Skip to main content
Top
Published in: Journal of Translational Medicine 1/2024

Open Access 01-12-2024 | Central Nervous System Trauma | Review

Intranasal delivery of mitochondria targeted neuroprotective compounds for traumatic brain injury: screening based on pharmacological and physiological properties

Authors: Jignesh D. Pandya, Sudeep Musyaju, Hiren R. Modi, Starlyn L. Okada-Rising, Zachary S. Bailey, Anke H. Scultetus, Deborah A. Shear

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Targeting drugs to the mitochondrial level shows great promise for acute and chronic treatment of traumatic brain injury (TBI) in both military and civilian sectors. Perhaps the greatest obstacle to the successful delivery of drug therapies is the blood brain barrier (BBB). Intracerebroventricular and intraparenchymal routes may provide effective delivery of small and large molecule therapies for preclinical neuroprotection studies. However, clinically these delivery methods are invasive, and risk inadequate exposure to injured brain regions due to the rapid turnover of cerebral spinal fluid. The direct intranasal drug delivery approach to therapeutics holds great promise for the treatment of central nervous system (CNS) disorders, as this route is non-invasive, bypasses the BBB, enhances the bioavailability, facilitates drug dose reduction, and reduces adverse systemic effects. Using the intranasal method in animal models, researchers have successfully reduced stroke damage, reversed Alzheimer’s neurodegeneration, reduced anxiety, improved memory, and delivered neurotrophic factors and neural stem cells to the brain. Based on literature spanning the past several decades, this review aims to highlight the advantages of intranasal administration over conventional routes for TBI, and other CNS disorders. More specifically, we have identified and compiled a list of most relevant mitochondria-targeted neuroprotective compounds for intranasal administration based on their mechanisms of action and pharmacological properties. Further, this review also discusses key considerations when selecting and testing future mitochondria-targeted drugs given intranasally for TBI.

Graphical Abstract

Literature
1.
go back to reference Markgraf CG, Clifton GL, Moody MR. Treatment window for hypothermia in brain injury. J Neurosurg. 2001;95(6):979–83.PubMedCrossRef Markgraf CG, Clifton GL, Moody MR. Treatment window for hypothermia in brain injury. J Neurosurg. 2001;95(6):979–83.PubMedCrossRef
2.
go back to reference Baratz-Goldstein R, Toussia-Cohen S, Elpaz A, Rubovitch V, Pick CG. Immediate and delayed hyperbaric oxygen therapy as a neuroprotective treatment for traumatic brain injury in mice. Mol Cell Neurosci. 2017;83:74–82.PubMedCrossRef Baratz-Goldstein R, Toussia-Cohen S, Elpaz A, Rubovitch V, Pick CG. Immediate and delayed hyperbaric oxygen therapy as a neuroprotective treatment for traumatic brain injury in mice. Mol Cell Neurosci. 2017;83:74–82.PubMedCrossRef
3.
go back to reference Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil. 1999;14(6):602–15.PubMedCrossRef Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil. 1999;14(6):602–15.PubMedCrossRef
4.
5.
7.
go back to reference Dickey N, Jenkins D, Butler FK. Prehospital Use of Ketamine in Battlefield Analgesia 2012–03. Falls Church, Virginia USA: Defense Health Board, Memorandum. 2012. Dickey N, Jenkins D, Butler FK. Prehospital Use of Ketamine in Battlefield Analgesia 2012–03. Falls Church, Virginia USA: Defense Health Board, Memorandum. 2012.
8.
go back to reference Andriessen TM, Jacobs B, Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med. 2010;14(10):2381–92.PubMedPubMedCentralCrossRef Andriessen TM, Jacobs B, Vos PE. Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J Cell Mol Med. 2010;14(10):2381–92.PubMedPubMedCentralCrossRef
9.
go back to reference Dash PK, Zhao J, Hergenroeder G, Moore AN. Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics. 2010;7(1):100–14.PubMedPubMedCentralCrossRef Dash PK, Zhao J, Hergenroeder G, Moore AN. Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics. 2010;7(1):100–14.PubMedPubMedCentralCrossRef
10.
go back to reference Marklund N, Bakshi A, Castelbuono DJ, Conte V, McIntosh TK. Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr Pharm Des. 2006;12(13):1645–80.PubMedCrossRef Marklund N, Bakshi A, Castelbuono DJ, Conte V, McIntosh TK. Evaluation of pharmacological treatment strategies in traumatic brain injury. Curr Pharm Des. 2006;12(13):1645–80.PubMedCrossRef
11.
go back to reference Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal models of traumatic brain injury and assessment of injury severity. Mol Neurobiol. 2019;56(8):5332–45.PubMedCrossRef Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J. Animal models of traumatic brain injury and assessment of injury severity. Mol Neurobiol. 2019;56(8):5332–45.PubMedCrossRef
12.
go back to reference Freire MAM, Rocha GS, Bittencourt LO, Falcao D, Lima RR, Cavalcanti J. Cellular and molecular pathophysiology of traumatic brain injury: what have we learned so far? Biology. 2023;12(8):1139.PubMedPubMedCentralCrossRef Freire MAM, Rocha GS, Bittencourt LO, Falcao D, Lima RR, Cavalcanti J. Cellular and molecular pathophysiology of traumatic brain injury: what have we learned so far? Biology. 2023;12(8):1139.PubMedPubMedCentralCrossRef
13.
go back to reference Hubbard WB, Joseph B, Spry M, Vekaria HJ, Saatman KE, Sullivan PG. Acute mitochondrial impairment underlies prolonged cellular dysfunction after repeated mild traumatic brain injuries. J Neurotrauma. 2019;36(8):1252–63.PubMedPubMedCentralCrossRef Hubbard WB, Joseph B, Spry M, Vekaria HJ, Saatman KE, Sullivan PG. Acute mitochondrial impairment underlies prolonged cellular dysfunction after repeated mild traumatic brain injuries. J Neurotrauma. 2019;36(8):1252–63.PubMedPubMedCentralCrossRef
14.
go back to reference Kilbaugh TJ, Karlsson M, Byro M, Bebee A, Ralston J, Sullivan S, et al. Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain. Exp Neurol. 2015;271:136–44.PubMedPubMedCentralCrossRef Kilbaugh TJ, Karlsson M, Byro M, Bebee A, Ralston J, Sullivan S, et al. Mitochondrial bioenergetic alterations after focal traumatic brain injury in the immature brain. Exp Neurol. 2015;271:136–44.PubMedPubMedCentralCrossRef
15.
go back to reference Pandya JD, Pauly JR, Nukala VN, Sebastian AH, Day KM, Korde AS, et al. Post-injury administration of mitochondrial uncouplers increases tissue sparing and improves behavioral outcome following traumatic brain injury in rodents. J Neurotrauma. 2007;24(5):798–811.PubMedCrossRef Pandya JD, Pauly JR, Nukala VN, Sebastian AH, Day KM, Korde AS, et al. Post-injury administration of mitochondrial uncouplers increases tissue sparing and improves behavioral outcome following traumatic brain injury in rodents. J Neurotrauma. 2007;24(5):798–811.PubMedCrossRef
16.
go back to reference Sullivan PG, Rabchevsky AG, Keller JN, Lovell M, Sodhi A, Hart RP, et al. Intrinsic differences in brain and spinal cord mitochondria: implication for therapeutic interventions. J Comp Neurol. 2004;474(4):524–34.PubMedCrossRef Sullivan PG, Rabchevsky AG, Keller JN, Lovell M, Sodhi A, Hart RP, et al. Intrinsic differences in brain and spinal cord mitochondria: implication for therapeutic interventions. J Comp Neurol. 2004;474(4):524–34.PubMedCrossRef
17.
go back to reference Pandya JD, Leung LY, Hwang HM, Yang X, Deng-Bryant Y, Shear DA. Time-course evaluation of brain regional mitochondrial bioenergetics in a pre-clinical model of severe penetrating traumatic brain injury. J Neurotrauma. 2021;38(16):2323–34.PubMedCrossRef Pandya JD, Leung LY, Hwang HM, Yang X, Deng-Bryant Y, Shear DA. Time-course evaluation of brain regional mitochondrial bioenergetics in a pre-clinical model of severe penetrating traumatic brain injury. J Neurotrauma. 2021;38(16):2323–34.PubMedCrossRef
18.
go back to reference Zhang HT, Zhang P, Gao Y, Li CL, Wang HJ, Chen LC, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15(1):57–64.PubMedCrossRef Zhang HT, Zhang P, Gao Y, Li CL, Wang HJ, Chen LC, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15(1):57–64.PubMedCrossRef
19.
go back to reference Fiskum G, Rosenthal RE, Vereczki V, Martin E, Hoffman GE, Chinopoulos C, et al. Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J Bioenerg Biomembr. 2004;36(4):347–52.PubMedCrossRef Fiskum G, Rosenthal RE, Vereczki V, Martin E, Hoffman GE, Chinopoulos C, et al. Protection against ischemic brain injury by inhibition of mitochondrial oxidative stress. J Bioenerg Biomembr. 2004;36(4):347–52.PubMedCrossRef
20.
go back to reference Cheng G, Kong R, Lm Z, Jn Z. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol. 2012;167(4):699–719.PubMedPubMedCentralCrossRef Cheng G, Kong R, Lm Z, Jn Z. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol. 2012;167(4):699–719.PubMedPubMedCentralCrossRef
21.
go back to reference Pandya JD, Leung LY, Flerlage WJ, Gilsdorf JS, Bryant YD, Shear D. Comprehensive profile of acute mitochondrial dysfunction in a preclinical model of severe penetrating TBI. Front Neurol. 2019;10:605.PubMedPubMedCentralCrossRef Pandya JD, Leung LY, Flerlage WJ, Gilsdorf JS, Bryant YD, Shear D. Comprehensive profile of acute mitochondrial dysfunction in a preclinical model of severe penetrating TBI. Front Neurol. 2019;10:605.PubMedPubMedCentralCrossRef
22.
go back to reference Lamade AM, Kenny EM, Anthonymuthu TS, Soysal E, Clark RSB, Kagan VE, et al. Aiming for the target: Mitochondrial drug delivery in traumatic brain injury. Neuropharmacology. 2019;145(Pt B):209–19.PubMedCrossRef Lamade AM, Kenny EM, Anthonymuthu TS, Soysal E, Clark RSB, Kagan VE, et al. Aiming for the target: Mitochondrial drug delivery in traumatic brain injury. Neuropharmacology. 2019;145(Pt B):209–19.PubMedCrossRef
25.
go back to reference Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci. 2012;3(1):50–68.PubMedCrossRef Ghose AK, Herbertz T, Hudkins RL, Dorsey BD, Mallamo JP. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci. 2012;3(1):50–68.PubMedCrossRef
27.
go back to reference Islam SU, Shehzad A, Ahmed MB, Lee YS. intranasal delivery of nanoformulations: a potential way of treatment for neurological disorders. Molecules. 2020;25(8):1929.PubMedPubMedCentralCrossRef Islam SU, Shehzad A, Ahmed MB, Lee YS. intranasal delivery of nanoformulations: a potential way of treatment for neurological disorders. Molecules. 2020;25(8):1929.PubMedPubMedCentralCrossRef
28.
go back to reference Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis. 2017;21(1):1–20.PubMedCrossRef Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis. 2017;21(1):1–20.PubMedCrossRef
29.
go back to reference Anderson GD, Gidal BE, Hendryx RJ, Awan AB, Temkin NR, Wilensky AJ, et al. Decreased plasma protein binding of valproate in patients with acute head trauma. Br J Clin Pharmacol. 1994;37(6):559–62.PubMedPubMedCentralCrossRef Anderson GD, Gidal BE, Hendryx RJ, Awan AB, Temkin NR, Wilensky AJ, et al. Decreased plasma protein binding of valproate in patients with acute head trauma. Br J Clin Pharmacol. 1994;37(6):559–62.PubMedPubMedCentralCrossRef
30.
go back to reference Hanson LR, Frey WH. Strategies for intranasal delivery of therapeutics for the prevention and treatment of neuroAIDS. J Neuroimmune Pharmacol. 2007;2:81–6.PubMedCrossRef Hanson LR, Frey WH. Strategies for intranasal delivery of therapeutics for the prevention and treatment of neuroAIDS. J Neuroimmune Pharmacol. 2007;2:81–6.PubMedCrossRef
31.
go back to reference Liu XF, Fawcett JR, Thorne RG, DeFor TA, Frey WH 2nd. Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci. 2001;187(1–2):91–7.PubMedCrossRef Liu XF, Fawcett JR, Thorne RG, DeFor TA, Frey WH 2nd. Intranasal administration of insulin-like growth factor-I bypasses the blood-brain barrier and protects against focal cerebral ischemic damage. J Neurol Sci. 2001;187(1–2):91–7.PubMedCrossRef
32.
go back to reference Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.PubMedCrossRef Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.PubMedCrossRef
33.
go back to reference Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey WH 2nd. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1–2):66–77.PubMedCrossRef Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey WH 2nd. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1–2):66–77.PubMedCrossRef
34.
go back to reference Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, et al. Intranasal delivery of cells to the brain. Eur J Cell Biol. 2009;88(6):315–24.PubMedCrossRef Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Buadze M, Geisler J, Klopfer T, et al. Intranasal delivery of cells to the brain. Eur J Cell Biol. 2009;88(6):315–24.PubMedCrossRef
35.
go back to reference Benedict C, Brede S, Schiöth HB, Lehnert H, Schultes B, Born J, et al. Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes. 2011;60(1):114–8.PubMedCrossRef Benedict C, Brede S, Schiöth HB, Lehnert H, Schultes B, Born J, et al. Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes. 2011;60(1):114–8.PubMedCrossRef
36.
go back to reference Freiherr J, Hallschmid M, Frey WH 2nd, Brünner YF, Chapman CD, Hölscher C, et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs. 2013;27(7):505–14.PubMedPubMedCentralCrossRef Freiherr J, Hallschmid M, Frey WH 2nd, Brünner YF, Chapman CD, Hölscher C, et al. Intranasal insulin as a treatment for Alzheimer’s disease: a review of basic research and clinical evidence. CNS Drugs. 2013;27(7):505–14.PubMedPubMedCentralCrossRef
38.
go back to reference Chapman CD, Frey WH, Craft S, Danielyan L, Hallschmid M, Schiöth HB, et al. Intranasal treatment of central nervous system dysfunction in humans. Pharm Res. 2013;30(10):2475–84.PubMedCrossRef Chapman CD, Frey WH, Craft S, Danielyan L, Hallschmid M, Schiöth HB, et al. Intranasal treatment of central nervous system dysfunction in humans. Pharm Res. 2013;30(10):2475–84.PubMedCrossRef
39.
go back to reference MacDonald E, Dadds MR, Brennan JL, Williams K, Levy F, Cauchi AJ. A review of safety, side-effects and subjective reactions to intranasal oxytocin in human research. Psychoneuroendocrinology. 2011;36(8):1114–26.PubMedCrossRef MacDonald E, Dadds MR, Brennan JL, Williams K, Levy F, Cauchi AJ. A review of safety, side-effects and subjective reactions to intranasal oxytocin in human research. Psychoneuroendocrinology. 2011;36(8):1114–26.PubMedCrossRef
40.
go back to reference Nathan RA. Intranasal steroids in the treatment of allergy-induced rhinorrhea. Clin Rev Allergy Immunol. 2011;41(1):89–101.PubMedCrossRef Nathan RA. Intranasal steroids in the treatment of allergy-induced rhinorrhea. Clin Rev Allergy Immunol. 2011;41(1):89–101.PubMedCrossRef
41.
go back to reference Shemesh E, Rudich A, Harman-Boehm I, Cukierman-Yaffe T. Effect of intranasal insulin on cognitive function: a systematic review. J Clin Endocrinol Metab. 2012;97(2):366–76.PubMedCrossRef Shemesh E, Rudich A, Harman-Boehm I, Cukierman-Yaffe T. Effect of intranasal insulin on cognitive function: a systematic review. J Clin Endocrinol Metab. 2012;97(2):366–76.PubMedCrossRef
42.
go back to reference Wolfe TR, Macfarlane TC. Intranasal midazolam therapy for pediatric status epilepticus. Am J Emerg Med. 2006;24(3):343–6.PubMedCrossRef Wolfe TR, Macfarlane TC. Intranasal midazolam therapy for pediatric status epilepticus. Am J Emerg Med. 2006;24(3):343–6.PubMedCrossRef
43.
go back to reference Reese TS, Feder N, Brightman MW. Electron microscopic study of the blood-brain and blood-cerebrospinal fluid barriers with microperoxidase. J Neuropathol Exp Neurol. 1971;30(1):137–8.PubMed Reese TS, Feder N, Brightman MW. Electron microscopic study of the blood-brain and blood-cerebrospinal fluid barriers with microperoxidase. J Neuropathol Exp Neurol. 1971;30(1):137–8.PubMed
44.
go back to reference Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.PubMedPubMedCentralCrossRef Nau R, Sörgel F, Eiffert H. Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev. 2010;23(4):858–83.PubMedPubMedCentralCrossRef
46.
go back to reference Beaumont A, Fatouros P, Gennarelli T, Corwin F, Marmarou A. Bolus tracer delivery measured by MRI confirms edema without blood-brain barrier permeability in diffuse traumatic brain injury. Acta Neurochir Suppl. 2006;96:171–4.PubMedCrossRef Beaumont A, Fatouros P, Gennarelli T, Corwin F, Marmarou A. Bolus tracer delivery measured by MRI confirms edema without blood-brain barrier permeability in diffuse traumatic brain injury. Acta Neurochir Suppl. 2006;96:171–4.PubMedCrossRef
47.
go back to reference Barzó P, Marmarou A, Fatouros P, Corwin F, Dunbar J. Magnetic resonance imaging-monitored acute blood-brain barrier changes in experimental traumatic brain injury. J Neurosurg. 1996;85(6):1113–21.PubMedCrossRef Barzó P, Marmarou A, Fatouros P, Corwin F, Dunbar J. Magnetic resonance imaging-monitored acute blood-brain barrier changes in experimental traumatic brain injury. J Neurosurg. 1996;85(6):1113–21.PubMedCrossRef
48.
go back to reference Lopez NE, Krzyzaniak MJ, Blow C, Putnam J, Ortiz-Pomales Y, Hageny AM, et al. Ghrelin prevents disruption of the blood-brain barrier after traumatic brain injury. J Neurotrauma. 2012;29(2):385–93.PubMedPubMedCentralCrossRef Lopez NE, Krzyzaniak MJ, Blow C, Putnam J, Ortiz-Pomales Y, Hageny AM, et al. Ghrelin prevents disruption of the blood-brain barrier after traumatic brain injury. J Neurotrauma. 2012;29(2):385–93.PubMedPubMedCentralCrossRef
49.
go back to reference Lv Q, Fan X, Xu G, Liu Q, Tian L, Cai X, et al. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Res. 2013;1493:80–9.PubMedCrossRef Lv Q, Fan X, Xu G, Liu Q, Tian L, Cai X, et al. Intranasal delivery of nerve growth factor attenuates aquaporins-4-induced edema following traumatic brain injury in rats. Brain Res. 2013;1493:80–9.PubMedCrossRef
50.
51.
go back to reference Menge T, Zhao Y, Zhao J, Wataha K, Gerber M, Zhang J, et al. Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci Transl Med. 2012;4(161):161ra50.CrossRef Menge T, Zhao Y, Zhao J, Wataha K, Gerber M, Zhang J, et al. Mesenchymal stem cells regulate blood-brain barrier integrity through TIMP3 release after traumatic brain injury. Sci Transl Med. 2012;4(161):161ra50.CrossRef
52.
go back to reference Chen J, Hu J, Liu H, Xiong Y, Zou Y, Huang W, et al. FGF21 protects the blood-brain barrier by upregulating PPARγ via FGFR1/β-klotho after traumatic brain injury. J Neurotrauma. 2018;35(17):2091–103.PubMedCrossRef Chen J, Hu J, Liu H, Xiong Y, Zou Y, Huang W, et al. FGF21 protects the blood-brain barrier by upregulating PPARγ via FGFR1/β-klotho after traumatic brain injury. J Neurotrauma. 2018;35(17):2091–103.PubMedCrossRef
53.
go back to reference Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke. 2015;46(6):1681–9.PubMedPubMedCentralCrossRef Doll DN, Hu H, Sun J, Lewis SE, Simpkins JW, Ren X. Mitochondrial crisis in cerebrovascular endothelial cells opens the blood-brain barrier. Stroke. 2015;46(6):1681–9.PubMedPubMedCentralCrossRef
54.
go back to reference Pathan SA, Iqbal Z, Zaidi S, Talegaonkar S, Vohra D, Jain GK, et al. CNS drug delivery systems: novel approaches. Recent Pat Drug Deliv Formul. 2009;3(1):71–89.PubMedCrossRef Pathan SA, Iqbal Z, Zaidi S, Talegaonkar S, Vohra D, Jain GK, et al. CNS drug delivery systems: novel approaches. Recent Pat Drug Deliv Formul. 2009;3(1):71–89.PubMedCrossRef
56.
go back to reference Manallack DT. The pK(a) distribution of drugs: application to drug discovery. Perspect Med Chem. 2007;1:25–38. Manallack DT. The pK(a) distribution of drugs: application to drug discovery. Perspect Med Chem. 2007;1:25–38.
57.
go back to reference Farina DJ. Regulatory aspects of nasal and pulmonary spray drug products. Handbook of Non-invasive drug delivery systems: Elsevier; 2010. p. 247–90. Farina DJ. Regulatory aspects of nasal and pulmonary spray drug products. Handbook of Non-invasive drug delivery systems: Elsevier; 2010. p. 247–90.
58.
go back to reference Ying W, Wei G, Wang D, Wang Q, Tang X, Shi J, et al. Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia. Front Biosci. 2007;12:2728–34.PubMedCrossRef Ying W, Wei G, Wang D, Wang Q, Tang X, Shi J, et al. Intranasal administration with NAD+ profoundly decreases brain injury in a rat model of transient focal ischemia. Front Biosci. 2007;12:2728–34.PubMedCrossRef
59.
go back to reference Maffezzoni E, Notargiacomo M, Agostini S, Gelardi M. Efficacy of a nasal spray containing N-acetylcysteine in hypertonic solution in the treatment of nonallergic chronic rhinitis with goblet cell metaplasia. J Biol Regul Homeost Agents. 2020;34(6):2345–52.PubMed Maffezzoni E, Notargiacomo M, Agostini S, Gelardi M. Efficacy of a nasal spray containing N-acetylcysteine in hypertonic solution in the treatment of nonallergic chronic rhinitis with goblet cell metaplasia. J Biol Regul Homeost Agents. 2020;34(6):2345–52.PubMed
60.
go back to reference Kawoos U, McCarron RM, Chavko M. Protective effect of N-acetylcysteine amide on blast-induced increase in intracranial pressure in rats. Front Neurol. 2017;8:219.PubMedPubMedCentralCrossRef Kawoos U, McCarron RM, Chavko M. Protective effect of N-acetylcysteine amide on blast-induced increase in intracranial pressure in rats. Front Neurol. 2017;8:219.PubMedPubMedCentralCrossRef
61.
go back to reference Silachev DN, Plotnikov EY, Zorova LD, Pevzner IB, Sumbatyan NV, Korshunova GA, et al. Neuroprotective effects of mitochondria-targeted plastoquinone and thymoquinone in a rat model of brain ischemia/reperfusion injury. Molecules. 2015;20(8):14487–503.PubMedPubMedCentralCrossRef Silachev DN, Plotnikov EY, Zorova LD, Pevzner IB, Sumbatyan NV, Korshunova GA, et al. Neuroprotective effects of mitochondria-targeted plastoquinone and thymoquinone in a rat model of brain ischemia/reperfusion injury. Molecules. 2015;20(8):14487–503.PubMedPubMedCentralCrossRef
62.
go back to reference Li Y, Fawcett JP, Zhang H, Tucker IG. Transport and metabolism of MitoQ10, a mitochondria-targeted antioxidant, in Caco-2 cell monolayers. J Pharm Pharmacol. 2007;59(4):503–11.PubMedCrossRef Li Y, Fawcett JP, Zhang H, Tucker IG. Transport and metabolism of MitoQ10, a mitochondria-targeted antioxidant, in Caco-2 cell monolayers. J Pharm Pharmacol. 2007;59(4):503–11.PubMedCrossRef
63.
go back to reference Guo C, Li M, Qi X, Lin G, Cui F, Li F, et al. Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice. Sci Rep. 2016;6:29753.PubMedPubMedCentralCrossRefADS Guo C, Li M, Qi X, Lin G, Cui F, Li F, et al. Intranasal delivery of nanomicelle curcumin promotes corneal epithelial wound healing in streptozotocin-induced diabetic mice. Sci Rep. 2016;6:29753.PubMedPubMedCentralCrossRefADS
64.
go back to reference Chauhan PS, Singh DK, Dash D, Singh R. Intranasal curcumin regulates chronic asthma in mice by modulating NF-ĸB activation and MAPK signaling. Phytomedicine. 2018;51:29–38.PubMedCrossRef Chauhan PS, Singh DK, Dash D, Singh R. Intranasal curcumin regulates chronic asthma in mice by modulating NF-ĸB activation and MAPK signaling. Phytomedicine. 2018;51:29–38.PubMedCrossRef
65.
go back to reference Chen X, Zhi F, Jia X, Zhang X, Ambardekar R, Meng Z, et al. Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel. J Pharm Pharmacol. 2013;65(6):807–16.PubMedCrossRef Chen X, Zhi F, Jia X, Zhang X, Ambardekar R, Meng Z, et al. Enhanced brain targeting of curcumin by intranasal administration of a thermosensitive poloxamer hydrogel. J Pharm Pharmacol. 2013;65(6):807–16.PubMedCrossRef
66.
go back to reference Kumari A, Dash D, Singh R. Lipopolysaccharide (LPS) exposure differently affects allergic asthma exacerbations and its amelioration by intranasal curcumin in mice. Cytokine. 2015;76(2):334–42.PubMedCrossRef Kumari A, Dash D, Singh R. Lipopolysaccharide (LPS) exposure differently affects allergic asthma exacerbations and its amelioration by intranasal curcumin in mice. Cytokine. 2015;76(2):334–42.PubMedCrossRef
67.
go back to reference Kumari A, Tyagi N, Dash D, Singh R. Intranasal curcumin ameliorates lipopolysaccharide-induced acute lung injury in mice. Inflammation. 2015;38(3):1103–12.PubMedCrossRef Kumari A, Tyagi N, Dash D, Singh R. Intranasal curcumin ameliorates lipopolysaccharide-induced acute lung injury in mice. Inflammation. 2015;38(3):1103–12.PubMedCrossRef
68.
go back to reference Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–79.PubMedPubMedCentralCrossRef Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. 2011;19(10):1769–79.PubMedPubMedCentralCrossRef
69.
go back to reference Monteillier A, Voisin A, Furrer P, Allémann E, Cuendet M. Intranasal administration of resveratrol successfully prevents lung cancer in A/J mice. Sci Rep. 2018;8(1):14257.PubMedPubMedCentralCrossRefADS Monteillier A, Voisin A, Furrer P, Allémann E, Cuendet M. Intranasal administration of resveratrol successfully prevents lung cancer in A/J mice. Sci Rep. 2018;8(1):14257.PubMedPubMedCentralCrossRefADS
70.
go back to reference Shamsher E, Sulaimankutty R, Dine K, Luong V, Davis B, Willett K, et al. Intranasal delivery of resveratrol nanoparticles reduces retinal ganglion cell loss in a model of multiple sclerosis. 2020;61(7):2476 Shamsher E, Sulaimankutty R, Dine K, Luong V, Davis B, Willett K, et al. Intranasal delivery of resveratrol nanoparticles reduces retinal ganglion cell loss in a model of multiple sclerosis. 2020;61(7):2476
71.
go back to reference Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta Mol Basis Dis. 2015;1852(6):1195–201.CrossRef Bastianetto S, Ménard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta Mol Basis Dis. 2015;1852(6):1195–201.CrossRef
73.
go back to reference Rompicherla SKL, Arumugam K, Bojja SL, Kumar N, Rao CM. Pharmacokinetic and pharmacodynamic evaluation of nasal liposome and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer’s disease. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(8):1737–55.PubMedPubMedCentralCrossRef Rompicherla SKL, Arumugam K, Bojja SL, Kumar N, Rao CM. Pharmacokinetic and pharmacodynamic evaluation of nasal liposome and nanoparticle based rivastigmine formulations in acute and chronic models of Alzheimer’s disease. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(8):1737–55.PubMedPubMedCentralCrossRef
74.
go back to reference Bhanderi M, Shah J, Gorain B, Nair AB, Jacob S, Asdaq SMB, et al. Optimized rivastigmine nanoparticles coated with eudragit for intranasal application to brain delivery: evaluation and nasal ciliotoxicity studies. Materials. 2021;14(21):6291.PubMedPubMedCentralCrossRefADS Bhanderi M, Shah J, Gorain B, Nair AB, Jacob S, Asdaq SMB, et al. Optimized rivastigmine nanoparticles coated with eudragit for intranasal application to brain delivery: evaluation and nasal ciliotoxicity studies. Materials. 2021;14(21):6291.PubMedPubMedCentralCrossRefADS
76.
go back to reference Kandiah N, Pai MC, Senanarong V, Looi I, Ampil E, Park KW, et al. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin Interv Aging. 2017;12:697–707.PubMedPubMedCentralCrossRef Kandiah N, Pai MC, Senanarong V, Looi I, Ampil E, Park KW, et al. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia. Clin Interv Aging. 2017;12:697–707.PubMedPubMedCentralCrossRef
77.
78.
go back to reference Kanie T, Onoyama I, Matsumoto A, Yamada M, Nakatsumi H, Tateishi Y, et al. Genetic reevaluation of the role of F-box proteins in cyclin D1 degradation. Mol Cell Biol. 2012;32(3):590–605.PubMedPubMedCentralCrossRef Kanie T, Onoyama I, Matsumoto A, Yamada M, Nakatsumi H, Tateishi Y, et al. Genetic reevaluation of the role of F-box proteins in cyclin D1 degradation. Mol Cell Biol. 2012;32(3):590–605.PubMedPubMedCentralCrossRef
79.
go back to reference Iqubal A, Sharma S, Sharma K, Bhavsar A, Hussain I, Iqubal MK, et al. Intranasally administered pitavastatin ameliorates pentylenetetrazol-induced neuroinflammation, oxidative stress and cognitive dysfunction. Life Sci. 2018;211:172–81.PubMedCrossRef Iqubal A, Sharma S, Sharma K, Bhavsar A, Hussain I, Iqubal MK, et al. Intranasally administered pitavastatin ameliorates pentylenetetrazol-induced neuroinflammation, oxidative stress and cognitive dysfunction. Life Sci. 2018;211:172–81.PubMedCrossRef
80.
go back to reference Ashhar MU, Ahmad MZ, Jain V, Agarwal NB, Ahmad FJ, Jain GK. Intranasal pitavastatin attenuates seizures in different experimental models of epilepsy in mice. Epilepsy Behav. 2017;75:56–9.PubMedCrossRef Ashhar MU, Ahmad MZ, Jain V, Agarwal NB, Ahmad FJ, Jain GK. Intranasal pitavastatin attenuates seizures in different experimental models of epilepsy in mice. Epilepsy Behav. 2017;75:56–9.PubMedCrossRef
82.
go back to reference Kurata T, Miyazaki K, Morimoto N, Kawai H, Ohta Y, Ikeda Y, et al. Atorvastatin and pitavastatin reduce oxidative stress and improve IR/LDL-R signals in Alzheimer’s disease. Neurol Res. 2013;35(2):193–205.PubMedCrossRef Kurata T, Miyazaki K, Morimoto N, Kawai H, Ohta Y, Ikeda Y, et al. Atorvastatin and pitavastatin reduce oxidative stress and improve IR/LDL-R signals in Alzheimer’s disease. Neurol Res. 2013;35(2):193–205.PubMedCrossRef
83.
go back to reference Kajinami K, Takekoshi N, Saito Y. Pitavastatin: efficacy and safety profiles of a novel synthetic HMG-CoA reductase inhibitor. Cardiovasc Drug Rev. 2003;21(3):199–215.PubMedCrossRef Kajinami K, Takekoshi N, Saito Y. Pitavastatin: efficacy and safety profiles of a novel synthetic HMG-CoA reductase inhibitor. Cardiovasc Drug Rev. 2003;21(3):199–215.PubMedCrossRef
84.
go back to reference Zhao N, Zhuo X, Lu Y, Dong Y, Ahmed ME, Tucker D, et al. Intranasal delivery of a caspase-1 inhibitor in the treatment of global cerebral ischemia. Mol Neurobiol. 2017;54(7):4936–52.PubMedCrossRef Zhao N, Zhuo X, Lu Y, Dong Y, Ahmed ME, Tucker D, et al. Intranasal delivery of a caspase-1 inhibitor in the treatment of global cerebral ischemia. Mol Neurobiol. 2017;54(7):4936–52.PubMedCrossRef
85.
go back to reference Pirzada RH, Javaid N, Choi S. The roles of the NLRP3 inflammasome in neurodegenerative and metabolic diseases and in relevant advanced therapeutic interventions. Genes. 2020;11(2):131.PubMedPubMedCentralCrossRef Pirzada RH, Javaid N, Choi S. The roles of the NLRP3 inflammasome in neurodegenerative and metabolic diseases and in relevant advanced therapeutic interventions. Genes. 2020;11(2):131.PubMedPubMedCentralCrossRef
86.
go back to reference Yang H, Gu Z-T, Li L, Maegele M, Zhou B-Y, Li F, et al. SIRT1 plays a neuroprotective role in traumatic brain injury in rats via inhibiting the p38 MAPK pathway. Acta Pharmacol Sinica. 2017;38(2):168–81.CrossRef Yang H, Gu Z-T, Li L, Maegele M, Zhou B-Y, Li F, et al. SIRT1 plays a neuroprotective role in traumatic brain injury in rats via inhibiting the p38 MAPK pathway. Acta Pharmacol Sinica. 2017;38(2):168–81.CrossRef
87.
go back to reference Musumeci T, Bonaccorso A, Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: an overview. Pharmaceutics. 2019;11(3):118.PubMedPubMedCentralCrossRef Musumeci T, Bonaccorso A, Puglisi G. Epilepsy disease and nose-to-brain delivery of polymeric nanoparticles: an overview. Pharmaceutics. 2019;11(3):118.PubMedPubMedCentralCrossRef
91.
go back to reference Naidoo V, Mdanda S, Ntshangase S, Naicker T, Kruger HG, Govender T, et al. Brain penetration of ketamine: Intranasal delivery VS parenteral routes of administraion. J Psychiatr Res. 2019;112:7–11.PubMedCrossRef Naidoo V, Mdanda S, Ntshangase S, Naicker T, Kruger HG, Govender T, et al. Brain penetration of ketamine: Intranasal delivery VS parenteral routes of administraion. J Psychiatr Res. 2019;112:7–11.PubMedCrossRef
92.
go back to reference Cromhout A. Ketamine: its use in the emergency department. Emerg Med. 2003;15(2):155–9.CrossRef Cromhout A. Ketamine: its use in the emergency department. Emerg Med. 2003;15(2):155–9.CrossRef
93.
go back to reference Liang J, Wu S, Xie W, He H. Ketamine ameliorates oxidative stress-induced apoptosis in experimental traumatic brain injury via the Nrf2 pathway. Drug Des Devel Ther. 2018;12:845–53.PubMedPubMedCentralCrossRef Liang J, Wu S, Xie W, He H. Ketamine ameliorates oxidative stress-induced apoptosis in experimental traumatic brain injury via the Nrf2 pathway. Drug Des Devel Ther. 2018;12:845–53.PubMedPubMedCentralCrossRef
94.
go back to reference Zhang L, Pang L, Zhu S, Ma J, Li R, Liu Y, et al. Intranasal tetrandrine temperature-sensitive in situ hydrogels for the treatment of microwave-induced brain injury. Int J Pharm. 2020;583: 119384.PubMedCrossRef Zhang L, Pang L, Zhu S, Ma J, Li R, Liu Y, et al. Intranasal tetrandrine temperature-sensitive in situ hydrogels for the treatment of microwave-induced brain injury. Int J Pharm. 2020;583: 119384.PubMedCrossRef
95.
go back to reference Xu M, Sheng L, Zhu X, Zeng S, Chi D, Zhang G-J. Protective effect of tetrandrine on doxorubicin-induced cardiotoxicity in rats. Tumori J. 2010;96(3):460–4.CrossRef Xu M, Sheng L, Zhu X, Zeng S, Chi D, Zhang G-J. Protective effect of tetrandrine on doxorubicin-induced cardiotoxicity in rats. Tumori J. 2010;96(3):460–4.CrossRef
96.
go back to reference Salameh TS, Bullock KM, Hujoel IA, Niehoff ML, Wolden-Hanson T, Kim J, et al. Central nervous system delivery of intranasal insulin: mechanisms of uptake and effects on cognition. J Alzheimers Dis. 2015;47(3):715–28.PubMedPubMedCentralCrossRef Salameh TS, Bullock KM, Hujoel IA, Niehoff ML, Wolden-Hanson T, Kim J, et al. Central nervous system delivery of intranasal insulin: mechanisms of uptake and effects on cognition. J Alzheimers Dis. 2015;47(3):715–28.PubMedPubMedCentralCrossRef
97.
go back to reference Lioutas V-A, Alfaro-Martinez F, Bedoya F, Chung C-C, Pimentel DA, Novak V. Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res. 2015;6(4):264–75.PubMedPubMedCentralCrossRef Lioutas V-A, Alfaro-Martinez F, Bedoya F, Chung C-C, Pimentel DA, Novak V. Intranasal insulin and insulin-like growth factor 1 as neuroprotectants in acute ischemic stroke. Transl Stroke Res. 2015;6(4):264–75.PubMedPubMedCentralCrossRef
98.
go back to reference Ruegsegger GN, Manjunatha S, Summer P, Gopala S, Zabeilski P, Dasari S, et al. Insulin deficiency and intranasal insulin alter brain mitochondrial function: a potential factor for dementia in diabetes. FASEB J. 2019;33(3):4458–72.PubMedPubMedCentralCrossRef Ruegsegger GN, Manjunatha S, Summer P, Gopala S, Zabeilski P, Dasari S, et al. Insulin deficiency and intranasal insulin alter brain mitochondrial function: a potential factor for dementia in diabetes. FASEB J. 2019;33(3):4458–72.PubMedPubMedCentralCrossRef
99.
go back to reference Hölscher C. Brain insulin resistance: role in neurodegenerative disease and potential for targeting. Expert Opin Investig Drugs. 2020;29(4):333–48.PubMedCrossRef Hölscher C. Brain insulin resistance: role in neurodegenerative disease and potential for targeting. Expert Opin Investig Drugs. 2020;29(4):333–48.PubMedCrossRef
100.
go back to reference Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect. 2015;4(1):R1–15.PubMedCrossRef Montgomery MK, Turner N. Mitochondrial dysfunction and insulin resistance: an update. Endocr Connect. 2015;4(1):R1–15.PubMedCrossRef
101.
go back to reference Ms S, Ms N, Mmi B, Me-S M, Mae-H S. Novel intranasal drug delivery: geraniol charged polymeric mixed micelles for targeting cerebral insult as a result of ischaemia/reperfusion. Pharmaceutics. 2020;12(1):76.CrossRef Ms S, Ms N, Mmi B, Me-S M, Mae-H S. Novel intranasal drug delivery: geraniol charged polymeric mixed micelles for targeting cerebral insult as a result of ischaemia/reperfusion. Pharmaceutics. 2020;12(1):76.CrossRef
102.
go back to reference Remington JP. The science and practice of pharmacy. Philadelphia: Lippincott Williams & Wilkins; 2006. Remington JP. The science and practice of pharmacy. Philadelphia: Lippincott Williams & Wilkins; 2006.
103.
go back to reference Soliman MS, Sheta MN, Ibrahim MMB, El-Shawwa MM, Abd El-Halim MS. Novel intranasal drug delivery: geraniol charged polymeric mixed micelles for targeting cerebral insult as a result of ischaemia/reperfusion. Pharmaceutics. 2020;12(1):76.CrossRef Soliman MS, Sheta MN, Ibrahim MMB, El-Shawwa MM, Abd El-Halim MS. Novel intranasal drug delivery: geraniol charged polymeric mixed micelles for targeting cerebral insult as a result of ischaemia/reperfusion. Pharmaceutics. 2020;12(1):76.CrossRef
104.
go back to reference Rekha KR, Sivakamasundari RI. Geraniol protects against the protein and oxidative stress induced by rotenone in an in vitro model of Parkinson’s disease. Neurochem Res. 2018;43(10):1947–62.PubMedCrossRef Rekha KR, Sivakamasundari RI. Geraniol protects against the protein and oxidative stress induced by rotenone in an in vitro model of Parkinson’s disease. Neurochem Res. 2018;43(10):1947–62.PubMedCrossRef
105.
go back to reference Jiang T, Huang L, Zhang X, Liang XJIJCEM. Nasal administration of muscone promotes cAMP-PKA-CREB signaling in rats with traumatic brain injury. Int J Clin Exp Med. 2019;12(5):5902–8. Jiang T, Huang L, Zhang X, Liang XJIJCEM. Nasal administration of muscone promotes cAMP-PKA-CREB signaling in rats with traumatic brain injury. Int J Clin Exp Med. 2019;12(5):5902–8.
106.
107.
go back to reference Jiang T, Huang L, Zhang X, Liang X. Nasal administration of muscone promotes cAMP-PKA-CREB signaling in rats with traumatic brain injury. Int J Clin Exp Med. 2019;12(5):5902–8. Jiang T, Huang L, Zhang X, Liang X. Nasal administration of muscone promotes cAMP-PKA-CREB signaling in rats with traumatic brain injury. Int J Clin Exp Med. 2019;12(5):5902–8.
108.
go back to reference Boxer AL, Lang AE, Grossman M, Knopman DS, Miller BL, Schneider LS, et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 2014;13(7):676–85.PubMedPubMedCentralCrossRef Boxer AL, Lang AE, Grossman M, Knopman DS, Miller BL, Schneider LS, et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 2014;13(7):676–85.PubMedPubMedCentralCrossRef
109.
go back to reference Magen I, Ostritsky R, Richter F, Zhu C, Fleming SM, Lemesre V, et al. Intranasal NAP (davunetide) decreases tau hyperphosphorylation and moderately improves behavioral deficits in mice overexpressing α-synuclein. Pharmacol Res Perspect. 2014;2(5): e00065.PubMedPubMedCentralCrossRef Magen I, Ostritsky R, Richter F, Zhu C, Fleming SM, Lemesre V, et al. Intranasal NAP (davunetide) decreases tau hyperphosphorylation and moderately improves behavioral deficits in mice overexpressing α-synuclein. Pharmacol Res Perspect. 2014;2(5): e00065.PubMedPubMedCentralCrossRef
111.
go back to reference Arya A, Meena R, Sethy NK, Das M, Sharma M, Bhargava K. NAP (davunetide) protects primary hippocampus culture by modulating expression profile of antioxidant genes during limiting oxygen conditions. Free Radic Res. 2015;49(4):440–52.PubMedCrossRef Arya A, Meena R, Sethy NK, Das M, Sharma M, Bhargava K. NAP (davunetide) protects primary hippocampus culture by modulating expression profile of antioxidant genes during limiting oxygen conditions. Free Radic Res. 2015;49(4):440–52.PubMedCrossRef
112.
go back to reference Gold M, Lorenzl S, Stewart AJ, Morimoto BH, Williams DR, Gozes I. Critical appraisal of the role of davunetide in the treatment of progressive supranuclear palsy. Neuropsychiatr Dis Treat. 2012;8:85.PubMedPubMedCentral Gold M, Lorenzl S, Stewart AJ, Morimoto BH, Williams DR, Gozes I. Critical appraisal of the role of davunetide in the treatment of progressive supranuclear palsy. Neuropsychiatr Dis Treat. 2012;8:85.PubMedPubMedCentral
114.
go back to reference Zeng X, Yu SP, Taylor T, Ogle M, Wei L. Protective effect of apelin on cultured rat bone marrow mesenchymal stem cells against apoptosis. Stem Cell Res. 2012;8(3):357–67.PubMedCrossRef Zeng X, Yu SP, Taylor T, Ogle M, Wei L. Protective effect of apelin on cultured rat bone marrow mesenchymal stem cells against apoptosis. Stem Cell Res. 2012;8(3):357–67.PubMedCrossRef
115.
go back to reference Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Abdur Rub R, et al. Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif Cells Nanomed Biotechnol. 2018;46(4):717–29.PubMedCrossRef Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Abdur Rub R, et al. Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif Cells Nanomed Biotechnol. 2018;46(4):717–29.PubMedCrossRef
116.
go back to reference Chen X-Q, Qiu K, Liu H, He Q, Bai J-H, Lu W. Application and prospects of butylphthalide for the treatment of neurologic diseases. Chin Med J. 2019;132(12):1467.PubMedPubMedCentralCrossRef Chen X-Q, Qiu K, Liu H, He Q, Bai J-H, Lu W. Application and prospects of butylphthalide for the treatment of neurologic diseases. Chin Med J. 2019;132(12):1467.PubMedPubMedCentralCrossRef
117.
go back to reference Wei ZZ, Chen D, Lee MJH, Zhao Y, Gu X, Yu SP, et al. DL-3-n-butylphthalide increases collateriogenesis and functional recovery after focal ischemic stroke in mice. Aging Dis. 2021;12(7):1835–49.PubMedPubMedCentralCrossRef Wei ZZ, Chen D, Lee MJH, Zhao Y, Gu X, Yu SP, et al. DL-3-n-butylphthalide increases collateriogenesis and functional recovery after focal ischemic stroke in mice. Aging Dis. 2021;12(7):1835–49.PubMedPubMedCentralCrossRef
118.
go back to reference Wei G, Wang D, Lu H, Parmentier S, Wang Q, Panter SS, et al. Intranasal administration of a PARG inhibitor profoundly decreases ischemic brain injury. Front Biosci. 2007;12:4986–96.PubMedCrossRef Wei G, Wang D, Lu H, Parmentier S, Wang Q, Panter SS, et al. Intranasal administration of a PARG inhibitor profoundly decreases ischemic brain injury. Front Biosci. 2007;12:4986–96.PubMedCrossRef
119.
go back to reference Ducharme N, Banks WA, Morley JE, Robinson SM, Niehoff ML, Mattern C, et al. Brain distribution and behavioral effects of progesterone and pregnenolone after intranasal or intravenous administration. Eur J Pharmacol. 2010;641(2–3):128–34.PubMedPubMedCentralCrossRef Ducharme N, Banks WA, Morley JE, Robinson SM, Niehoff ML, Mattern C, et al. Brain distribution and behavioral effects of progesterone and pregnenolone after intranasal or intravenous administration. Eur J Pharmacol. 2010;641(2–3):128–34.PubMedPubMedCentralCrossRef
121.
go back to reference Irwin RW, Yao J, Hamilton RT, Cadenas E, Brinton RD, Nilsen J. Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology. 2008;149(6):3167–75.PubMedPubMedCentralCrossRef Irwin RW, Yao J, Hamilton RT, Cadenas E, Brinton RD, Nilsen J. Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology. 2008;149(6):3167–75.PubMedPubMedCentralCrossRef
122.
go back to reference Meng Q, Wang A, Hua H, Jiang Y, Wang Y, Mu H, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine. 2018;13:705–18.PubMedPubMedCentralCrossRef Meng Q, Wang A, Hua H, Jiang Y, Wang Y, Mu H, et al. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int J Nanomedicine. 2018;13:705–18.PubMedPubMedCentralCrossRef
123.
go back to reference Zhao Y, Yue P, Tao T, Chen QH. Drug brain distribution following intranasal administration of Huperzine A in situ gel in rats. Acta Pharmacol Sin. 2007;28(2):273–8.PubMedCrossRef Zhao Y, Yue P, Tao T, Chen QH. Drug brain distribution following intranasal administration of Huperzine A in situ gel in rats. Acta Pharmacol Sin. 2007;28(2):273–8.PubMedCrossRef
124.
go back to reference Li Y, Zhang R, Li C, Jiang X. Pharmacokinetics of huperzine A following oral administration to human volunteers. Eur J Drug Metab Pharmacokinet. 2007;32(4):183–7.PubMedCrossRef Li Y, Zhang R, Li C, Jiang X. Pharmacokinetics of huperzine A following oral administration to human volunteers. Eur J Drug Metab Pharmacokinet. 2007;32(4):183–7.PubMedCrossRef
125.
go back to reference Zhou J, Tang XC. Huperzine A attenuates apoptosis and mitochondria-dependent caspase-3 in rat cortical neurons. FEBS Lett. 2002;526(1–3):21–5.PubMedCrossRef Zhou J, Tang XC. Huperzine A attenuates apoptosis and mitochondria-dependent caspase-3 in rat cortical neurons. FEBS Lett. 2002;526(1–3):21–5.PubMedCrossRef
126.
go back to reference Tang W, Zhang Y, Gao J, Ding X, Gao S. The anti-fatigue effect of 20(R)-ginsenoside Rg3 in mice by intranasally administration. Biol Pharm Bull. 2008;31(11):2024–7.PubMedCrossRef Tang W, Zhang Y, Gao J, Ding X, Gao S. The anti-fatigue effect of 20(R)-ginsenoside Rg3 in mice by intranasally administration. Biol Pharm Bull. 2008;31(11):2024–7.PubMedCrossRef
127.
go back to reference Qian T, Cai Z, Wong RN, Mak NK, Jiang Z-H. In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. J Chromatogr B. 2005;816(1–2):223–32.CrossRef Qian T, Cai Z, Wong RN, Mak NK, Jiang Z-H. In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. J Chromatogr B. 2005;816(1–2):223–32.CrossRef
128.
go back to reference Elliott G, Rechsteiner M. Pyridine nucleotide metabolism in mitotic cells. J Cell Physiol. 1975;86(S2):641–51.PubMedCrossRef Elliott G, Rechsteiner M. Pyridine nucleotide metabolism in mitotic cells. J Cell Physiol. 1975;86(S2):641–51.PubMedCrossRef
129.
go back to reference Wei CC, Kong YY, Li GQ, Guan YF, Wang P, Miao CY. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci Rep. 2017;7(1):717.PubMedPubMedCentralCrossRefADS Wei CC, Kong YY, Li GQ, Guan YF, Wang P, Miao CY. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci Rep. 2017;7(1):717.PubMedPubMedCentralCrossRefADS
130.
go back to reference Pandya JD, Readnower RD, Patel SP, Yonutas HM, Pauly JR, Goldstein GA, et al. N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp Neurol. 2014;257:106–13.PubMedPubMedCentralCrossRef Pandya JD, Readnower RD, Patel SP, Yonutas HM, Pauly JR, Goldstein GA, et al. N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp Neurol. 2014;257:106–13.PubMedPubMedCentralCrossRef
131.
go back to reference Coles LD, Tuite PJ, Öz G, Mishra UR, Kartha RV, Sullivan KM, et al. Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol. 2018;58(2):158–67.PubMedCrossRef Coles LD, Tuite PJ, Öz G, Mishra UR, Kartha RV, Sullivan KM, et al. Repeated-dose oral N-acetylcysteine in Parkinson’s disease: pharmacokinetics and effect on brain glutathione and oxidative stress. J Clin Pharmacol. 2018;58(2):158–67.PubMedCrossRef
132.
go back to reference Mischley LK, Lau RC, Shankland EG, Wilbur TK, Padowski JM. Phase IIb study of intranasal glutathione in Parkinson’s disease. J Parkinsons Dis. 2017;7(2):289–99.PubMedPubMedCentralCrossRef Mischley LK, Lau RC, Shankland EG, Wilbur TK, Padowski JM. Phase IIb study of intranasal glutathione in Parkinson’s disease. J Parkinsons Dis. 2017;7(2):289–99.PubMedPubMedCentralCrossRef
133.
go back to reference Stefanova NA, Muraleva NA, Maksimova KY, Rudnitskaya EA, Kiseleva E, Telegina DV, et al. An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s disease-like pathology. Aging. 2016;8(11):2713–33.PubMedPubMedCentralCrossRef Stefanova NA, Muraleva NA, Maksimova KY, Rudnitskaya EA, Kiseleva E, Telegina DV, et al. An antioxidant specifically targeting mitochondria delays progression of Alzheimer’s disease-like pathology. Aging. 2016;8(11):2713–33.PubMedPubMedCentralCrossRef
134.
go back to reference Xi Y, Feng D, Tao K, Wang R, Shi Y, Qin H, et al. MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. Biochim Biophys Acta Mol Basis Dis. 2018;1864(9):2859–70.PubMedCrossRef Xi Y, Feng D, Tao K, Wang R, Shi Y, Qin H, et al. MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α. Biochim Biophys Acta Mol Basis Dis. 2018;1864(9):2859–70.PubMedCrossRef
135.
go back to reference McManus MJ, Murphy MP, Franklin JL. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci. 2011;31(44):15703–15.PubMedPubMedCentralCrossRef McManus MJ, Murphy MP, Franklin JL. The mitochondria-targeted antioxidant MitoQ prevents loss of spatial memory retention and early neuropathology in a transgenic mouse model of Alzheimer’s disease. J Neurosci. 2011;31(44):15703–15.PubMedPubMedCentralCrossRef
136.
go back to reference Haidar MA, Shakkour Z, Barsa C, Tabet M, Mekhjian S, Darwish H, et al. Mitoquinone helps combat the neurological, cognitive, and molecular consequences of open head traumatic brain injury at chronic time point. Biomedicines. 2022;10(2):250.PubMedPubMedCentralCrossRef Haidar MA, Shakkour Z, Barsa C, Tabet M, Mekhjian S, Darwish H, et al. Mitoquinone helps combat the neurological, cognitive, and molecular consequences of open head traumatic brain injury at chronic time point. Biomedicines. 2022;10(2):250.PubMedPubMedCentralCrossRef
137.
go back to reference Tabet M, El-Kurdi M, Haidar MA, Nasrallah L, Reslan MA, Shear D, et al. Mitoquinone supplementation alleviates oxidative stress and pathologic outcomes following repetitive mild traumatic brain injury at a chronic time point. Exp Neurol. 2022;351: 113987.PubMedCrossRef Tabet M, El-Kurdi M, Haidar MA, Nasrallah L, Reslan MA, Shear D, et al. Mitoquinone supplementation alleviates oxidative stress and pathologic outcomes following repetitive mild traumatic brain injury at a chronic time point. Exp Neurol. 2022;351: 113987.PubMedCrossRef
138.
go back to reference Rossman MJ, Santos-Parker JR, Steward CA, Bispham NZ, Cuevas LM, Rosenberg HL, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension. 2018;71(6):1056–63.PubMedCrossRef Rossman MJ, Santos-Parker JR, Steward CA, Bispham NZ, Cuevas LM, Rosenberg HL, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension. 2018;71(6):1056–63.PubMedCrossRef
139.
go back to reference Speck RM, Foster JJ, Mulhern VA, Burke SV, Sullivan PG, Fleisher LA. Development of a professionalism committee approach to address unprofessional medical staff behavior at an academic medical center. Joint Comm J Quality Patient Safety. 2014;40(4):161–7.CrossRef Speck RM, Foster JJ, Mulhern VA, Burke SV, Sullivan PG, Fleisher LA. Development of a professionalism committee approach to address unprofessional medical staff behavior at an academic medical center. Joint Comm J Quality Patient Safety. 2014;40(4):161–7.CrossRef
140.
go back to reference Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39(3):283–99.PubMedPubMedCentralCrossRef Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39(3):283–99.PubMedPubMedCentralCrossRef
141.
go back to reference Zhu Y-G, Chen X-C, Chen Z-Z, Zeng Y-Q, Shi G-B, Su Y-H, et al. Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons. Acta Pharmacol Sin. 2004;25:1606–12.PubMed Zhu Y-G, Chen X-C, Chen Z-Z, Zeng Y-Q, Shi G-B, Su Y-H, et al. Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons. Acta Pharmacol Sin. 2004;25:1606–12.PubMed
142.
go back to reference Sorrenti V, Contarini G, Sut S, Dall’Acqua S, Confortin F, Pagetta A, et al. Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice. Front Pharmacol. 2018;9:183.PubMedPubMedCentralCrossRef Sorrenti V, Contarini G, Sut S, Dall’Acqua S, Confortin F, Pagetta A, et al. Curcumin prevents acute neuroinflammation and long-term memory impairment induced by systemic lipopolysaccharide in mice. Front Pharmacol. 2018;9:183.PubMedPubMedCentralCrossRef
143.
go back to reference Ishrat T, Hoda MN, Khan MB, Yousuf S, Ahmad M, Khan MM, et al. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol. 2009;19(9):636–47.PubMedCrossRef Ishrat T, Hoda MN, Khan MB, Yousuf S, Ahmad M, Khan MM, et al. Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT). Eur Neuropsychopharmacol. 2009;19(9):636–47.PubMedCrossRef
144.
go back to reference Institute NC. Clinical development plan: curcumin. J Cell Biochem. 1996;26:72–85. Institute NC. Clinical development plan: curcumin. J Cell Biochem. 1996;26:72–85.
145.
go back to reference Shi Z, Qiu W, Xiao G, Cheng J, Zhang N. Resveratrol attenuates cognitive deficits of traumatic brain injury by activating p38 signaling in the brain. Med Sci Monit. 2018;24:1097–103.PubMedPubMedCentralCrossRef Shi Z, Qiu W, Xiao G, Cheng J, Zhang N. Resveratrol attenuates cognitive deficits of traumatic brain injury by activating p38 signaling in the brain. Med Sci Monit. 2018;24:1097–103.PubMedPubMedCentralCrossRef
146.
go back to reference Liu J, He J, Huang Y, Hu Z. Resveratrol has an overall neuroprotective role in ischemic stroke: a meta-analysis in rodents. Front Pharmacol. 2021;12: 795409.PubMedPubMedCentralCrossRef Liu J, He J, Huang Y, Hu Z. Resveratrol has an overall neuroprotective role in ischemic stroke: a meta-analysis in rodents. Front Pharmacol. 2021;12: 795409.PubMedPubMedCentralCrossRef
147.
148.
go back to reference Yiu EM, Tai G, Peverill RE, Lee KJ, Croft KD, Mori TA, et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol. 2015;262(5):1344–53.PubMedCrossRef Yiu EM, Tai G, Peverill RE, Lee KJ, Croft KD, Mori TA, et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol. 2015;262(5):1344–53.PubMedCrossRef
149.
go back to reference Almeida L, Vaz-da-Silva M, Falcão A, Soares E, Costa R, Loureiro AI, et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res. 2009;53(Suppl 1):S7-15.PubMed Almeida L, Vaz-da-Silva M, Falcão A, Soares E, Costa R, Loureiro AI, et al. Pharmacokinetic and safety profile of trans-resveratrol in a rising multiple-dose study in healthy volunteers. Mol Nutr Food Res. 2009;53(Suppl 1):S7-15.PubMed
150.
go back to reference Arbo BD, André-Miral C, Nasre-Nasser RG, Schimith LE, Santos MG, Costa-Silva D, et al. Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front Aging Neurosci. 2020;12:103.PubMedPubMedCentralCrossRef Arbo BD, André-Miral C, Nasre-Nasser RG, Schimith LE, Santos MG, Costa-Silva D, et al. Resveratrol derivatives as potential treatments for Alzheimer’s and Parkinson’s disease. Front Aging Neurosci. 2020;12:103.PubMedPubMedCentralCrossRef
151.
go back to reference Trotta V, Pavan B, Ferraro L, Beggiato S, Traini D, Des Reis LG, et al. Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles. Eur J Pharm Biopharm. 2018;127:250–9.PubMedCrossRef Trotta V, Pavan B, Ferraro L, Beggiato S, Traini D, Des Reis LG, et al. Brain targeting of resveratrol by nasal administration of chitosan-coated lipid microparticles. Eur J Pharm Biopharm. 2018;127:250–9.PubMedCrossRef
152.
go back to reference Marx D, Williams G, Birkhoff M. Intranasal drug administration—an attractive delivery route for some drugs drug discovery and development-from molecules to medicine. IntechOpen. 2015;3:299. Marx D, Williams G, Birkhoff M. Intranasal drug administration—an attractive delivery route for some drugs drug discovery and development-from molecules to medicine. IntechOpen. 2015;3:299.
153.
go back to reference Shamsher E, Sulaimankutty R, Dine K, Luong V, Davis B, Willett K, et al. Intranasal delivery of resveratrol nanoparticles reduces retinal ganglion cell loss in a model of multiple sclerosis. Investig Ophthalmol Vis Sci. 2020;61(7):2476. Shamsher E, Sulaimankutty R, Dine K, Luong V, Davis B, Willett K, et al. Intranasal delivery of resveratrol nanoparticles reduces retinal ganglion cell loss in a model of multiple sclerosis. Investig Ophthalmol Vis Sci. 2020;61(7):2476.
154.
go back to reference Bao H-j, Qiu H-y, Kuai J-x, Song C-j, Wang S-x, Wang C-q, et al. Apelin-13 as a novel target for intervention in secondary injury after traumatic brain injury. Neural Regen Res. 2016;11(7):1128.PubMedPubMedCentralCrossRef Bao H-j, Qiu H-y, Kuai J-x, Song C-j, Wang S-x, Wang C-q, et al. Apelin-13 as a novel target for intervention in secondary injury after traumatic brain injury. Neural Regen Res. 2016;11(7):1128.PubMedPubMedCentralCrossRef
155.
go back to reference Chen D, Lee J, Gu X, Wei L, Yu SP. Intranasal delivery of apelin-13 is neuroprotective and promotes angiogenesis after ischemic stroke in mice. ASN Neuro. 2015;7(5):1759091415605114.PubMedPubMedCentralCrossRef Chen D, Lee J, Gu X, Wei L, Yu SP. Intranasal delivery of apelin-13 is neuroprotective and promotes angiogenesis after ischemic stroke in mice. ASN Neuro. 2015;7(5):1759091415605114.PubMedPubMedCentralCrossRef
156.
go back to reference de Oliveira MR. Evidence for genistein as a mitochondriotropic molecule. Mitochondrion. 2016;29:35–44.PubMedCrossRef de Oliveira MR. Evidence for genistein as a mitochondriotropic molecule. Mitochondrion. 2016;29:35–44.PubMedCrossRef
157.
go back to reference Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Abdur Rub R, et al. Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif Cells Nanomed Biotechnol. 2018;46(4):717–29.PubMedCrossRef Ahmad N, Ahmad R, Naqvi AA, Alam MA, Ashafaq M, Abdur Rub R, et al. Intranasal delivery of quercetin-loaded mucoadhesive nanoemulsion for treatment of cerebral ischaemia. Artif Cells Nanomed Biotechnol. 2018;46(4):717–29.PubMedCrossRef
158.
go back to reference Lin ZH, Liu Y, Xue NJ, Zheng R, Yan YQ, Wang ZX, et al. Quercetin protects against MPP(+)/MPTP-induced dopaminergic neuron death in Parkinson’s disease by inhibiting ferroptosis. Oxid Med Cell Longev. 2022;2022:7769355.PubMedPubMedCentralCrossRef Lin ZH, Liu Y, Xue NJ, Zheng R, Yan YQ, Wang ZX, et al. Quercetin protects against MPP(+)/MPTP-induced dopaminergic neuron death in Parkinson’s disease by inhibiting ferroptosis. Oxid Med Cell Longev. 2022;2022:7769355.PubMedPubMedCentralCrossRef
159.
go back to reference Ghaffari F, Hajizadeh Moghaddam A, Zare M. Neuroprotective effect of quercetin nanocrystal in a 6-hydroxydopamine model of parkinson disease: biochemical and behavioral evidence. Basic Clin Neurosci. 2018;9(5):317–24.PubMedPubMedCentralCrossRef Ghaffari F, Hajizadeh Moghaddam A, Zare M. Neuroprotective effect of quercetin nanocrystal in a 6-hydroxydopamine model of parkinson disease: biochemical and behavioral evidence. Basic Clin Neurosci. 2018;9(5):317–24.PubMedPubMedCentralCrossRef
160.
go back to reference Park DJ, Kang JB, Shah FA, Koh PO. Quercetin attenuates the reduction of parvalbumin in middle cerebral artery occlusion animal model. Lab Anim Res. 2021;37(1):9.PubMedPubMedCentralCrossRef Park DJ, Kang JB, Shah FA, Koh PO. Quercetin attenuates the reduction of parvalbumin in middle cerebral artery occlusion animal model. Lab Anim Res. 2021;37(1):9.PubMedPubMedCentralCrossRef
161.
go back to reference Papakyriakopoulou P, Manta K, Kostantini C, Kikionis S, Banella S, Ioannou E, et al. Nasal powders of quercetin-β-cyclodextrin derivatives complexes with mannitol/lecithin microparticles for nose-to-brain delivery: in vitro and ex vivo evaluation. Int J Pharm. 2021;607: 121016.PubMedCrossRef Papakyriakopoulou P, Manta K, Kostantini C, Kikionis S, Banella S, Ioannou E, et al. Nasal powders of quercetin-β-cyclodextrin derivatives complexes with mannitol/lecithin microparticles for nose-to-brain delivery: in vitro and ex vivo evaluation. Int J Pharm. 2021;607: 121016.PubMedCrossRef
162.
go back to reference Chen J, Wang J, Wei L, Zhang JH. Therapeutic intranasal delivery for stroke and neurological disorders. Cham: Springer; 2019.CrossRef Chen J, Wang J, Wei L, Zhang JH. Therapeutic intranasal delivery for stroke and neurological disorders. Cham: Springer; 2019.CrossRef
163.
go back to reference Wang S, Ma F, Huang L, Zhang Y, Peng Y, Xing C, et al. Dl-3-n-butylphthalide (NBP): a promising therapeutic agent for ischemic stroke. CNS Neurol Disord Drug Targets. 2018;17(5):338–47.PubMedCrossRef Wang S, Ma F, Huang L, Zhang Y, Peng Y, Xing C, et al. Dl-3-n-butylphthalide (NBP): a promising therapeutic agent for ischemic stroke. CNS Neurol Disord Drug Targets. 2018;17(5):338–47.PubMedCrossRef
164.
go back to reference Qu M, Zhao J, Zhao Y, Sun J, Liu L, Wei L, et al. Vascular protection and regenerative effects of intranasal DL-3-N-butylphthalide treatment after ischaemic stroke in mice. Stroke Vasc Neurol. 2021;6(1):74–9.PubMedCrossRef Qu M, Zhao J, Zhao Y, Sun J, Liu L, Wei L, et al. Vascular protection and regenerative effects of intranasal DL-3-N-butylphthalide treatment after ischaemic stroke in mice. Stroke Vasc Neurol. 2021;6(1):74–9.PubMedCrossRef
165.
go back to reference Deutsch J, Rapoport SI, Rosenberger TA. Coenzyme A and short-chain acyl-CoA species in control and ischemic rat brain. Neurochem Res. 2002;27(12):1577–82.PubMedCrossRef Deutsch J, Rapoport SI, Rosenberger TA. Coenzyme A and short-chain acyl-CoA species in control and ischemic rat brain. Neurochem Res. 2002;27(12):1577–82.PubMedCrossRef
166.
go back to reference Mathew R, Arun P, Madhavarao CN, Moffett JR, Namboodiri MA. Progress toward acetate supplementation therapy for Canavan disease: glyceryl triacetate administration increases acetate, but not N-acetylaspartate, levels in brain. J Pharmacol Exp Ther. 2005;315(1):297–303.PubMedCrossRef Mathew R, Arun P, Madhavarao CN, Moffett JR, Namboodiri MA. Progress toward acetate supplementation therapy for Canavan disease: glyceryl triacetate administration increases acetate, but not N-acetylaspartate, levels in brain. J Pharmacol Exp Ther. 2005;315(1):297–303.PubMedCrossRef
167.
go back to reference Tefera TW, Wong Y, Barkl-Luke ME, Ngo ST, Thomas NK, McDonald TS, et al. Triheptanoin protects motor neurons and delays the onset of motor symptoms in a mouse model of amyotrophic lateral sclerosis. PLoS ONE. 2016;11(8): e0161816.PubMedPubMedCentralCrossRef Tefera TW, Wong Y, Barkl-Luke ME, Ngo ST, Thomas NK, McDonald TS, et al. Triheptanoin protects motor neurons and delays the onset of motor symptoms in a mouse model of amyotrophic lateral sclerosis. PLoS ONE. 2016;11(8): e0161816.PubMedPubMedCentralCrossRef
168.
go back to reference Mochel F. Triheptanoin for the treatment of brain energy deficit: a 14-year experience. J Neurosci Res. 2017;95(11):2236–43.PubMedCrossRef Mochel F. Triheptanoin for the treatment of brain energy deficit: a 14-year experience. J Neurosci Res. 2017;95(11):2236–43.PubMedCrossRef
169.
go back to reference Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, et al. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. Am J Physiol Endocrinol Metab. 2006;291(4):E860–6.PubMedCrossRef Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, et al. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. Am J Physiol Endocrinol Metab. 2006;291(4):E860–6.PubMedCrossRef
170.
go back to reference Schiffmann R, Mochel F. Triheptanoin diet for adult polyglucosan body disease (apbd) treatment. Google Patents; 2011. Schiffmann R, Mochel F. Triheptanoin diet for adult polyglucosan body disease (apbd) treatment. Google Patents; 2011.
171.
go back to reference Matern D, Gavrilov DK. Fatty Acid Oxidation Disorders and Epilepsy. Inherited Metabolic Epilepsies. 2012. Matern D, Gavrilov DK. Fatty Acid Oxidation Disorders and Epilepsy. Inherited Metabolic Epilepsies. 2012.
172.
go back to reference Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279(49):50754–63.PubMedCrossRef Revollo JR, Grimm AA, Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem. 2004;279(49):50754–63.PubMedCrossRef
173.
go back to reference Diniz YS, Rocha KK, Souza GA, Galhardi CM, Ebaid GM, Rodrigues HG, et al. Effects of N-acetylcysteine on sucrose-rich diet-induced hyperglycaemia, dyslipidemia and oxidative stress in rats. Eur J Pharmacol. 2006;543(1–3):151–7.PubMedCrossRef Diniz YS, Rocha KK, Souza GA, Galhardi CM, Ebaid GM, Rodrigues HG, et al. Effects of N-acetylcysteine on sucrose-rich diet-induced hyperglycaemia, dyslipidemia and oxidative stress in rats. Eur J Pharmacol. 2006;543(1–3):151–7.PubMedCrossRef
174.
go back to reference Naoi M, Wu Y, Shamoto-Nagai M, Maruyama W. Mitochondria in neuroprotection by phytochemicals: bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int J Mol Sci. 2019;20(10):2451.PubMedPubMedCentralCrossRef Naoi M, Wu Y, Shamoto-Nagai M, Maruyama W. Mitochondria in neuroprotection by phytochemicals: bioactive polyphenols modulate mitochondrial apoptosis system, function and structure. Int J Mol Sci. 2019;20(10):2451.PubMedPubMedCentralCrossRef
175.
go back to reference Nicolescu A, Babotă M, Barros L, Rocchetti G, Lucini L, Tanase C, et al. Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Front Nutr. 2023;10:1184535.PubMedPubMedCentralCrossRef Nicolescu A, Babotă M, Barros L, Rocchetti G, Lucini L, Tanase C, et al. Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Front Nutr. 2023;10:1184535.PubMedPubMedCentralCrossRef
176.
go back to reference Md S, Alhakamy NA, Aldawsari HM, Asfour HZ. Neuroprotective and antioxidant effect of naringenin-loaded nanoparticles for nose-to-brain delivery. Brain Sci. 2019;9(10):275.PubMedPubMedCentralCrossRef Md S, Alhakamy NA, Aldawsari HM, Asfour HZ. Neuroprotective and antioxidant effect of naringenin-loaded nanoparticles for nose-to-brain delivery. Brain Sci. 2019;9(10):275.PubMedPubMedCentralCrossRef
177.
go back to reference Colombo M, Figueiró F, de Fraga DA, Teixeira HF, Battastini AMO, Koester LS. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. Int J Pharm. 2018;543(1–2):214–23.PubMedCrossRef Colombo M, Figueiró F, de Fraga DA, Teixeira HF, Battastini AMO, Koester LS. Kaempferol-loaded mucoadhesive nanoemulsion for intranasal administration reduces glioma growth in vitro. Int J Pharm. 2018;543(1–2):214–23.PubMedCrossRef
178.
go back to reference Ahmad N, Ahmad R, Alam MA, Samim M, Iqbal Z, Ahmad FJ. Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int J Biol Macromol. 2016;88:320–32.PubMedCrossRef Ahmad N, Ahmad R, Alam MA, Samim M, Iqbal Z, Ahmad FJ. Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia. Int J Biol Macromol. 2016;88:320–32.PubMedCrossRef
179.
181.
go back to reference Prasuhn J, Davis RL, Kumar KR. Targeting mitochondrial impairment in Parkinson’s disease: challenges and opportunities. Front Cell Dev Biol. 2020;8: 615461.PubMedCrossRef Prasuhn J, Davis RL, Kumar KR. Targeting mitochondrial impairment in Parkinson’s disease: challenges and opportunities. Front Cell Dev Biol. 2020;8: 615461.PubMedCrossRef
182.
go back to reference Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–70.PubMedCrossRef Erdő F, Bors LA, Farkas D, Bajza Á, Gizurarson S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res Bull. 2018;143:155–70.PubMedCrossRef
183.
go back to reference Tamai I, Tsuji AJA. Drug delivery through the blood-brain barrier. Front Cell Dev Biol. 1996;19(3):401–24. Tamai I, Tsuji AJA. Drug delivery through the blood-brain barrier. Front Cell Dev Biol. 1996;19(3):401–24.
184.
go back to reference Black IH, McManus J. Pain management in current combat operations. Prehosp Emerg Care. 2009;13(2):223–7.PubMedCrossRef Black IH, McManus J. Pain management in current combat operations. Prehosp Emerg Care. 2009;13(2):223–7.PubMedCrossRef
185.
go back to reference Christensen K, Rogers E, Green GA, Hamilton DA, Mermelstein F, Liao E, et al. Safety and efficacy of intranasal ketamine for acute postoperative pain. Acute Pain. 2007;9(4):183–92.CrossRef Christensen K, Rogers E, Green GA, Hamilton DA, Mermelstein F, Liao E, et al. Safety and efficacy of intranasal ketamine for acute postoperative pain. Acute Pain. 2007;9(4):183–92.CrossRef
186.
go back to reference Mattarei A, Biasutto L, Marotta E, De Marchi U, Sassi N, Garbisa S, et al. A mitochondriotropic derivative of quercetin: a strategy to increase the effectiveness of polyphenols. ChemBioChem. 2008;9(16):2633–42.PubMedCrossRef Mattarei A, Biasutto L, Marotta E, De Marchi U, Sassi N, Garbisa S, et al. A mitochondriotropic derivative of quercetin: a strategy to increase the effectiveness of polyphenols. ChemBioChem. 2008;9(16):2633–42.PubMedCrossRef
187.
go back to reference Sharma A, Liaw K, Sharma R, Zhang Z, Kannan S, Kannan RM. Targeting mitochondrial dysfunction and oxidative stress in activated microglia using dendrimer-based therapeutics. Theranostics. 2018;8(20):5529–47.PubMedPubMedCentralCrossRef Sharma A, Liaw K, Sharma R, Zhang Z, Kannan S, Kannan RM. Targeting mitochondrial dysfunction and oxidative stress in activated microglia using dendrimer-based therapeutics. Theranostics. 2018;8(20):5529–47.PubMedPubMedCentralCrossRef
188.
go back to reference Hasan W, Kori RK, Thakre K, Yadav RS, Jat D. Synthesis, characterization and efficacy of mitochondrial targeted delivery of TPP-curcumin in rotenone-induced toxicity. Daru. 2019;27(2):557–70.PubMedPubMedCentralCrossRef Hasan W, Kori RK, Thakre K, Yadav RS, Jat D. Synthesis, characterization and efficacy of mitochondrial targeted delivery of TPP-curcumin in rotenone-induced toxicity. Daru. 2019;27(2):557–70.PubMedPubMedCentralCrossRef
190.
go back to reference Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288–311.PubMedCrossRef Pires A, Fortuna A, Alves G, Falcão A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3):288–311.PubMedCrossRef
191.
go back to reference Wolfe TR, Braude DA. Intranasal medication delivery for children: a brief review and update. Pediatrics. 2010;126(3):532–7.PubMedCrossRef Wolfe TR, Braude DA. Intranasal medication delivery for children: a brief review and update. Pediatrics. 2010;126(3):532–7.PubMedCrossRef
192.
go back to reference Chien YW, Chang SF. Intranasal drug delivery for systemic medications. Crit Rev Ther Drug Carrier Syst. 1987;4(2):67–194.MathSciNetPubMed Chien YW, Chang SF. Intranasal drug delivery for systemic medications. Crit Rev Ther Drug Carrier Syst. 1987;4(2):67–194.MathSciNetPubMed
193.
go back to reference Turner PV, Brabb T, Pekow C, Vasbinder MA. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011;50(5):600–13.PubMedPubMedCentral Turner PV, Brabb T, Pekow C, Vasbinder MA. Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci. 2011;50(5):600–13.PubMedPubMedCentral
194.
go back to reference Veronesi MC, Alhamami M, Miedema SB, Yun Y, Ruiz-Cardozo M, Vannier MW. Imaging of intranasal drug delivery to the brain. Am J Nucl Med Mol Imaging. 2020;10(1):1–31.PubMedPubMedCentral Veronesi MC, Alhamami M, Miedema SB, Yun Y, Ruiz-Cardozo M, Vannier MW. Imaging of intranasal drug delivery to the brain. Am J Nucl Med Mol Imaging. 2020;10(1):1–31.PubMedPubMedCentral
195.
go back to reference Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F-H, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research. 2019;23(1):1–29.CrossRef Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F-H, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research. 2019;23(1):1–29.CrossRef
196.
go back to reference Rajput A, Pingale P, Dhapte-Pawar V. Nasal delivery of neurotherapeutics via nanocarriers: facets, aspects, and prospects. Front Pharmacol. 2022;13: 979682.PubMedPubMedCentralCrossRef Rajput A, Pingale P, Dhapte-Pawar V. Nasal delivery of neurotherapeutics via nanocarriers: facets, aspects, and prospects. Front Pharmacol. 2022;13: 979682.PubMedPubMedCentralCrossRef
197.
go back to reference Wang D, Ren Y, Shao Y, Yu D, Meng L. Facile preparation of doxorubicin-loaded and folic acid-conjugated carbon nanotubes@Poly(N-vinyl pyrrole) for targeted synergistic chemo-photothermal cancer treatment. Bioconjug Chem. 2017;28(11):2815–22.PubMedCrossRef Wang D, Ren Y, Shao Y, Yu D, Meng L. Facile preparation of doxorubicin-loaded and folic acid-conjugated carbon nanotubes@Poly(N-vinyl pyrrole) for targeted synergistic chemo-photothermal cancer treatment. Bioconjug Chem. 2017;28(11):2815–22.PubMedCrossRef
198.
go back to reference Soligo M, Felsani FM, Da Ros T, Bosi S, Pellizzoni E, Bruni S, et al. Distribution in the brain and possible neuroprotective effects of intranasally delivered multi-walled carbon nanotubes. Nanoscale Adv. 2021;3(2):418–31.PubMedCrossRefADS Soligo M, Felsani FM, Da Ros T, Bosi S, Pellizzoni E, Bruni S, et al. Distribution in the brain and possible neuroprotective effects of intranasally delivered multi-walled carbon nanotubes. Nanoscale Adv. 2021;3(2):418–31.PubMedCrossRefADS
200.
go back to reference Bardi G, Nunes A, Gherardini L, Bates K, Al-Jamal KT, Gaillard C, et al. Functionalized carbon nanotubes in the brain: cellular internalization and neuroinflammatory responses. PLoS ONE. 2013;8(11): e80964.PubMedPubMedCentralCrossRefADS Bardi G, Nunes A, Gherardini L, Bates K, Al-Jamal KT, Gaillard C, et al. Functionalized carbon nanotubes in the brain: cellular internalization and neuroinflammatory responses. PLoS ONE. 2013;8(11): e80964.PubMedPubMedCentralCrossRefADS
201.
go back to reference McCully JD, Cowan DB, Emani SM, Pedro J. Mitochondrial transplantation: from animal models to clinical use in humans. Mitochondrion. 2017;34:127–34.PubMedCrossRef McCully JD, Cowan DB, Emani SM, Pedro J. Mitochondrial transplantation: from animal models to clinical use in humans. Mitochondrion. 2017;34:127–34.PubMedCrossRef
202.
go back to reference Shami GJ, Cheng D, Verhaegh P, Koek G, Wisse E, Braet F. Three-dimensional ultrastructure of giant mitochondria in human non-alcoholic fatty liver disease. Sci Rep. 2021;11(1):1–14.CrossRefADS Shami GJ, Cheng D, Verhaegh P, Koek G, Wisse E, Braet F. Three-dimensional ultrastructure of giant mitochondria in human non-alcoholic fatty liver disease. Sci Rep. 2021;11(1):1–14.CrossRefADS
203.
go back to reference Alexander JF, Seua AV, Arroyo LD, Ray PR, Wangzhou A, Heiβ-Lückemann L, et al. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics. 2021;11(7):3109–30.PubMedPubMedCentralCrossRef Alexander JF, Seua AV, Arroyo LD, Ray PR, Wangzhou A, Heiβ-Lückemann L, et al. Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics. 2021;11(7):3109–30.PubMedPubMedCentralCrossRef
204.
go back to reference Liu CS, Chang JC, Kuo SJ, Liu KH, Lin TT, Cheng WL, et al. Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol. 2014;53:141–6.PubMedCrossRef Liu CS, Chang JC, Kuo SJ, Liu KH, Lin TT, Cheng WL, et al. Delivering healthy mitochondria for the therapy of mitochondrial diseases and beyond. Int J Biochem Cell Biol. 2014;53:141–6.PubMedCrossRef
205.
go back to reference McCully JD, Cowan DB, Pacak CA, Toumpoulis IK, Dayalan H, Levitsky S. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol. 2009;296(1):H94-h105.PubMedCrossRef McCully JD, Cowan DB, Pacak CA, Toumpoulis IK, Dayalan H, Levitsky S. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol. 2009;296(1):H94-h105.PubMedCrossRef
206.
go back to reference Quintana DS, Guastella AJ, Westlye LT, Andreassen OA. The promise and pitfalls of intranasally administering psychopharmacological agents for the treatment of psychiatric disorders. Mol Psychiatry. 2016;21(1):29–38.PubMedCrossRef Quintana DS, Guastella AJ, Westlye LT, Andreassen OA. The promise and pitfalls of intranasally administering psychopharmacological agents for the treatment of psychiatric disorders. Mol Psychiatry. 2016;21(1):29–38.PubMedCrossRef
Metadata
Title
Intranasal delivery of mitochondria targeted neuroprotective compounds for traumatic brain injury: screening based on pharmacological and physiological properties
Authors
Jignesh D. Pandya
Sudeep Musyaju
Hiren R. Modi
Starlyn L. Okada-Rising
Zachary S. Bailey
Anke H. Scultetus
Deborah A. Shear
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-024-04908-2

Other articles of this Issue 1/2024

Journal of Translational Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine