudet S, Sudre B, Faucher B, Piarroux R. Environmental determinants of cholera outbreaks in inland Africa: a systematic review of main transmission foci and propagation routes. J Infect Dis. 2013;208(Suppl 1):S46–54.CrossRef
8.
go back to reference Reyburn R, Kim DR, Emch M, Khatib A, Von Seidlein L, Ali M. Climate variability and the outbreaks of cholera in Zanzibar, East Africa: a time series analysis. Am J Trop Med Hyg. 2011;84(6):862–9.CrossRef Reyburn R, Kim DR, Emch M, Khatib A, Von Seidlein L, Ali M. Climate variability and the outbreaks of cholera in Zanzibar, East Africa: a time series analysis. Am J Trop Med Hyg. 2011;84(6):862–9.CrossRef
9.
go back to reference Olago D, Marshall M, Wandiga SO, Opondo M, Yanda PZ, Kangalawe R, et al. Climatic, socio-economic, and health factors affecting human vulnerability to cholera in the Lake Victoria basin, East Africa. AMBIO. 2007;36(4):350–8.CrossRef Olago D, Marshall M, Wandiga SO, Opondo M, Yanda PZ, Kangalawe R, et al. Climatic, socio-economic, and health factors affecting human vulnerability to cholera in the Lake Victoria basin, East Africa. AMBIO. 2007;36(4):350–8.CrossRef
10.
go back to reference Abdussalam AF. Modelling the climatic drivers of cholera dynamics in northern Nigeria using generalised additive models. Int J Geogr Environ Manag. 2016;2(1):84–97. Abdussalam AF. Modelling the climatic drivers of cholera dynamics in northern Nigeria using generalised additive models. Int J Geogr Environ Manag. 2016;2(1):84–97.
11.
go back to reference Rieckmann A, Tamason CC, Gurley ES, Rod NH, Jensen PKM. Exploring droughts and floods and their association with cholera outbreaks in sub-Saharan Africa: a register-based ecological study from 1990 to 2010. Am J Trop Med Hyg. 2018;98(5):1269–74.CrossRef Rieckmann A, Tamason CC, Gurley ES, Rod NH, Jensen PKM. Exploring droughts and floods and their association with cholera outbreaks in sub-Saharan Africa: a register-based ecological study from 1990 to 2010. Am J Trop Med Hyg. 2018;98(5):1269–74.CrossRef
12.
go back to reference Mark O, Jørgensen C, Hammond M, Khan D, Tjener R, Erichsen A, Helwigh B. A new methodology for modelling of health risk from urban flooding exemplified by cholera—case Dhaka, Bangladesh. J Flood Risk Manag. 2018;11:S28–42.CrossRef Mark O, Jørgensen C, Hammond M, Khan D, Tjener R, Erichsen A, Helwigh B. A new methodology for modelling of health risk from urban flooding exemplified by cholera—case Dhaka, Bangladesh. J Flood Risk Manag. 2018;11:S28–42.CrossRef
13.
go back to reference Weill FX, Domman D, Njamkepo E, Tarr C, Rauzier J, Fawal N, et al. Genomic history of the seventh pandemic of cholera in Africa. Science. 2017;358(6364):785–9.CrossRef Weill FX, Domman D, Njamkepo E, Tarr C, Rauzier J, Fawal N, et al. Genomic history of the seventh pandemic of cholera in Africa. Science. 2017;358(6364):785–9.CrossRef
14.
go back to reference Talavera A, Perez EM. Is cholera disease associated with poverty? J Infect Dev Ctries. 2009;3(06):408–11.CrossRef Talavera A, Perez EM. Is cholera disease associated with poverty? J Infect Dev Ctries. 2009;3(06):408–11.CrossRef
15.
go back to reference Mari L, Bertuzzo E, Righetto L, Casagrandi R, Gatto M, Rodriguez-Iturbe I, et al. Modelling cholera epidemics: the role of waterways, human mobility and sanitation. J R Soc Interface. 2012;9(67):376–88.CrossRef Mari L, Bertuzzo E, Righetto L, Casagrandi R, Gatto M, Rodriguez-Iturbe I, et al. Modelling cholera epidemics: the role of waterways, human mobility and sanitation. J R Soc Interface. 2012;9(67):376–88.CrossRef
16.
go back to reference Sasaki S, Suzuki H, Fujino Y, Kimura Y, Cheelo M. Impact of drainage networks on cholera outbreaks in Lusaka, Zambia. Am J Public Health. 2009;99(11):1982–7.CrossRef Sasaki S, Suzuki H, Fujino Y, Kimura Y, Cheelo M. Impact of drainage networks on cholera outbreaks in Lusaka, Zambia. Am J Public Health. 2009;99(11):1982–7.CrossRef
17.
go back to reference Ranjbar R, Rahbar M, Naghoni A, Farshad S, Davari A, Shahcheraghi F. A cholera outbreak associated with drinking contaminated well water. Arch Iran Med. 2011;14(5):339–40.PubMed Ranjbar R, Rahbar M, Naghoni A, Farshad S, Davari A, Shahcheraghi F. A cholera outbreak associated with drinking contaminated well water. Arch Iran Med. 2011;14(5):339–40.PubMed
18.
go back to reference Jutla A, Khan R, Colwell R. Natural disasters and cholera outbreaks: current understanding and future outlook. Curr Environ Health Rep. 2017;4(1):99–107.CrossRef Jutla A, Khan R, Colwell R. Natural disasters and cholera outbreaks: current understanding and future outlook. Curr Environ Health Rep. 2017;4(1):99–107.CrossRef
19.
go back to reference Codeço CT. Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect Dis. 2001;1(1):1.CrossRef Codeço CT. Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect Dis. 2001;1(1):1.CrossRef
20.
go back to reference Global Task Force on Cholera Control. Ending cholera a global roadmap to 2030. World Health Organization; 2017 Oct 3. Global Task Force on Cholera Control. Ending cholera a global roadmap to 2030. World Health Organization; 2017 Oct 3.
21.
go back to reference Haile GG, Tang Q, Hosseini‐Moghari SM, Liu X, Gebremicael TG, Leng G, et al. Projected impacts of climate change on drought patterns over East Africa. Earth’s Future. 2020;8(7):e2020EF001502. Haile GG, Tang Q, Hosseini‐Moghari SM, Liu X, Gebremicael TG, Leng G, et al. Projected impacts of climate change on drought patterns over East Africa. Earth’s Future. 2020;8(7):e2020EF001502.
22.
go back to reference Ahmadalipour A, Moradkhani H, Castelletti A, Magliocca N. Future drought risk in Africa: integrating vulnerability, climate change, and population growth. Sci Total Environ. 2019;662:672–86.CrossRef Ahmadalipour A, Moradkhani H, Castelletti A, Magliocca N. Future drought risk in Africa: integrating vulnerability, climate change, and population growth. Sci Total Environ. 2019;662:672–86.CrossRef
32.
go back to reference Garske T, Van Kerkhov, MD, Yactayo S, Ronveaux O, Lewis RF, Staples JE, et al. Yellow fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med. 2014;11(5):e1001638. Garske T, Van Kerkhov, MD, Yactayo S, Ronveaux O, Lewis RF, Staples JE, et al. Yellow fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data. PLoS Med. 2014;11(5):e1001638.
33.
go back to reference Gaythorpe KA, Hamlet A, Jean K, Ramos DG, Cibrelus L, Garske T, et al. The global burden of yellow fever. eLife. 2021;10:e64670. Gaythorpe KA, Hamlet A, Jean K, Ramos DG, Cibrelus L, Garske T, et al. The global burden of yellow fever. eLife. 2021;10:e64670.
35.
go back to reference Shanahan TM, Overpeck JT, Anchukaitis KJ, Beck JW, Cole JE, Dettman DL, et al. Atlantic forcing of persistent drought in West Africa. Science. 2009;324(5925):377–80.CrossRef Shanahan TM, Overpeck JT, Anchukaitis KJ, Beck JW, Cole JE, Dettman DL, et al. Atlantic forcing of persistent drought in West Africa. Science. 2009;324(5925):377–80.CrossRef
37.
go back to reference Sheffield J, Wood EF, Roderick ML. Little change in global drought over the past 60 years. Nature. 2012;491(7424):435–8.CrossRef Sheffield J, Wood EF, Roderick ML. Little change in global drought over the past 60 years. Nature. 2012;491(7424):435–8.CrossRef
39.
go back to reference Verschuren D, Laird KR, Cumming BF. Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature. 2000;403(6768):410–4.CrossRef Verschuren D, Laird KR, Cumming BF. Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature. 2000;403(6768):410–4.CrossRef
40.
go back to reference Tian-Jun Z, Tao H. Projected changes of palmer drought severity index under an RCP8.5 scenario. AOSL. 2013;6(5):273–8. Tian-Jun Z, Tao H. Projected changes of palmer drought severity index under an RCP8.5 scenario. AOSL. 2013;6(5):273–8.
41.
go back to reference Ahmadalipour A, Moradkhani H. Multi-dimensional assessment of drought vulnerability in Africa: 1960–2100. Sci Total Environ. 2018;644:520–35.CrossRef Ahmadalipour A, Moradkhani H. Multi-dimensional assessment of drought vulnerability in Africa: 1960–2100. Sci Total Environ. 2018;644:520–35.CrossRef
44.
go back to reference Kluberg SA, Mekaru SR, McIver DJ, Madoff LC, Crawley AW, Smolinski MS, et al. Global capacity for emerging infectious disease detection, 1996–2014. Emerg Infect Dis. 2016;22(10):e151956. Kluberg SA, Mekaru SR, McIver DJ, Madoff LC, Crawley AW, Smolinski MS, et al. Global capacity for emerging infectious disease detection, 1996–2014. Emerg Infect Dis. 2016;22(10):e151956.
45.
go back to reference Ratnayake R, Finger F, Edmunds WJ, Checchi F. Early detection of cholera epidemics to support control in fragile states: estimation of delays and potential epidemic sizes. BMC Med. 2020;18(1):1–16.CrossRef Ratnayake R, Finger F, Edmunds WJ, Checchi F. Early detection of cholera epidemics to support control in fragile states: estimation of delays and potential epidemic sizes. BMC Med. 2020;18(1):1–16.CrossRef
47.
go back to reference Borroto RJ. Ecology of Vibrio cholerae serogroup 01 in aquatic environments. Pan Am J. 1997;2:328–33. Borroto RJ. Ecology of Vibrio cholerae serogroup 01 in aquatic environments. Pan Am J. 1997;2:328–33.
48.
go back to reference Penrose K, de Castro MC, Werema J, Ryan ET. Informal urban settlements and cholera risk in Dar es Salaam, Tanzania. PLoS Negl Trop Dis. 2010;4(3):e631. Penrose K, de Castro MC, Werema J, Ryan ET. Informal urban settlements and cholera risk in Dar es Salaam, Tanzania. PLoS Negl Trop Dis. 2010;4(3):e631.
50.
go back to reference Moravec V, Markonis Y, Rakovec O, Kumar R, Hanel M. A 250-year European drought inventory derived from ensemble hydrologic modelling. Geophys Res Lett. 2019;46(11):5909–17.CrossRef Moravec V, Markonis Y, Rakovec O, Kumar R, Hanel M. A 250-year European drought inventory derived from ensemble hydrologic modelling. Geophys Res Lett. 2019;46(11):5909–17.CrossRef
51.
go back to reference Ramesh A, Blanchet K, Ensink JH, Roberts B. Evidence on the effectiveness of water, sanitation, and hygiene (WASH) interventions on health outcomes in humanitarian crises: a systematic review. PLoS ONE. 2015;10(9):e0124688. Ramesh A, Blanchet K, Ensink JH, Roberts B. Evidence on the effectiveness of water, sanitation, and hygiene (WASH) interventions on health outcomes in humanitarian crises: a systematic review. PLoS ONE. 2015;10(9):e0124688.
52.
go back to reference Ali M, Lopez AL, You Y, Kim YE, Sah B, Maskery B. The global burden of cholera. Bull World Health Organ. 2012;90:209–18.CrossRef Ali M, Lopez AL, You Y, Kim YE, Sah B, Maskery B. The global burden of cholera. Bull World Health Organ. 2012;90:209–18.CrossRef
53.
go back to reference Azman AS, Moore SM, Lessler J. Surveillance and the global fight against cholera: setting priorities and tracking progress. Vaccine. 2020;38(Suppl 1):A28.CrossRef Azman AS, Moore SM, Lessler J. Surveillance and the global fight against cholera: setting priorities and tracking progress. Vaccine. 2020;38(Suppl 1):A28.CrossRef
54.
go back to reference Legros D. Global cholera epidemiology: opportunities to reduce the burden of cholera by 2030. J Infect Dis. 2018;218(Suppl 3):S137–40.CrossRef Legros D. Global cholera epidemiology: opportunities to reduce the burden of cholera by 2030. J Infect Dis. 2018;218(Suppl 3):S137–40.CrossRef
Metadata
Title
Exploring relationships between drought and epidemic cholera in Africa using generalised linear models
Authors
Gina E. C. Charnley
Ilan Kelman
Nathan Green
Wes Hinsley
Katy A. M. Gaythorpe
Kris A. Murray
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2021
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-021-06856-4

Other articles of this Issue 1/2021

BMC Infectious Diseases 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.