Skip to main content
Top
Published in: BMC Infectious Diseases 1/2019

Open Access 01-12-2019 | Chlamydia Trachomatis | Research article

High expression of IDO1 and TGF-β1 during recurrence and post infection clearance with Chlamydia trachomatis, are independent of host IFN-γ response

Authors: Noa Ziklo, Wilhelmina M. Huston, Kuong Taing, Peter Timms

Published in: BMC Infectious Diseases | Issue 1/2019

Login to get access

Abstract

Background

Chlamydia trachomatis infections in women continue to be a major public health concern due to their high prevalence and consequent reproductive morbidities. While antibiotics are usually efficient to clear the Chlamydia, repeat infections are common and may contribute to pathological outcomes. Interferon-gamma (IFN-γ)-mediated immunity has been suggested to be protective against reinfection, and represent an important anti-chlamydial agent, primarily via the induction of indoleamine-2,3 dioxygenase 1 (IDO1) enzyme. IDO1 catalyzes the degradation of tryptophan, which can eliminate C. trachomatis infection in vitro. Here, we sought to measure IDO1 expression levels and related immune markers during different C. trachomatis infection statuses (repeated vs single infection vs post antibiotic treatment), in vitro and in vivo.

Methods

In this study, we measured the expression levels of IDO1 and immune regulatory markers, transforming growth factor β1 (TGF-β1) and forkhead box P3 (FoxP3), in vaginal swab samples of C. trachomatis-infected women, with either single or repeated infection. In addition, we used an in vitro co-culture model of endometrial carcinoma cell-line and peripheral blood mononuclear cells (PBMCs) to measure the same immune markers.

Results

We found that in women with repeated C. trachomatis infections vaginal IDO1 and TGF-β1 expression levels were significantly increased. Whereas, women who cleared their infection post antibiotic treatment, had increased levels of IDO1 and TGF-β1, as well as FoxP3. Similarly, using the in vitro model, we found significant upregulation of IDO1 and TGF-β1 levels in the co-culture infected with C. trachomatis. Furthermore, we found that in PBMCs infected with C. trachomatis there was a significant upregulation in IDO1 levels, which was independent of IFN-γ. In fact, C. trachomatis infection in PBMCs failed to induce IFN-γ levels in comparison to the uninfected culture.

Conclusions

Our data provide evidence for a regulatory immune response comprised of IDO1, TGF-β1 and FoxP3 in women post antibiotic treatment. In this study, we demonstrated a significant increase in IDO1 expression levels in response to C. trachomatis infection, both in vivo and in vitro, without elevated IFN-γ levels. This study implicates IDO1 and TGF-β1 as part of the immune response to repeated C. trachomatis infections, independently of IFN-γ.
Appendix
Available only for authorised users
Literature
1.
go back to reference Darville T, Thomas HJ. Pathogenesis of genital tract disease due to Chlamydia trachomatis. J Infect Di. 2010;201:S114–25. Darville T, Thomas HJ. Pathogenesis of genital tract disease due to Chlamydia trachomatis. J Infect Di. 2010;201:S114–25.
2.
go back to reference Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10:e0143304.PubMedPubMedCentral Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One. 2015;10:e0143304.PubMedPubMedCentral
3.
go back to reference Geisler WM, Uniyal A, Lee JY, Lensing SY, Johnson S, Perry RCW, et al. Azithromycin versus doxycycline for urogenital Chlamydia trachomatis infection. N Engl J Med. 2015;373:2512–21.PubMedPubMedCentral Geisler WM, Uniyal A, Lee JY, Lensing SY, Johnson S, Perry RCW, et al. Azithromycin versus doxycycline for urogenital Chlamydia trachomatis infection. N Engl J Med. 2015;373:2512–21.PubMedPubMedCentral
4.
go back to reference Kong FYS, Hocking JS. Treatment challenges for urogenital and anorectal Chlamydia trachomatis. BMC Infect Dis. 2015;15:293.PubMedPubMedCentral Kong FYS, Hocking JS. Treatment challenges for urogenital and anorectal Chlamydia trachomatis. BMC Infect Dis. 2015;15:293.PubMedPubMedCentral
5.
go back to reference Barral R, Desai R, Zheng X, Frazer LC, Sucato GS, Haggerty CL, et al. Frequency of Chlamydia trachomatis-specific T cell interferon-γ and interleukin-17 responses in CD4-enriched peripheral blood mononuclear cells of sexually active adolescent females. J Reprod Immunol. 2014;103:29–37.PubMedPubMedCentral Barral R, Desai R, Zheng X, Frazer LC, Sucato GS, Haggerty CL, et al. Frequency of Chlamydia trachomatis-specific T cell interferon-γ and interleukin-17 responses in CD4-enriched peripheral blood mononuclear cells of sexually active adolescent females. J Reprod Immunol. 2014;103:29–37.PubMedPubMedCentral
6.
go back to reference Batteiger BE, Xu F, Johnson RE, Rekart ML. Protective immunity to Chlamydia trachomatis genital infection: evidence from human studies. J Infect Dis. 2010;201:178–89. Batteiger BE, Xu F, Johnson RE, Rekart ML. Protective immunity to Chlamydia trachomatis genital infection: evidence from human studies. J Infect Dis. 2010;201:178–89.
7.
go back to reference Debattista J, Timms P, Allan J, Allan J. Reduced levels of gamma-interferon secretion in response to chlamydial 60 kDa heat shock protein amongst women with pel v ic inflammatory disease and a history of repeated Chlamydia trachomatis infections. Immunol Lett. 2002;81:205–10.PubMed Debattista J, Timms P, Allan J, Allan J. Reduced levels of gamma-interferon secretion in response to chlamydial 60 kDa heat shock protein amongst women with pel v ic inflammatory disease and a history of repeated Chlamydia trachomatis infections. Immunol Lett. 2002;81:205–10.PubMed
8.
go back to reference Beaty WL, Belanger TA, Desai AA, Morrison RP, Byrne GI. Tryptophan depletion as a mechanism of gamma interferon- mediated chlamydial persistence. Infect Immun. 1994;62:3705–11. Beaty WL, Belanger TA, Desai AA, Morrison RP, Byrne GI. Tryptophan depletion as a mechanism of gamma interferon- mediated chlamydial persistence. Infect Immun. 1994;62:3705–11.
9.
go back to reference Caldwell HD, Wood H, Crane D, Bailey R, Jones RB, Mabey D, et al. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J Clin Invest. 2003;111:1757–69.PubMedPubMedCentral Caldwell HD, Wood H, Crane D, Bailey R, Jones RB, Mabey D, et al. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J Clin Invest. 2003;111:1757–69.PubMedPubMedCentral
10.
go back to reference Byrne GI, Lehmann LK, Landry GJ. Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun. 1986;53:347–51.PubMedPubMedCentral Byrne GI, Lehmann LK, Landry GJ. Induction of tryptophan catabolism is the mechanism for gamma-interferon-mediated inhibition of intracellular Chlamydia psittaci replication in T24 cells. Infect Immun. 1986;53:347–51.PubMedPubMedCentral
11.
go back to reference Taylor MW, Feng GS. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991;5:2516–22.PubMed Taylor MW, Feng GS. Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 1991;5:2516–22.PubMed
12.
go back to reference Takao S, Sumitsugu N, Hirata F, Hayaishi O. Indoleamine 2,3-dioxygenase. J Biol Chem. 1978;253:4700–6. Takao S, Sumitsugu N, Hirata F, Hayaishi O. Indoleamine 2,3-dioxygenase. J Biol Chem. 1978;253:4700–6.
14.
go back to reference Lewis ME, Belland RJ, AbdelRahman YM, Beatty WL, Aiyar AA, Zea AH, et al. Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns. Front Cell Infect Microbiol. 2014;4:71.PubMedPubMedCentral Lewis ME, Belland RJ, AbdelRahman YM, Beatty WL, Aiyar AA, Zea AH, et al. Morphologic and molecular evaluation of Chlamydia trachomatis growth in human endocervix reveals distinct growth patterns. Front Cell Infect Microbiol. 2014;4:71.PubMedPubMedCentral
15.
go back to reference Jordan SJ, Olson KM, Barnes S, Wilson LS, Berryhill TF, Bakshi R, et al. Lower levels of Cervicovaginal tryptophan are associated with natural clearance of Chlamydia in women. J Infect Dis. 2017;215:1888–92.PubMedPubMedCentral Jordan SJ, Olson KM, Barnes S, Wilson LS, Berryhill TF, Bakshi R, et al. Lower levels of Cervicovaginal tryptophan are associated with natural clearance of Chlamydia in women. J Infect Dis. 2017;215:1888–92.PubMedPubMedCentral
16.
go back to reference Faal N, Bailey RL, Jeffries D, Joof H, Sarr I, Laye M, et al. Conjunctival FOXP3 expression in trachoma: do regulatory T cells have a role in human ocular Chlamydia trachomatis infection? PLoS Med. 2006;3:1292–301. Faal N, Bailey RL, Jeffries D, Joof H, Sarr I, Laye M, et al. Conjunctival FOXP3 expression in trachoma: do regulatory T cells have a role in human ocular Chlamydia trachomatis infection? PLoS Med. 2006;3:1292–301.
17.
go back to reference Ziklo N, Vidgen ME, Taing K, Huston WM, Timms P. Dysbiosis of the vaginal microbiota and higher vaginal kynurenine/tryptophan ratio reveals an association with Chlamydia trachomatis genital infections. Front Cell Infect Microbiol. 2018;8:1–11.PubMedPubMedCentral Ziklo N, Vidgen ME, Taing K, Huston WM, Timms P. Dysbiosis of the vaginal microbiota and higher vaginal kynurenine/tryptophan ratio reveals an association with Chlamydia trachomatis genital infections. Front Cell Infect Microbiol. 2018;8:1–11.PubMedPubMedCentral
18.
go back to reference Schroten H, Spors B, Hucke C, Stins M, Kim KS, Adam R, et al. Potential role of human brain microvascular endothelial cells in the pathogenesis of brain Abscess : inhibition of Staphylococcus aureus by activation of Indoleamine 2 , 3-dioxygenase. Neuropediatrics. 2001;32:206–10.PubMed Schroten H, Spors B, Hucke C, Stins M, Kim KS, Adam R, et al. Potential role of human brain microvascular endothelial cells in the pathogenesis of brain Abscess : inhibition of Staphylococcus aureus by activation of Indoleamine 2 , 3-dioxygenase. Neuropediatrics. 2001;32:206–10.PubMed
19.
go back to reference Mackenzie CR, Heseler K, Müller A, Däubener W. Role of Indoleamine 2 , 3-dioxygenase in antimicrobial Defence and Immuno- Regulation : tryptophan depletion versus production of toxic kynurenines. Curr Drug Metab. 2007;8:237–44.PubMed Mackenzie CR, Heseler K, Müller A, Däubener W. Role of Indoleamine 2 , 3-dioxygenase in antimicrobial Defence and Immuno- Regulation : tryptophan depletion versus production of toxic kynurenines. Curr Drug Metab. 2007;8:237–44.PubMed
20.
go back to reference Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185:3190–8.PubMedPubMedCentral Mezrich JD, Fechner JH, Zhang X, Johnson BP, Burlingham WJ, Bradfield CA. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J Immunol. 2010;185:3190–8.PubMedPubMedCentral
21.
go back to reference Fallarino F, Grohmann U, You S, Mcgrath BC, Cavener DR, Vacca C, et al. The combined effects of Trypptophan starvation and tryptophan catabolites Down-regulate T cell receptor -chain and induce a regulatory phenotype in naive T cells. J Immunol. 2006;176:6752–61.PubMed Fallarino F, Grohmann U, You S, Mcgrath BC, Cavener DR, Vacca C, et al. The combined effects of Trypptophan starvation and tryptophan catabolites Down-regulate T cell receptor -chain and induce a regulatory phenotype in naive T cells. J Immunol. 2006;176:6752–61.PubMed
22.
go back to reference Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9:1069–77.PubMed Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 2002;9:1069–77.PubMed
23.
go back to reference Metz R, Rust S, DuHadaway JB, Mautino MR, Munn DH, Vahanian NN, et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology. 2012;1:1460–8.PubMedPubMedCentral Metz R, Rust S, DuHadaway JB, Mautino MR, Munn DH, Vahanian NN, et al. IDO inhibits a tryptophan sufficiency signal that stimulates mTOR: a novel IDO effector pathway targeted by D-1-methyl-tryptophan. Oncoimmunology. 2012;1:1460–8.PubMedPubMedCentral
24.
go back to reference Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22:633–42.PubMed Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D, et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity. 2005;22:633–42.PubMed
25.
go back to reference Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189:1363–72.PubMedPubMedCentral Munn DH, Shafizadeh E, Attwood JT, Bondarev I, Pashine A, Mellor AL. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J Exp Med. 1999;189:1363–72.PubMedPubMedCentral
26.
go back to reference Mbongue J, Nicholas D, Torrez T, Kim N-S, Firek A, Langridge W. The role of Indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines. 2015;3:703–29.PubMedPubMedCentral Mbongue J, Nicholas D, Torrez T, Kim N-S, Firek A, Langridge W. The role of Indoleamine 2, 3-dioxygenase in immune suppression and autoimmunity. Vaccines. 2015;3:703–29.PubMedPubMedCentral
27.
go back to reference Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC, et al. T cell apoptosis by kynurenines. Dev tryptophan serotonin Metab. Springer; 2003. p. 183–90. Fallarino F, Grohmann U, Vacca C, Orabona C, Spreca A, Fioretti MC, et al. T cell apoptosis by kynurenines. Dev tryptophan serotonin Metab. Springer; 2003. p. 183–90.
28.
go back to reference Babcock TA, Carlin JM. Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor α in interferon-treated epithelial cells. Cytokine. 2000;12:588–94.PubMed Babcock TA, Carlin JM. Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor α in interferon-treated epithelial cells. Cytokine. 2000;12:588–94.PubMed
29.
go back to reference Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R, et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol. 2011;12:870–8.PubMed Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R, et al. Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol. 2011;12:870–8.PubMed
30.
go back to reference Carlin JM, Borden EC, Sondel PM, Byrne GI. Biologic response modifier induced indoleamine 2,3-dioxygenase activity in human peripheral blood mononuclear cell cultures. J Immunol. 1987;139:2414–8.PubMed Carlin JM, Borden EC, Sondel PM, Byrne GI. Biologic response modifier induced indoleamine 2,3-dioxygenase activity in human peripheral blood mononuclear cell cultures. J Immunol. 1987;139:2414–8.PubMed
31.
go back to reference Fujigaki S, Saito K, Sekikawa K, Tone S, Takikawa O, Fujii H, et al. Lipopolysaccharide induction of indoleamine 2 , 3-dioxygenase is mediated dominantly by an IFN- q -independent mechanism. Eur J Immunol. 2001;31:2313–8.PubMed Fujigaki S, Saito K, Sekikawa K, Tone S, Takikawa O, Fujii H, et al. Lipopolysaccharide induction of indoleamine 2 , 3-dioxygenase is mediated dominantly by an IFN- q -independent mechanism. Eur J Immunol. 2001;31:2313–8.PubMed
32.
go back to reference Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol. 2007;8:277–84.PubMed Williams LM, Rudensky AY. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol. 2007;8:277–84.PubMed
33.
go back to reference Meijer CJLM, Weiderpass E, Arslan A, Posso H, Franceschi S, Ronderos M, et al. The natural course of Chlamydia trachomatis infection in asymptomatic Colombian Women : a 5-year follow-up study. J Infect Dis. 2005;191:907–16.PubMed Meijer CJLM, Weiderpass E, Arslan A, Posso H, Franceschi S, Ronderos M, et al. The natural course of Chlamydia trachomatis infection in asymptomatic Colombian Women : a 5-year follow-up study. J Infect Dis. 2005;191:907–16.PubMed
34.
go back to reference Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol. 2005;5(2):149–61. Brunham RC, Rey-Ladino J. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat Rev Immunol. 2005;5(2):149–61.
35.
go back to reference Mallone R, Mannering SI, Brooks-Worrell BM, Durinovic-Bello I, Cilio CM, Wong FS, et al. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses : position statement of the T-cell workshop Committee of the Immunology of diabetes society. Clin Exp Immunol. 2010;163:33–49.PubMed Mallone R, Mannering SI, Brooks-Worrell BM, Durinovic-Bello I, Cilio CM, Wong FS, et al. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses : position statement of the T-cell workshop Committee of the Immunology of diabetes society. Clin Exp Immunol. 2010;163:33–49.PubMed
36.
go back to reference Rudo L, Danica M, Fahey JV, Wira CR. Chlamydia trachomatis regulates innate immune barrier integrity and mediates cytokine and antimicrobial responses in human uterine ECC- 1 epithelial cells. Am J Reprod Immunol. 2017;78(6):e12764. Rudo L, Danica M, Fahey JV, Wira CR. Chlamydia trachomatis regulates innate immune barrier integrity and mediates cytokine and antimicrobial responses in human uterine ECC- ­ 1 epithelial cells. Am J Reprod Immunol. 2017;78(6):e12764.
37.
go back to reference Cunningham K, Stansfield SH, Patel P, Menon S, Kienzle V, Allan JA, et al. The IL-6 response to Chlamydia from primary reproductive epithelial cells is highly variable and may be involved in differential susceptibility to the immunopathological consequences of chlamydial infection. BMC Immunol. 2013;14. Cunningham K, Stansfield SH, Patel P, Menon S, Kienzle V, Allan JA, et al. The IL-6 response to Chlamydia from primary reproductive epithelial cells is highly variable and may be involved in differential susceptibility to the immunopathological consequences of chlamydial infection. BMC Immunol. 2013;14.
38.
go back to reference Huston WM, Theodoropoulos C, Mathews SA, Timms P. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA. BMC Microbiol. 2008;8:190.PubMedPubMedCentral Huston WM, Theodoropoulos C, Mathews SA, Timms P. Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA. BMC Microbiol. 2008;8:190.PubMedPubMedCentral
39.
go back to reference Huston WM, Swedberg JE, Harris JM, Walsh TP, Mathews SA, Timms P. The temperature activated HtrA protease from pathogen Chlamydia trachomatis acts as both a chaperone and protease at 37 C. FEBS Lett. 2007;581:3382–6.PubMed Huston WM, Swedberg JE, Harris JM, Walsh TP, Mathews SA, Timms P. The temperature activated HtrA protease from pathogen Chlamydia trachomatis acts as both a chaperone and protease at 37 C. FEBS Lett. 2007;581:3382–6.PubMed
40.
go back to reference Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H. Characteristics of interferon induced tryptophan metabolism in human cells in vitro. Biochim Biophys Acta. 1989;1012:140–7.PubMed Werner-Felmayer G, Werner ER, Fuchs D, Hausen A, Reibnegger G, Wachter H. Characteristics of interferon induced tryptophan metabolism in human cells in vitro. Biochim Biophys Acta. 1989;1012:140–7.PubMed
41.
go back to reference Byrne GI, Lehmann LK, Kirschbaum JG, Borden EC, Lee CM, Brown RR. Induction of tryptophan degradation In Vitro and In Vivo: a gamma-interferon-stimulated activity. J Interf Res. 1986;6:389–96. Byrne GI, Lehmann LK, Kirschbaum JG, Borden EC, Lee CM, Brown RR. Induction of tryptophan degradation In Vitro and In Vivo: a gamma-interferon-stimulated activity. J Interf Res. 1986;6:389–96.
42.
go back to reference Moniz RJ, Chan AM, Gordon LK, Braun J, Arditi M, Kelly KA. Plasmacytoid dendritic cells modulate nonprotective T-cell responses to genital infection by Chlamydia muridarum. FEMS Immunol Med Microbiol. 2010;58:397–404.PubMedPubMedCentral Moniz RJ, Chan AM, Gordon LK, Braun J, Arditi M, Kelly KA. Plasmacytoid dendritic cells modulate nonprotective T-cell responses to genital infection by Chlamydia muridarum. FEMS Immunol Med Microbiol. 2010;58:397–404.PubMedPubMedCentral
43.
go back to reference Buckner LR, Lewis ME, Greene SJ, Foster TP, Quayle AJ. Chlamydia trachomatis infection results in a modest proinflammatory cytokine response and a decrease in T cell chemokine secretion in human polarized endocervical epithelial cells. Cytokine. 2013;63:151–65.PubMedPubMedCentral Buckner LR, Lewis ME, Greene SJ, Foster TP, Quayle AJ. Chlamydia trachomatis infection results in a modest proinflammatory cytokine response and a decrease in T cell chemokine secretion in human polarized endocervical epithelial cells. Cytokine. 2013;63:151–65.PubMedPubMedCentral
44.
go back to reference Marks E, Tam MA, Lycke NY. The female lower genital tract is a privileged compartment with IL-10 producing dendritic cells and poor Th1 immunity following Chlamydia trachomatis infection. PLoS Pathog. 2010;6:e1001179.PubMedPubMedCentral Marks E, Tam MA, Lycke NY. The female lower genital tract is a privileged compartment with IL-10 producing dendritic cells and poor Th1 immunity following Chlamydia trachomatis infection. PLoS Pathog. 2010;6:e1001179.PubMedPubMedCentral
45.
go back to reference Zelante T, Iannitti RG, Fallarino F, Gargaro M, de Luca A, Moretti S, et al. Tryptophan feeding of the IDO1-AhR axis in host-microbial symbiosis. Front Immunol. 2014;5:1–4. Zelante T, Iannitti RG, Fallarino F, Gargaro M, de Luca A, Moretti S, et al. Tryptophan feeding of the IDO1-AhR axis in host-microbial symbiosis. Front Immunol. 2014;5:1–4.
46.
go back to reference Zelante T, Iannitti RG, Cunha C, DeLuca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–85.PubMed Zelante T, Iannitti RG, Cunha C, DeLuca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–85.PubMed
47.
go back to reference Vujkovic-Cvijin I, Swainson LA, Chu SN, Ortiz AM, Santee CA, Petriello A, et al. Gut-resident Lactobacillus abundance associates with IDO1 inhibition and Th17 dynamics in SIV-infected macaques. Cell Rep. 2015;13:1589–97.PubMedPubMedCentral Vujkovic-Cvijin I, Swainson LA, Chu SN, Ortiz AM, Santee CA, Petriello A, et al. Gut-resident Lactobacillus abundance associates with IDO1 inhibition and Th17 dynamics in SIV-infected macaques. Cell Rep. 2015;13:1589–97.PubMedPubMedCentral
48.
go back to reference Romani L, Zelante T, De Luca A, Iannitti RG, Moretti S, Bartoli A, et al. Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi. Eur J Immunol. 2014;44:3192–200.PubMed Romani L, Zelante T, De Luca A, Iannitti RG, Moretti S, Bartoli A, et al. Microbiota control of a tryptophan-AhR pathway in disease tolerance to fungi. Eur J Immunol. 2014;44:3192–200.PubMed
49.
go back to reference Crother TR, Schröder NWJ, Karlin J, Chen S, Shimada K, Slepenkin A, et al. Chlamydia pneumoniae infection induced allergic airway sensitization is controlled by regulatory T-cells and plasmacytoid dendritic cells. PLoS One. 2011;6:e20784.PubMedPubMedCentral Crother TR, Schröder NWJ, Karlin J, Chen S, Shimada K, Slepenkin A, et al. Chlamydia pneumoniae infection induced allergic airway sensitization is controlled by regulatory T-cells and plasmacytoid dendritic cells. PLoS One. 2011;6:e20784.PubMedPubMedCentral
50.
go back to reference Kelly KA, Champion CI, Jiang J The Role of T Regulatory Cells in Chlamydia trachomatis Genital Infection Chlamydia 2011. p. 91–112. Kelly KA, Champion CI, Jiang J The Role of T Regulatory Cells in Chlamydia trachomatis Genital Infection Chlamydia 2011. p. 91–112.
51.
go back to reference Patton DL, Sweeney YTC, Stamm WE. Significant reduction in inflammatory response in the macaque model of chlamydial pelvic inflammatory disease with azithromycin treatment. J Infect Dis. 2005;192:129–35.PubMed Patton DL, Sweeney YTC, Stamm WE. Significant reduction in inflammatory response in the macaque model of chlamydial pelvic inflammatory disease with azithromycin treatment. J Infect Dis. 2005;192:129–35.PubMed
52.
go back to reference Zhang L, Su Z, Zhang Z, Lin J, Li D-Q, Pflugfelder SC. Effects of azithromycin on gene expression profiles of Proinflammatory and anti-inflammatory mediators in the eyelid margin and conjunctiva of patients with Meibomian gland disease. JAMA Ophthalmol. 2015;133:1117.PubMedPubMedCentral Zhang L, Su Z, Zhang Z, Lin J, Li D-Q, Pflugfelder SC. Effects of azithromycin on gene expression profiles of Proinflammatory and anti-inflammatory mediators in the eyelid margin and conjunctiva of patients with Meibomian gland disease. JAMA Ophthalmol. 2015;133:1117.PubMedPubMedCentral
53.
go back to reference Sun HS, Eng EWY, Jeganathan S, Sin AT, Patel PC, Gracey E, et al. Chlamydia trachomatis vacuole maturation in infected macrophages. J Leukoc Biol. 2012;92:815–27.PubMedPubMedCentral Sun HS, Eng EWY, Jeganathan S, Sin AT, Patel PC, Gracey E, et al. Chlamydia trachomatis vacuole maturation in infected macrophages. J Leukoc Biol. 2012;92:815–27.PubMedPubMedCentral
54.
go back to reference Datta B, Njau F, Thalmann J, Haller H, Wagner AD. Differential infection outcome of Chlamydia trachomatis in human blood monocytes and monocyte-derived dendritic cells. BMC Microbiol. 2014;14:1–14. Datta B, Njau F, Thalmann J, Haller H, Wagner AD. Differential infection outcome of Chlamydia trachomatis in human blood monocytes and monocyte-derived dendritic cells. BMC Microbiol. 2014;14:1–14.
55.
go back to reference Du K, Zhou M, Li Q, Liu X. Chlamydia trachomatis inhibits the production of pro-inflammatory cytokines in human PBMCs through induction of IL-10. J Med Microbiol. 2018;67:240–8.PubMed Du K, Zhou M, Li Q, Liu X. Chlamydia trachomatis inhibits the production of pro-inflammatory cytokines in human PBMCs through induction of IL-10. J Med Microbiol. 2018;67:240–8.PubMed
56.
go back to reference Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol. 2003;4:330–6.PubMed Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol. 2003;4:330–6.PubMed
57.
go back to reference Chena G-Y, Chena C, Wanga L, Changa X, Zhenga P, Yang L. Broad expression of the FoxP3 locus in epithelial cells: a caution against an early interpretation of fatal inflammatory diseases following in vivo depletion of FoxP3-expressing cells. J Immunol. 2009;180:5163–6. Chena G-Y, Chena C, Wanga L, Changa X, Zhenga P, Yang L. Broad expression of the FoxP3 locus in epithelial cells: a caution against an early interpretation of fatal inflammatory diseases following in vivo depletion of FoxP3-expressing cells. J Immunol. 2009;180:5163–6.
58.
go back to reference Munn DH, Mellor AL. IDO and tolerance to tumors. Trends Mol Med. 2004;10:15–8.PubMed Munn DH, Mellor AL. IDO and tolerance to tumors. Trends Mol Med. 2004;10:15–8.PubMed
59.
go back to reference Ferdinande L, Demetteri P, Waeytens A, Taildeman J, Rottiers I, Rottlers P, et al. Inflamed intestinal mucosa features a specific epithelial expression patterns of Indoleamine 2, 3- dioxygenase. Int J iImunology Pharmacol. 2008;21:289–95. Ferdinande L, Demetteri P, Waeytens A, Taildeman J, Rottiers I, Rottlers P, et al. Inflamed intestinal mucosa features a specific epithelial expression patterns of Indoleamine 2, 3- dioxygenase. Int J iImunology Pharmacol. 2008;21:289–95.
60.
go back to reference Jordan SJ, Gupta K, Ogendi BMO, Bakshi RK, Kapil R, Press CG, et al. The predominant CD4+ Th1 cytokine elicited to Chlamydia trachomatis infection in women is tumor necrosis factor alpha and not interferon gamma. Clin Vaccine Immunol. 2017;24:1–13. Jordan SJ, Gupta K, Ogendi BMO, Bakshi RK, Kapil R, Press CG, et al. The predominant CD4+ Th1 cytokine elicited to Chlamydia trachomatis infection in women is tumor necrosis factor alpha and not interferon gamma. Clin Vaccine Immunol. 2017;24:1–13.
Metadata
Title
High expression of IDO1 and TGF-β1 during recurrence and post infection clearance with Chlamydia trachomatis, are independent of host IFN-γ response
Authors
Noa Ziklo
Wilhelmina M. Huston
Kuong Taing
Peter Timms
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Infectious Diseases / Issue 1/2019
Electronic ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-019-3843-4

Other articles of this Issue 1/2019

BMC Infectious Diseases 1/2019 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.