Skip to main content
Top
Published in: BMC Cancer 1/2023

Open Access 01-12-2023 | Cervical Cancer | Research

Expression and gene regulatory network of S100A16 protein in cervical cancer cells based on data mining

Authors: Haibin Zhang, Yongxiu Yang, Wenhu Xing, Yufeng Li, Shan Zhang

Published in: BMC Cancer | Issue 1/2023

Login to get access

Abstract

S100A16 protein belongs to the S100 family of calcium-binding proteins, which is widely distributed in human tissues and highly conserved. S100 calcium-binding proteins possess broad biological functions, such as cancer cell proliferation, apoptosis, tumor metastasis, and inflammation (Nat Rev Cancer 15:96–109, 2015). The S100A16 protein was initially isolated from a cell line derived from astrocytoma. The S100A16 protein, consisting of 103 amino acids, is a small acidic protein with a molecular weight of 11,801.4 Da and an isoelectric point (pI) of 6.28 (Biochem Biophys Res Commun 313:237–244, 2004). This protein exhibits high conservation among mammals and is widely expressed in various human tissues (Biochem Biophys Res Commun 322:1111–1122, 2004). Like other S100 proteins, S100A16 contains two EF-hand motifs that form a helix-loop-helix structural domain. The N-terminal domain and the C-terminal domain of S100A16 are connected by a "hinge" linker.S100A16 protein exhibits distinct characteristics that distinguish it from other S100 proteins. A notable feature is the presence of a single functional Ca2 + binding site located in the C-terminal EF-hand, consisting of 12 amino acids per protein monomer (J Biol Chem 281:38905–38917, 2006). In contrast, the N-terminal EF-hand of S100A16 comprises 15 amino acids instead of the typical 14, and it lacks the conserved glutamate residue at the final position. This unique attribute may contribute to the impaired Ca2 + binding capability in the N-terminal region (J Biol Chem 281:38905–38917, 2006). Studies have shown an integral role of S100 calcium-binding proteins in the diagnosis, treatment, and prognosis of certain diseases (Cancers 12:2037, 2020). Abnormal expression of S100A16 protein is implicated in the progression of breast and prostate cancer, but an inhibitor of oral cancer and acute lymphoblastic leukemia tumor cell proliferation (BMC Cancer 15:53, 2015; BMC Cancer 15:631, 2015). Tu et al. (Front Cell Dev Biol 9:645641, 2021) indicate that the overexpression of S100A16 mRNA in cervical cancer(CC) such as cervical squamous cell carcinoma and endocervical adenocarcinoma as compared to the control specimens. Tomiyama N. and co-workers (Oncol Lett 15:9929–9933, 2018) (Tomiyama, N) investigated the role of S100A16 in cancer stem cells using Yumoto cells (a CC cell line),The authors found upregulation of S100A16 in Yumoto cells following sphere formation as compared to monolayer culture.Despite a certain degree of understanding, the exact biological function of S100A16 in CC is still unclear. This article explores the role of S100A16 in CC through a bioinformatics analysis. Referencing the mRNA expression and SNP data of cervical cancer available through The Cancer Genome Atlas (TCGA) database, we analyzed S100A16 and its associated regulatory gene expression network in cervical cancer. We further screened genes co-expressed with S100A16 to hypothesize their function and relationship to the S100A16 cervical cancer phenotype.
Our results showed that data mining can effectively elucidate the expression and gene regulatory network of S100A16 in cervical cancer, laying the foundation for further investigations into S100A16 cervical tumorigenesis.
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424r.CrossRefPubMed Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424r.CrossRefPubMed
2.
go back to reference Ahn WS, Bae SM, Lee JM, Namkoong SE, Han SJ, Cho YL, Nam GH, Seo JS, Kim CK, Kim YW. Searching for pathogenic gene functions to cervical cancer. Gynecol Oncol. 2004;93(1):41–8.CrossRefPubMed Ahn WS, Bae SM, Lee JM, Namkoong SE, Han SJ, Cho YL, Nam GH, Seo JS, Kim CK, Kim YW. Searching for pathogenic gene functions to cervical cancer. Gynecol Oncol. 2004;93(1):41–8.CrossRefPubMed
3.
go back to reference Panjkovic M, Ivkovic-Kapicl T. Etiology and pathogenesis of precancerous lesions and invasive cervical carcinoma. Med Pregl. 2008;61(7–8):364–8.CrossRefPubMed Panjkovic M, Ivkovic-Kapicl T. Etiology and pathogenesis of precancerous lesions and invasive cervical carcinoma. Med Pregl. 2008;61(7–8):364–8.CrossRefPubMed
4.
go back to reference Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun. 2004;322(4):1111–22.CrossRefPubMed Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun. 2004;322(4):1111–22.CrossRefPubMed
5.
go back to reference Sturchler E, Cox JA, Durussel I, Weibel M, Heizmann CW. S100A16, a novel calcium-binding protein of the EF-hand superfamily. J Biol Chem. 2006;281(50):38905–17. Sturchler E, Cox JA, Durussel I, Weibel M, Heizmann CW. S100A16, a novel calcium-binding protein of the EF-hand superfamily. J Biol Chem. 2006;281(50):38905–17.
7.
go back to reference Katono K, Sato Y, Kobayashi M, Nagashio R, Ryuge S, Igawa S, Ichinoe M, Murakumo Y, Saegusa M, Masuda N. S100A16, a promising candidate as a prognostic marker for platinum-based adjuvant chemotherapy in resected lung adenocarcinoma. Onco Targets Ther. 2017;10:5273–9.CrossRefPubMedPubMedCentral Katono K, Sato Y, Kobayashi M, Nagashio R, Ryuge S, Igawa S, Ichinoe M, Murakumo Y, Saegusa M, Masuda N. S100A16, a promising candidate as a prognostic marker for platinum-based adjuvant chemotherapy in resected lung adenocarcinoma. Onco Targets Ther. 2017;10:5273–9.CrossRefPubMedPubMedCentral
8.
go back to reference Tanaka M, Ichikawa-Tomikawa N, Shishito N, Nishiura K, Miura T, Hozumi A, Chiba H, Yoshida S, Ohtake T, Sugino T. Coexpression of S100A14 and S100A16 correlates with a poor prognosis in human breast cancer and promotes cancer cell invasion. BMC Cancer. 2015;15:53.CrossRefPubMedPubMedCentral Tanaka M, Ichikawa-Tomikawa N, Shishito N, Nishiura K, Miura T, Hozumi A, Chiba H, Yoshida S, Ohtake T, Sugino T. Coexpression of S100A14 and S100A16 correlates with a poor prognosis in human breast cancer and promotes cancer cell invasion. BMC Cancer. 2015;15:53.CrossRefPubMedPubMedCentral
10.
go back to reference Sapkota D, Bruland O, Parajuli H, Osman TA, Teh MT, Johannessen AC, Costea DE. S100A16 promotes differentiation and contributes to a less aggressive tumor phenotype in oral squamous cell carcinoma. BMC Cancer. 2015;15:631.CrossRefPubMedPubMedCentral Sapkota D, Bruland O, Parajuli H, Osman TA, Teh MT, Johannessen AC, Costea DE. S100A16 promotes differentiation and contributes to a less aggressive tumor phenotype in oral squamous cell carcinoma. BMC Cancer. 2015;15:631.CrossRefPubMedPubMedCentral
11.
go back to reference Saito K, Kobayashi M, Nagashio R, Ryuge S, Katono K, Nakashima H, Tsuchiya B, Jiang SX, Saegusa M, Satoh Y, et al. S100A16 is a prognostic marker for lung adenocarcinomas. Asian Pac J Cancer Prev. 2015;16(16):7039–44.CrossRefPubMed Saito K, Kobayashi M, Nagashio R, Ryuge S, Katono K, Nakashima H, Tsuchiya B, Jiang SX, Saegusa M, Satoh Y, et al. S100A16 is a prognostic marker for lung adenocarcinomas. Asian Pac J Cancer Prev. 2015;16(16):7039–44.CrossRefPubMed
13.
go back to reference Marenholz I, Heizmann CW. S100A16, a ubiquitously expressed EF-hand protein which is up-regulated in tumors. Biochem Biophys Res Commun. 2004;313(2):237–44.CrossRefPubMed Marenholz I, Heizmann CW. S100A16, a ubiquitously expressed EF-hand protein which is up-regulated in tumors. Biochem Biophys Res Commun. 2004;313(2):237–44.CrossRefPubMed
15.
go back to reference Tu G, Gao W, Li Y, Dian Y, Xue B, Niu L, Yu X, Zhu H. Expressional and prognostic value of S100A16 in pancreatic cancer via integrated bioinformatics analyses. Front Cell Dev Biol. 2021;9. Tu G, Gao W, Li Y, Dian Y, Xue B, Niu L, Yu X, Zhu H. Expressional and prognostic value of S100A16 in pancreatic cancer via integrated bioinformatics analyses. Front Cell Dev Biol. 2021;9.
16.
go back to reference Wang X, Yang J, Qian J, Liu Z, Chen H, Cui Z. S100A14, a mediator of epithelial-mesenchymal transition, regulates proliferation, migration and invasion of human cervical cancer cells. Am J Cancer Res. 2015;5(4):1484–95.PubMedPubMedCentral Wang X, Yang J, Qian J, Liu Z, Chen H, Cui Z. S100A14, a mediator of epithelial-mesenchymal transition, regulates proliferation, migration and invasion of human cervical cancer cells. Am J Cancer Res. 2015;5(4):1484–95.PubMedPubMedCentral
17.
go back to reference Graeber SH, Hülser DF. Connexin transfection induces invasive properties in HeLa cells. Exp Cell Res. 1998;243(1):142–9.CrossRefPubMed Graeber SH, Hülser DF. Connexin transfection induces invasive properties in HeLa cells. Exp Cell Res. 1998;243(1):142–9.CrossRefPubMed
18.
go back to reference Zhu W, Xue Y, Liang C, Zhang R, Zhang Z, Li H, Su D, Liang X, Zhang Y, Huang Q, et al. S100A16 promotes cell proliferation and metastasis via AKT and ERK cell signaling pathways in human prostate cancer. Tumour Biol. 2016;37(9):12241–50.CrossRefPubMed Zhu W, Xue Y, Liang C, Zhang R, Zhang Z, Li H, Su D, Liang X, Zhang Y, Huang Q, et al. S100A16 promotes cell proliferation and metastasis via AKT and ERK cell signaling pathways in human prostate cancer. Tumour Biol. 2016;37(9):12241–50.CrossRefPubMed
19.
go back to reference Sun X, Wang T, Zhang C, Ning K, Guan ZR, Chen SX, Hong TT, Hua D. S100A16 is a prognostic marker for colorectal cancer. J Surg Oncol. 2018;117(2):275–83.CrossRefPubMed Sun X, Wang T, Zhang C, Ning K, Guan ZR, Chen SX, Hong TT, Hua D. S100A16 is a prognostic marker for colorectal cancer. J Surg Oncol. 2018;117(2):275–83.CrossRefPubMed
20.
go back to reference Tomiyama N, Ikeda R, Nishizawa Y, Masuda S, Tajitsu Y, Takeda Y. S100A16 up-regulates Oct4 and Nanog expression in cancer stem-like cells of Yumoto human cervical carcinoma cells. Oncol Lett. 2018;15(6):9929–33.PubMedPubMedCentral Tomiyama N, Ikeda R, Nishizawa Y, Masuda S, Tajitsu Y, Takeda Y. S100A16 up-regulates Oct4 and Nanog expression in cancer stem-like cells of Yumoto human cervical carcinoma cells. Oncol Lett. 2018;15(6):9929–33.PubMedPubMedCentral
21.
go back to reference Fan JQ, Wang MF, Chen HL, Shang D, Das JK, Song J. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Mol Cancer. 2020;19(1):32.CrossRefPubMedPubMedCentral Fan JQ, Wang MF, Chen HL, Shang D, Das JK, Song J. Current advances and outlooks in immunotherapy for pancreatic ductal adenocarcinoma. Mol Cancer. 2020;19(1):32.CrossRefPubMedPubMedCentral
22.
23.
go back to reference Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5(4):263–74.CrossRefPubMed Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5(4):263–74.CrossRefPubMed
25.
go back to reference Komi DEA, Redegeld FA. Role of Mast Cells in Shaping the Tumor Microenvironment. Clin Rev Allergy Immunol. 2020;58(3):313–25.CrossRefPubMed Komi DEA, Redegeld FA. Role of Mast Cells in Shaping the Tumor Microenvironment. Clin Rev Allergy Immunol. 2020;58(3):313–25.CrossRefPubMed
26.
go back to reference Diao J, Zhao J, Winter E, Cattral MS. Tumors suppress in situ proliferation of cytotoxic T cells by promoting differentiation of Gr-1(+) conventional dendritic cells through IL-6. J Immunol. 2011;186(9):5058–67.CrossRefPubMed Diao J, Zhao J, Winter E, Cattral MS. Tumors suppress in situ proliferation of cytotoxic T cells by promoting differentiation of Gr-1(+) conventional dendritic cells through IL-6. J Immunol. 2011;186(9):5058–67.CrossRefPubMed
27.
go back to reference Egeland NG, Jonsdottir K, Aure MR, Sahlberg K, Kristensen VN, Cronin-Fenton D, Skaland I, Gudlaugsson E, Baak JPA, Janssen EAM. MiR-18a and miR-18b are expressed in the stroma of oestrogen receptor alpha negative breast cancers. BMC Cancer. 2020;20(1):377.CrossRefPubMedPubMedCentral Egeland NG, Jonsdottir K, Aure MR, Sahlberg K, Kristensen VN, Cronin-Fenton D, Skaland I, Gudlaugsson E, Baak JPA, Janssen EAM. MiR-18a and miR-18b are expressed in the stroma of oestrogen receptor alpha negative breast cancers. BMC Cancer. 2020;20(1):377.CrossRefPubMedPubMedCentral
28.
go back to reference Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–303.CrossRefPubMed Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, MacIver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol. 2011;186(6):3299–303.CrossRefPubMed
29.
30.
31.
go back to reference Hämälistö S, Stahl JL, Favaro E, Yang Q, Liu B, Christoffersen L, Loos B, Guasch Boldú C, Joyce JA, Reinheckel T, et al. Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation. Nat Commun. 2020;11(1):229.CrossRefPubMedPubMedCentral Hämälistö S, Stahl JL, Favaro E, Yang Q, Liu B, Christoffersen L, Loos B, Guasch Boldú C, Joyce JA, Reinheckel T, et al. Spatially and temporally defined lysosomal leakage facilitates mitotic chromosome segregation. Nat Commun. 2020;11(1):229.CrossRefPubMedPubMedCentral
32.
go back to reference Huang Q, Qu QX, Xie F, Hu JM, Chen YG, Zhang XG. Sensitization of SiHa cell to gemcitabine by CD40 activation and its overexpression in cervical carcinoma. Med Oncol. 2011;28(3):781–8.CrossRefPubMed Huang Q, Qu QX, Xie F, Hu JM, Chen YG, Zhang XG. Sensitization of SiHa cell to gemcitabine by CD40 activation and its overexpression in cervical carcinoma. Med Oncol. 2011;28(3):781–8.CrossRefPubMed
33.
go back to reference Mutch DG, Bloss JD. Gemcitabine in cervical cancer. Gynecol Oncol. 2003;90(2 Pt 2):S8–15. Mutch DG, Bloss JD. Gemcitabine in cervical cancer. Gynecol Oncol. 2003;90(2 Pt 2):S8–15.
34.
go back to reference Papadimitrakopoulou V. Development of PI3K/AKT/mTOR pathway inhibitors and their application in personalized therapy for non-small-cell lung cancer. J Thorac Oncol. 2012;7(8):1315–26.CrossRefPubMed Papadimitrakopoulou V. Development of PI3K/AKT/mTOR pathway inhibitors and their application in personalized therapy for non-small-cell lung cancer. J Thorac Oncol. 2012;7(8):1315–26.CrossRefPubMed
35.
go back to reference Lin Y, Wang Z, Liu L, Chen L. Akt is the downstream target of GRP78 in mediating cisplatin resistance in ER stress-tolerant human lung cancer cells. Lung Cancer (Amsterdam, Netherlands). 2011;71(3):291–7. Lin Y, Wang Z, Liu L, Chen L. Akt is the downstream target of GRP78 in mediating cisplatin resistance in ER stress-tolerant human lung cancer cells. Lung Cancer (Amsterdam, Netherlands). 2011;71(3):291–7.
36.
go back to reference Zhou W, Pan H, Xia T, Xue J, Cheng L, Fan P, Zhang Y, Zhu W, Xue Y, Liu X, et al. Up-regulation of S100A16 expression promotes epithelial-mesenchymal transition via Notch1 pathway in breast cancer. J Biomed Sci. 2014;21(1):97.CrossRefPubMedPubMedCentral Zhou W, Pan H, Xia T, Xue J, Cheng L, Fan P, Zhang Y, Zhu W, Xue Y, Liu X, et al. Up-regulation of S100A16 expression promotes epithelial-mesenchymal transition via Notch1 pathway in breast cancer. J Biomed Sci. 2014;21(1):97.CrossRefPubMedPubMedCentral
37.
go back to reference Du B, Shim JS. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21(7):965r. Du B, Shim JS. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21(7):965r.
38.
go back to reference Sung WJ, Park KS, Kwak SG, Hyun DS, Jang JS, Park KK. Epithelial-mesenchymal transition in patients of pulmonary adenocarcinoma: correlation with cancer stem cell markers and prognosis. Int J Clin Exp Pathol. 2015;8(8):8997–9009.PubMedPubMedCentral Sung WJ, Park KS, Kwak SG, Hyun DS, Jang JS, Park KK. Epithelial-mesenchymal transition in patients of pulmonary adenocarcinoma: correlation with cancer stem cell markers and prognosis. Int J Clin Exp Pathol. 2015;8(8):8997–9009.PubMedPubMedCentral
39.
go back to reference Li T, Ren T, Huang C, Li Y, Yang P, Che G, Luo L, Chen Y, Peng S, Lin Y, et al. S100A16 induces epithelial-mesenchymal transition in human PDAC cells and is a new therapeutic target for pancreatic cancer treatment that synergizes with gemcitabine. Biochem Pharmacol. 2021;189:114396. Li T, Ren T, Huang C, Li Y, Yang P, Che G, Luo L, Chen Y, Peng S, Lin Y, et al. S100A16 induces epithelial-mesenchymal transition in human PDAC cells and is a new therapeutic target for pancreatic cancer treatment that synergizes with gemcitabine. Biochem Pharmacol. 2021;189:114396.
40.
go back to reference Ou S, Liao Y, Shi J, Tang J, Ye Y, Wu F, Wang W, Fei J, Xie F, Bai L. S100A16 suppresses the proliferation, migration and invasion of colorectal cancer cells in part via the JNK/p38 MAPK pathway. Mol Med Rep. 2021;23(2):164.CrossRefPubMed Ou S, Liao Y, Shi J, Tang J, Ye Y, Wu F, Wang W, Fei J, Xie F, Bai L. S100A16 suppresses the proliferation, migration and invasion of colorectal cancer cells in part via the JNK/p38 MAPK pathway. Mol Med Rep. 2021;23(2):164.CrossRefPubMed
41.
go back to reference Zhang H, Yang Y, Ma X, Xin W, Fan X. S100A16 regulates HeLa cell through the phosphatidylinositol 3 Kinase (PI3K)/AKT signaling pathway. Med Sci Monit. 2020;26:e919757. Zhang H, Yang Y, Ma X, Xin W, Fan X. S100A16 regulates HeLa cell through the phosphatidylinositol 3 Kinase (PI3K)/AKT signaling pathway. Med Sci Monit. 2020;26:e919757.
42.
go back to reference Chen Y, Sun Z, Qi M, Wang X, Zhang W, Chen C, Liu J, Zhao W. INPP4B restrains cell proliferation and metastasis via regulation of the PI3K/AKT/SGK pathway. J Cell Mol Med. 2018;22(5):2935–43.CrossRefPubMedPubMedCentral Chen Y, Sun Z, Qi M, Wang X, Zhang W, Chen C, Liu J, Zhao W. INPP4B restrains cell proliferation and metastasis via regulation of the PI3K/AKT/SGK pathway. J Cell Mol Med. 2018;22(5):2935–43.CrossRefPubMedPubMedCentral
43.
go back to reference Shu XR, Wu J, Sun H, Chi LQ, Wang JH. PAK4 confers the malignance of cervical cancers and contributes to the cisplatinresistance in cervical cancer cells via PI3K/AKT pathway. Diagn Pathol. 2015;10:177. Shu XR, Wu J, Sun H, Chi LQ, Wang JH. PAK4 confers the malignance of cervical cancers and contributes to the cisplatinresistance in cervical cancer cells via PI3K/AKT pathway. Diagn Pathol. 2015;10:177.
44.
go back to reference Bae SN, Lee KH, Kim JH, Lee SJ, Park LO. Zinc induces apoptosis on cervical carcinoma cells by p53-dependent and -independent pathway. Biochem Biophys Res Commun. 2017;484(1):218–23.CrossRefPubMed Bae SN, Lee KH, Kim JH, Lee SJ, Park LO. Zinc induces apoptosis on cervical carcinoma cells by p53-dependent and -independent pathway. Biochem Biophys Res Commun. 2017;484(1):218–23.CrossRefPubMed
45.
go back to reference Stanisavljevic D, Petrovic I, Vukovic V, Schwirtlich M, Gredic M, Stevanovic M, Popovic J. SOX14 activates the p53 signaling pathway and induces apoptosis in a cervical carcinoma cell line. PLoS ONE. 2017;12(9):e0184686. Stanisavljevic D, Petrovic I, Vukovic V, Schwirtlich M, Gredic M, Stevanovic M, Popovic J. SOX14 activates the p53 signaling pathway and induces apoptosis in a cervical carcinoma cell line. PLoS ONE. 2017;12(9):e0184686.
Metadata
Title
Expression and gene regulatory network of S100A16 protein in cervical cancer cells based on data mining
Authors
Haibin Zhang
Yongxiu Yang
Wenhu Xing
Yufeng Li
Shan Zhang
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2023
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-023-11574-y

Other articles of this Issue 1/2023

BMC Cancer 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine