Skip to main content
Top
Published in: BMC Pulmonary Medicine 1/2021

Open Access 01-12-2021 | Childhood Asthma | Research article

Cockroach exposure and perceived stress interact to predict clinical outcomes in childhood asthma

Authors: Felicia A. Rabito, Derek Werthmann, Hua He, Aubrey S. Madkour, Whitney D. Arroyave, Michelle L. Sever, Thomas A. LaVeist

Published in: BMC Pulmonary Medicine | Issue 1/2021

Login to get access

Abstract

Background

Nonpharmacologic interventions for asthma management rely on identification and mitigation of important asthma triggers. Cockroach exposure is strongly associated with asthma morbidity. It is also associated with stress, another risk factor for asthma. Despite high prevalence of both in vulnerable populations, the impact of joint exposure has not been examined.

Methods

Participants included 173 children with asthma in New Orleans, Louisiana. Cockroach exposure was based on visual inspection using standard protocols. Caregiver stress was measured using Cohen’s 4-item Perceived Stress Scale. Outcomes included unscheduled clinic or emergency department (ED) visits, hospitalization, and pulmonary function. Multivariable logistic regression was performed to assess independent effects of the exposure on the outcome and effect modification was examined in stratified analysis based on stress. Path analysis to explore the mediation effect by stress was performed using a probit link with parameters based on Bayes’ method with non-informative priors.

Results

Adjusting for stress and other covariates, cockroach exposure was associated with unscheduled clinic/ED visits (aOR = 6.2; 95% CI 1.8, 21.7). Positive associations were also found for hospitalization and FEV1 < 80%. High stress modified the relationship with unscheduled clinic/ED visits (high aOR = 7.7 95% CI 1.0, 60.2, versus normal aOR = 4.1 95% CI 0.8, 21.9). Path models identified direct and indirect effects (p = 0.05) indicating that a majority of the total effect on unscheduled clinic/ED visits is attributed directly to cockroach exposure.

Conclusion

The strong association between cockroach exposure and asthma morbidity is not due to uncontrolled confounding by stress. The combination of cockroach exposure and high stress, common in urban homes, are modifiable factors associated with poor asthma outcomes.
Literature
1.
go back to reference Soriano JB, Abajobir AA, Abate KH, Abera SF, Agrawal A, Ahmed MB, et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respirat Med. 2017;5(9):691–706.CrossRef Soriano JB, Abajobir AA, Abate KH, Abera SF, Agrawal A, Ahmed MB, et al. Global, regional, and national deaths, prevalence, disability-adjusted life years, and years lived with disability for chronic obstructive pulmonary disease and asthma, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Respirat Med. 2017;5(9):691–706.CrossRef
2.
go back to reference Do DC, Zhao Y, Gao P. Cockroach allergen exposure and risk of asthma. Allergy. 2016;71(4):463–74.CrossRef Do DC, Zhao Y, Gao P. Cockroach allergen exposure and risk of asthma. Allergy. 2016;71(4):463–74.CrossRef
3.
go back to reference Burbank AJ, Sood AK, Kesic MJ, Peden DB, Hernandez ML. Environmental determinants of allergy and asthma in early life. J Allergy Clin Immunol. 2017;140(1):1–12.CrossRef Burbank AJ, Sood AK, Kesic MJ, Peden DB, Hernandez ML. Environmental determinants of allergy and asthma in early life. J Allergy Clin Immunol. 2017;140(1):1–12.CrossRef
4.
go back to reference Gruchalla RS, Pongracic J, Plaut M, Evans R III, Visness CM, Walter M, et al. Inner City Asthma Study: relationships among sensitivity, allergen exposure, and asthma morbidity. J Allergy Clin Immunol. 2005;115(3):478–85.CrossRef Gruchalla RS, Pongracic J, Plaut M, Evans R III, Visness CM, Walter M, et al. Inner City Asthma Study: relationships among sensitivity, allergen exposure, and asthma morbidity. J Allergy Clin Immunol. 2005;115(3):478–85.CrossRef
5.
go back to reference Rabito FA, Carlson J, Holt EW, Iqbal S, James MA. Cockroach exposure independent of sensitization status and association with hospitalizations for asthma in inner-city children. Ann Allergy Asthma Immunol. 2011;106(2):103–9.CrossRef Rabito FA, Carlson J, Holt EW, Iqbal S, James MA. Cockroach exposure independent of sensitization status and association with hospitalizations for asthma in inner-city children. Ann Allergy Asthma Immunol. 2011;106(2):103–9.CrossRef
6.
go back to reference Rosenstreich DL, Eggleston P, Kattan M, Baker D, Slavin RG, Gergen P, et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med. 1997;336(19):1356–63.CrossRef Rosenstreich DL, Eggleston P, Kattan M, Baker D, Slavin RG, Gergen P, et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med. 1997;336(19):1356–63.CrossRef
7.
go back to reference Pomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New insights into cockroach allergens. Curr Allergy Asthma Rep. 2017;17(4):25.CrossRef Pomés A, Mueller GA, Randall TA, Chapman MD, Arruda LK. New insights into cockroach allergens. Curr Allergy Asthma Rep. 2017;17(4):25.CrossRef
8.
go back to reference Stelmach I, Jerzynska J, Stelmach W, Majak P, Chew G, Gorski P, et al. Cockroach allergy and exposure to cockroach allergen in Polish children with asthma. Allergy. 2002;57(8):701–5.CrossRef Stelmach I, Jerzynska J, Stelmach W, Majak P, Chew G, Gorski P, et al. Cockroach allergy and exposure to cockroach allergen in Polish children with asthma. Allergy. 2002;57(8):701–5.CrossRef
9.
go back to reference Lee MF, Song PP, Hwang GY, Lin SJ, Chen YH. Sensitization to Per a 2 of the American cockroach correlates with more clinical severity among airway allergic patients in Taiwan. Ann Allergy Asthma Immunol. 2012;108(4):243–8.CrossRef Lee MF, Song PP, Hwang GY, Lin SJ, Chen YH. Sensitization to Per a 2 of the American cockroach correlates with more clinical severity among airway allergic patients in Taiwan. Ann Allergy Asthma Immunol. 2012;108(4):243–8.CrossRef
10.
go back to reference Cohn RD, Arbes SJ, Jaramillo R, Reid LH, Zeldin DC. National Prevalence and Exposure Risk for Cockroach Allergen in U.S. Households. Environ Health Perspect. 2006;114(4):522–6. Cohn RD, Arbes SJ, Jaramillo R, Reid LH, Zeldin DC. National Prevalence and Exposure Risk for Cockroach Allergen in U.S. Households. Environ Health Perspect. 2006;114(4):522–6.
11.
go back to reference Salo PM, Wilkerson J, Rose KM, Cohn RD, Calatroni A, Mitchell HE, et al. Bedroom allergen exposures in US households. J Allergy Clin Immunol. 2018;141(5):1870–9. e14. Salo PM, Wilkerson J, Rose KM, Cohn RD, Calatroni A, Mitchell HE, et al. Bedroom allergen exposures in US households. J Allergy Clin Immunol. 2018;141(5):1870–9. e14.
12.
go back to reference Jacobs DE. Environmental health disparities in housing. Am J Public Health. 2011;101(S1):S115–22.CrossRef Jacobs DE. Environmental health disparities in housing. Am J Public Health. 2011;101(S1):S115–22.CrossRef
13.
go back to reference Rauh VA, Chew GR, Garfinkel RS. Deteriorated housing contributes to high cockroach allergen levels in inner-city households. Environ Health Perspect. 2002;110(suppl 2):323–7.CrossRef Rauh VA, Chew GR, Garfinkel RS. Deteriorated housing contributes to high cockroach allergen levels in inner-city households. Environ Health Perspect. 2002;110(suppl 2):323–7.CrossRef
14.
go back to reference Wood BL, Brown ES, Lehman HK, Khan DA, Lee MJ, Miller BD. The effects of caregiver depression on childhood asthma: Pathways and mechanisms. Ann Allergy Asthma Immunol. 2018;121(4):421–7.CrossRef Wood BL, Brown ES, Lehman HK, Khan DA, Lee MJ, Miller BD. The effects of caregiver depression on childhood asthma: Pathways and mechanisms. Ann Allergy Asthma Immunol. 2018;121(4):421–7.CrossRef
15.
go back to reference Wolf JM, Miller GE, Chen E. Parent psychological states predict changes in inflammatory markers in children with asthma and healthy children. Brain Behav Immunol. 2008;22(4):433–41.CrossRef Wolf JM, Miller GE, Chen E. Parent psychological states predict changes in inflammatory markers in children with asthma and healthy children. Brain Behav Immunol. 2008;22(4):433–41.CrossRef
16.
go back to reference Wright RJ. Epidemiology of stress and asthma: from constricting communities and fragile families to epigenetics. Immunol Allergy Clin. 2011;31(1):19–39.CrossRef Wright RJ. Epidemiology of stress and asthma: from constricting communities and fragile families to epigenetics. Immunol Allergy Clin. 2011;31(1):19–39.CrossRef
17.
go back to reference Wright RJ, Mitchell H, Visness CM, Cohen S, Stout J, Evans R, et al. Community violence and asthma morbidity: the Inner-City Asthma Study. Am J Public Health. 2004;94(4):625–32.CrossRef Wright RJ, Mitchell H, Visness CM, Cohen S, Stout J, Evans R, et al. Community violence and asthma morbidity: the Inner-City Asthma Study. Am J Public Health. 2004;94(4):625–32.CrossRef
18.
go back to reference Chen E, Schreier HM, Strunk RC, Brauer M. Chronic traffic-related air pollution and stress interact to predict biologic and clinical outcomes in asthma. Environ Health Perspect. 2008;116(7):970–5.CrossRef Chen E, Schreier HM, Strunk RC, Brauer M. Chronic traffic-related air pollution and stress interact to predict biologic and clinical outcomes in asthma. Environ Health Perspect. 2008;116(7):970–5.CrossRef
19.
go back to reference Clougherty JE, Levy JI, Kubzansky LD, Ryan PB, Suglia SF, Canner MJ, et al. Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology. Environ Health Perspect. 2007;115(8):1140–6.CrossRef Clougherty JE, Levy JI, Kubzansky LD, Ryan PB, Suglia SF, Canner MJ, et al. Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology. Environ Health Perspect. 2007;115(8):1140–6.CrossRef
20.
go back to reference Rand CS, Wright RJ, Cabana MD, Foggs MB, Halterman JS, Olson L, et al. Mediators of asthma outcomes. J Allergy Clin Immunol. 2012;129(3):S136–41.CrossRef Rand CS, Wright RJ, Cabana MD, Foggs MB, Halterman JS, Olson L, et al. Mediators of asthma outcomes. J Allergy Clin Immunol. 2012;129(3):S136–41.CrossRef
21.
go back to reference Suglia SF, Duarte CS, Sandel MT, Wright RJ. Social and environmental stressors in the home and childhood asthma. J Epidemiol Community Health. 2010;64(7):636–42.CrossRef Suglia SF, Duarte CS, Sandel MT, Wright RJ. Social and environmental stressors in the home and childhood asthma. J Epidemiol Community Health. 2010;64(7):636–42.CrossRef
22.
go back to reference Galea S, Ahern J, Rudenstine S, Wallace Z, Vlahov D. Urban built environment and depression: a multilevel analysis. J Epidemiol Community Health. 2005;59(10):822.CrossRef Galea S, Ahern J, Rudenstine S, Wallace Z, Vlahov D. Urban built environment and depression: a multilevel analysis. J Epidemiol Community Health. 2005;59(10):822.CrossRef
23.
go back to reference Chen E, Miller GE. Stress and inflammation in exacerbations of asthma. Brain Behav Immunol. 2007;21(8):993–9.CrossRef Chen E, Miller GE. Stress and inflammation in exacerbations of asthma. Brain Behav Immunol. 2007;21(8):993–9.CrossRef
24.
go back to reference Schreier HM, Miller GE, Chen E. Clinical potentials for measuring stress in youth with asthma. Immunol Allergy Clin North Am. 2011;31(1):41–54.CrossRef Schreier HM, Miller GE, Chen E. Clinical potentials for measuring stress in youth with asthma. Immunol Allergy Clin North Am. 2011;31(1):41–54.CrossRef
25.
go back to reference Wright RJ, Rodriguez M, Cohen S. Review of psychosocial stress and asthma: an integrated biopsychosocial approach. Thorax. 1998;53(12):1066–74.CrossRef Wright RJ, Rodriguez M, Cohen S. Review of psychosocial stress and asthma: an integrated biopsychosocial approach. Thorax. 1998;53(12):1066–74.CrossRef
26.
go back to reference Wright RJ, Subramanian SV. Advancing a multilevel framework for epidemiologic research on asthma disparities. Chest. 2007;132(5):757S-S769.CrossRef Wright RJ, Subramanian SV. Advancing a multilevel framework for epidemiologic research on asthma disparities. Chest. 2007;132(5):757S-S769.CrossRef
27.
go back to reference Sandel M, Wright RJ. When home is where the stress is: expanding the dimensions of housing that influence asthma morbidity. Arch Dis Child. 2006;91(11):942–8.CrossRef Sandel M, Wright RJ. When home is where the stress is: expanding the dimensions of housing that influence asthma morbidity. Arch Dis Child. 2006;91(11):942–8.CrossRef
28.
go back to reference Rabito FA, Carlson JC, He H, Werthmann D, Schal C. A single intervention for cockroach control reduces cockroach exposure and asthma morbidity in children. J Allergy Clin Immunol. 2017;140(2):565–70.CrossRef Rabito FA, Carlson JC, He H, Werthmann D, Schal C. A single intervention for cockroach control reduces cockroach exposure and asthma morbidity in children. J Allergy Clin Immunol. 2017;140(2):565–70.CrossRef
29.
go back to reference Sever ML, Arbes SJ Jr, Gore JC, Santangelo RG, Vaughn B, Mitchell H, et al. Cockroach allergen reduction by cockroach control alone in low-income urban homes: a randomized control trial. J Allergy Clin Immunol. 2007;120(4):849–55.CrossRef Sever ML, Arbes SJ Jr, Gore JC, Santangelo RG, Vaughn B, Mitchell H, et al. Cockroach allergen reduction by cockroach control alone in low-income urban homes: a randomized control trial. J Allergy Clin Immunol. 2007;120(4):849–55.CrossRef
30.
go back to reference Takaro TK, Krieger JW, Song L. Effect of environmental interventions to reduce exposure to asthma triggers in homes of low-income children in Seattle. J Eposure Sci Environ Epidemiol. 2004;14(1):S133–43.CrossRef Takaro TK, Krieger JW, Song L. Effect of environmental interventions to reduce exposure to asthma triggers in homes of low-income children in Seattle. J Eposure Sci Environ Epidemiol. 2004;14(1):S133–43.CrossRef
31.
go back to reference Kopel LS, Petty CR, Gaffin JM, Sheehan WJ, Baxi SN, Kanchongkittiphon W, et al. Caregiver stress among inner-city school children with asthma. J Allergy Clin Immunol 2017;5(4):1132–4. e3. Kopel LS, Petty CR, Gaffin JM, Sheehan WJ, Baxi SN, Kanchongkittiphon W, et al. Caregiver stress among inner-city school children with asthma. J Allergy Clin Immunol 2017;5(4):1132–4. e3.
32.
go back to reference Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.CrossRef Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.CrossRef
33.
go back to reference Reddel HK, Taylor DR, Bateman ED, Boulet L-P, Boushey HA, Busse WW, et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med. 2009;180(1):59–99.CrossRef Reddel HK, Taylor DR, Bateman ED, Boulet L-P, Boushey HA, Busse WW, et al. An official American Thoracic Society/European Respiratory Society statement: asthma control and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am J Respir Crit Care Med. 2009;180(1):59–99.CrossRef
34.
go back to reference Kuczmarski RJ. CDC growth charts; United States. 2000. Kuczmarski RJ. CDC growth charts; United States. 2000.
35.
go back to reference Asparouhov T, Muthén B. Bayesian analysis using Mplus: Technical implementation. Citeseer; 2010. Asparouhov T, Muthén B. Bayesian analysis using Mplus: Technical implementation. Citeseer; 2010.
36.
go back to reference Muthén B. Applications of causally defined direct and indirect effects in mediation analysis using SEM in Mplus. CA: Los Angeles; 2011. Muthén B. Applications of causally defined direct and indirect effects in mediation analysis using SEM in Mplus. CA: Los Angeles; 2011.
37.
go back to reference Gelman A, Meng X-L, Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Statistica sinica. 1996:733–60. Gelman A, Meng X-L, Stern H. Posterior predictive assessment of model fitness via realized discrepancies. Statistica sinica. 1996:733–60.
38.
go back to reference Jaccard J, Wan CK, Jaccard J. LISREL approaches to interaction effects in multiple regression: Sage; 1996. Jaccard J, Wan CK, Jaccard J. LISREL approaches to interaction effects in multiple regression: Sage; 1996.
39.
go back to reference Kline RB. Principles and practice of structural equation modeling: Guilford Publications; 2015. Kline RB. Principles and practice of structural equation modeling: Guilford Publications; 2015.
40.
go back to reference Muthen L, Muthen B. Mplus Version 7 User’s Guide: Version 7. Los Angeles, CA: Author; 2012. Muthen L, Muthen B. Mplus Version 7 User’s Guide: Version 7. Los Angeles, CA: Author; 2012.
41.
go back to reference Arruda LK. Cockroach allergens. Curr Allergy Asthma Rep. 2005;5(5):411–6.CrossRef Arruda LK. Cockroach allergens. Curr Allergy Asthma Rep. 2005;5(5):411–6.CrossRef
42.
go back to reference Wright RJ. Psychological stress: a social pollutant that may enhance environmental risk. Am J Respir Crit Care Med. 2011;184(7):752–4.CrossRef Wright RJ. Psychological stress: a social pollutant that may enhance environmental risk. Am J Respir Crit Care Med. 2011;184(7):752–4.CrossRef
43.
go back to reference Appleton AA, Holdsworth EA, Kubzansky LD. A systematic review of the interplay between social determinants and environmental exposures for early-life outcomes. Curr environ Health Rep. 2016;3(3):287–301.CrossRef Appleton AA, Holdsworth EA, Kubzansky LD. A systematic review of the interplay between social determinants and environmental exposures for early-life outcomes. Curr environ Health Rep. 2016;3(3):287–301.CrossRef
Metadata
Title
Cockroach exposure and perceived stress interact to predict clinical outcomes in childhood asthma
Authors
Felicia A. Rabito
Derek Werthmann
Hua He
Aubrey S. Madkour
Whitney D. Arroyave
Michelle L. Sever
Thomas A. LaVeist
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pulmonary Medicine / Issue 1/2021
Electronic ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-021-01447-0

Other articles of this Issue 1/2021

BMC Pulmonary Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.