Skip to main content
Top
Published in: CNS Drugs 7/2013

Open Access 01-07-2013 | Leading Article

Intranasal Insulin as a Treatment for Alzheimer’s Disease: A Review of Basic Research and Clinical Evidence

Authors: Jessica Freiherr, Manfred Hallschmid, William H. Frey II, Yvonne F. Brünner, Colin D. Chapman, Christian Hölscher, Suzanne Craft, Fernanda G. De Felice, Christian Benedict

Published in: CNS Drugs | Issue 7/2013

Login to get access

Abstract

Research in animals and humans has associated Alzheimer’s disease (AD) with decreased cerebrospinal fluid levels of insulin in combination with decreased insulin sensitivity (insulin resistance) in the brain. This phenomenon is accompanied by attenuated receptor expression of insulin and insulin-like growth factor, enhanced serine phosphorylation of insulin receptor substrate-1, and impaired transport of insulin across the blood-brain barrier. Moreover, clinical trials have demonstrated that intranasal insulin improves both memory performance and metabolic integrity of the brain in patients suffering from AD or its prodrome, mild cognitive impairment. These results, in conjunction with the finding that insulin mitigates hippocampal synapse vulnerability to beta amyloid, a peptide thought to be causative in the development of AD, provide a strong rationale for hypothesizing that pharmacological strategies bolstering brain insulin signaling, such as intranasal administration of insulin, could have significant potential in the treatment and prevention of AD. With this view in mind, the review at hand will present molecular mechanisms potentially underlying the memory-enhancing and neuroprotective effects of intranasal insulin. Then, we will discuss the results of intranasal insulin studies that have demonstrated that enhancing brain insulin signaling improves memory and learning processes in both cognitively healthy and impaired humans. Finally, we will provide an overview of neuroimaging studies indicating that disturbances in insulin metabolism—such as insulin resistance in obesity, type 2 diabetes and AD—and altered brain responses to insulin are linked to decreased cerebral volume and especially to hippocampal atrophy.

Literature
  1. Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280–92. doi:10.​1016/​j.​jalz.​2011.​03.​003.PubMedView Article
  2. Sosa-Ortiz AL, Acosta-Castillo I, Prince MJ. Epidemiology of dementias and Alzheimer’s disease. Arch Med Res. 2012;43(8):600–8. doi:10.​1016/​j.​arcmed.​2012.​11.​003.PubMedView Article
  3. Alzheimer’s Association. Alzheimer’s disease facts and figures. 2012; http://​www.​alz.​org.
  4. 2012 Alzheimer’s disease facts and figures. Alzheimers Dement. 2012;8(2):131–68. doi:10.​1016/​j.​jalz.​2012.​02.​001. http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22404854
  5. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, et al. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112–7. doi:10.​1016/​S0140-6736(05)67889-0.PubMedView Article
  6. Holscher C, Li L. New roles for insulin-like hormones in neuronal signalling and protection: new hopes for novel treatments of Alzheimer’s disease? Neurobiol Aging. 2010;31(9):1495–502. doi:10.​1016/​j.​neurobiolaging.​2008.​08.​023.PubMedView Article
  7. de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res. 2012;9(1):35–66.PubMedView Article
  8. Watson GS, Craft S. The role of insulin resistance in the pathogenesis of Alzheimer’s disease: implications for treatment. CNS Drugs. 2003;17(1):27–45.PubMedView Article
  9. Rivera EJ, Goldin A, Fulmer N, Tavares R, Wands JR, de la Monte SM. Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer’s disease: link to brain reductions in acetylcholine. J Alzheimer’s Dis. 2005;8(3):247–68.
  10. Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A, et al. Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Invest. 2012;122(4):1316–38. doi:10.​1172/​JCI59903.PubMedView Article
  11. Steen E, Terry BM, Rivera EJ, Cannon JL, Neely TR, Tavares R, et al. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease—is this type 3 diabetes? J Alzheimer’s Dis. 2005;7(1):63–80.
  12. Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr. Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology. 1998;50(1):164–8.PubMedView Article
  13. Molina JA, Jimenez-Jimenez FJ, Vargas C, Gomez P, de Bustos F, Gomez-Escalonilla C, et al. Cerebrospinal fluid levels of insulin in patients with Alzheimer’s disease. Acta Neurol Scand. 2002;106(6):347–50.PubMedView Article
  14. Fujisawa Y, Sasaki K, Akiyama K. Increased insulin levels after OGTT load in peripheral blood and cerebrospinal fluid of patients with dementia of Alzheimer type. Biol Psychiatry. 1991;30(12):1219–28.PubMedView Article
  15. Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, et al. Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm. 1998;105(4–5):423–38.PubMedView Article
  16. Benedict C, Hallschmid M, Hatke A, Schultes B, Fehm HL, Born J, et al. Intranasal insulin improves memory in humans. Psychoneuroendocrinology. 2004;29(10):1326–34. doi:10.​1016/​j.​psyneuen.​2004.​04.​003S030645300400​0526.PubMedView Article
  17. Benedict C, Hallschmid M, Schultes B, Born J, Kern W. Intranasal insulin to improve memory function in humans. Neuroendocrinology. 2007;86(2):136–42. doi:10.​1159/​000106378.PubMedView Article
  18. Benedict C, Kern W, Schultes B, Born J, Hallschmid M. Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab. 2008;93(4):1339–44. doi:10.​1210/​jc.​2007-2606.PubMedView Article
  19. Holscher C. Diabetes as a risk factor for Alzheimer’s disease: insulin signalling impairment in the brain as an alternative model of Alzheimer’s disease. Biochem Soc Trans. 2011;39(4):891–7. doi:10.​1042/​BST0390891.PubMedView Article
  20. De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, et al. Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of Abeta oligomers. Proc Natl Acad Sci USA. 2009;106(6):1971–6. doi:10.​1073/​pnas.​0809158106.PubMedView Article
  21. Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96. doi:10.​1016/​j.​neuroscience.​2004.​05.​029.PubMedView Article
  22. Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514–6. doi:10.​1038/​nn849.PubMedView Article
  23. Wadman M. US government sets out Alzheimer’s plan. Nature. 2012;485(7399):426–7. doi:10.​1038/​485426a.PubMedView Article
  24. Eichenbaum H. The hippocampus and mechanisms of declarative memory. Behav Brain Res. 1999;103(2):123–33.PubMedView Article
  25. Benedict C, Hallschmid M, Schmitz K, Schultes B, Ratter F, Fehm HL, et al. Intranasal insulin improves memory in humans: superiority of insulin aspart. Neuropsychopharmacology. 2007;32(1):239–43. doi:10.​1038/​sj.​npp.​1301193.PubMedView Article
  26. Krug R, Benedict C, Born J, Hallschmid M. Comparable sensitivity of postmenopausal and young women to the effects of intranasal insulin on food intake and working memory. J Clin Endocrinol Metab. 2010;95(12):E468–72. doi:10.​1210/​jc.​2010-0744.PubMedView Article
  27. Miller EK. The prefrontal cortex: complex neural properties for complex behavior. Neuron. 1999;22(1):15–7.PubMedView Article
  28. Reger MA, Watson GS, Frey WH 2nd, Baker LD, Cholerton B, Keeling ML, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451–8. doi:10.​1016/​j.​neurobiolaging.​2005.​03.​016.PubMedView Article
  29. Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dose-dependently modulates verbal memory and plasma amyloid-beta in memory-impaired older adults. J Alzheimer’s Dis. 2008;13(3):323–31.
  30. Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, et al. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2008;70(6):440–8. doi:10.​1212/​01.​WNL.​0000265401.​62434.​36.PubMedView Article
  31. Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A, et al. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol. 2012;69(1):29–38. doi:10.​1001/​archneurol.​2011.​233.PubMedView Article
  32. Schioth HB, Frey WH, Brooks SJ, Benedict C. Insulin to treat Alzheimer’s disease: just follow your nose? Expert Rev Clin Pharmacol. 2012;5(1):17–20. doi:10.​1586/​ecp.​11.​70.PubMedView Article
  33. Nickl-Jockschat T, Kleiman A, Schulz JB, Schneider F, Laird AR, Fox PT, et al. Neuroanatomic changes and their association with cognitive decline in mild cognitive impairment: a meta-analysis. Brain Struct Funct. 2012;217(1):115–25. doi:10.​1007/​s00429-011-0333-x.PubMedView Article
  34. Schroeter ML, Stein T, Maslowski N, Neumann J. Neural correlates of Alzheimer’s disease and mild cognitive impairment: a systematic and quantitative meta-analysis involving 1351 patients. Neuroimage. 2009;47(4):1196–206. doi:10.​1016/​j.​neuroimage.​2009.​05.​037.PubMedView Article
  35. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV. Neurostructural predictors of Alzheimer’s disease: a meta-analysis of VBM studies. Neurobiol Aging. 2011;32(10):1733–41. doi:10.​1016/​j.​neurobiolaging.​2009.​11.​008.PubMedView Article
  36. Shemesh E, Rudich A, Harman-Boehm I, Cukierman-Yaffe T. Effect of intranasal insulin on cognitive function: a systematic review. J Clin Endocrinol Metab. 2012;97(2):366–76. doi:10.​1210/​jc.​2011-1802.PubMedView Article
  37. Benedict C, Brooks SJ, Kullberg J, Burgos J, Kempton MJ, Nordenskjold R, et al. Impaired insulin sensitivity as indexed by the HOMA score is associated with deficits in verbal fluency and temporal lobe gray matter volume in the elderly. Diabetes Care. 2012;35(3):488–94. doi:10.​2337/​dc11-2075.PubMedView Article
  38. Hallschmid M, Schultes B, Marshall L, Molle M, Kern W, Bredthauer J, et al. Transcortical direct current potential shift reflects immediate signaling of systemic insulin to the human brain. Diabetes. 2004;53(9):2202–8.PubMedView Article
  39. Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, et al. An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease—associated Abeta oligomers. J Clin Invest. 2012;122(4):1339–53. doi:10.​1172/​JCI57256.PubMedView Article
  40. Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA. Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev. 2011;10(2):264–73. doi:10.​1016/​j.​arr.​2011.​01.​001.PubMedView Article
  41. Baker LD, Cross DJ, Minoshima S, Belongia D, Watson GS, Craft S. Insulin resistance and Alzheimer-like reductions in regional cerebral glucose metabolism for cognitively normal adults with prediabetes or early type 2 diabetes. Arch Neurol. 2011;68(1):51–7. doi:10.​1001/​archneurol.​2010.​225.PubMedView Article
  42. Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med. 1996;334(12):752–8. doi:10.​1056/​NEJM199603213341​202.PubMedView Article
  43. Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, et al. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nucl Medicine. 2006;47(11):1778–86.
  44. Ohara T, Doi Y, Ninomiya T, Hirakawa Y, Hata J, Iwaki T, et al. Glucose tolerance status and risk of dementia in the community: the Hisayama study. Neurology. 2011;77(12):1126–34. doi:10.​1212/​WNL.​0b013e31822f0435​.PubMedView Article
  45. Willette AA, Xu G, Johnson SC, Birdsill AC, Jonaitis EM, Sager MA, et al. Insulin resistance, brain atrophy, and cognitive performance in late middle-aged adults. Diabetes Care. 2012;. doi:10.​2337/​dc12-0922.PubMed
  46. Tan ZS, Beiser AS, Fox CS, Au R, Himali JJ, Debette S, et al. Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study. Diabetes Care. 2011;34(8):1766–70. doi:10.​2337/​dc11-0308.PubMedView Article
  47. Rasgon NL, Kenna HA, Wroolie TE, Kelley R, Silverman D, Brooks J, et al. Insulin resistance and hippocampal volume in women at risk for Alzheimer’s disease. Neurobiol Aging. 2011;32(11):1942–8. doi:10.​1016/​j.​neurobiolaging.​2009.​12.​005.PubMedView Article
  48. Kenna H, Hoeft F, Kelley R, Wroolie T, Demuth B, Reiss A, et al. Fasting plasma insulin and the default mode network in women at risk for Alzheimer’s disease. Neurobiol Aging. 2013;34(3):641–9. doi:10.​1016/​j.​neurobiolaging.​2012.​06.​006.PubMedView Article
  49. Stingl KT, Kullmann S, Guthoff M, Heni M, Fritsche A, Preissl H. Insulin modulation of magnetoencephalographic resting state dynamics in lean and obese subjects. Front Syst Neurosci. 2010;4:157. doi:10.​3389/​fnsys.​2010.​00157.PubMedView Article
  50. Kullmann S, Frank S, Heni M, Ketterer C, Veit R, Haring HU, et al. Intranasal insulin modulates intrinsic reward and prefrontal circuitry of the human brain in lean women. Neuroendocrinology. 2012;. doi:10.​1159/​000341406.PubMed
  51. Grichisch Y, Cavusoglu M, Preissl H, Uludag K, Hallschmid M, Birbaumer N, et al. Differential effects of intranasal insulin and caffeine on cerebral blood flow. Human Brain Mapp. 2012;33(2):280–7. doi:10.​1002/​hbm.​21216.View Article
  52. Guthoff M, Grichisch Y, Canova C, Tschritter O, Veit R, Hallschmid M, et al. Insulin modulates food-related activity in the central nervous system. J Clin Endocrinol Metab. 2010;95(2):748–55. doi:10.​1210/​jc.​2009-1677.PubMedView Article
  53. Seubert J, Freiherr J, Djordjevic J, Lundstrom JN. Statistical localization of human olfactory cortex. Neuroimage. 2012;66C:333–42. doi:10.​1016/​j.​neuroimage.​2012.​10.​030.PubMed
  54. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.PubMedView Article
  55. Nesterova IV, Bobkova NV, Medvinskaya NI, Samokhin AN, Aleksandrova IY. Morphofunctional state of neurons in the temporal cortex and hippocampus in relation to the level of spatial memory in rats after ablation of the olfactory bulbs. Neurosci Behav Physiol. 2008;38(4):349–53. doi:10.​1007/​s11055-008-0048-5.PubMedView Article
  56. Hawkes C. Olfaction in neurodegenerative disorder. Adv Otorhinolaryngol. 2006;63:133–51. doi:10.​1159/​000093759.PubMed
  57. Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol. 2001;177(1–2):125–34.PubMedView Article
  58. Unger JW, Livingston JN, Moss AM. Insulin receptors in the central nervous system: localization, signalling mechanisms and functional aspects. Prog Neurobiol. 1991;36(5):343–62.PubMedView Article
  59. Ferreira ST, Klein WL. The Aβ oligomer hypothesis for synapse failure and memory loss in Alzheimer’s disease. Neurobiol Learn Mem. 2011;96(4):529–43. doi:10.​1016/​j.​nlm.​2011.​08.​003.PubMedView Article
  60. Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, et al. Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J. 2008;22(1):246–60.PubMedView Article
  61. De Felice FG. Alzheimer’s disease and insulin resistance: translating basic science into clinical applications. J Clin Invest. 2013;123(2):531–9. doi:10.​1172/​JCI64595.PubMedView Article
  62. Moloney AM, Griffin RJ, Timmons S, O’Connor R, Ravid R, O’Neill C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol Aging. 2010;31(2):224–43. doi:10.​1016/​j.​neurobiolaging.​2008.​04.​002.PubMedView Article
  63. Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, et al. β-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci. 2009;29(28):9078–89. doi:10.​1523/​jneurosci.​1071-09.​2009.PubMedView Article
  64. Craft S. Alzheimer disease: insulin resistance and AD—extending the translational path. Nat Rev Neurol. 2012;8(7):360–2. doi:10.​1038/​nrneurol.​2012.​112.PubMedView Article
  65. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(11):333–6.PubMedView Article
  66. Vallerie SN, Hotamisligil GS. The role of JNK proteins in metabolism. Science Transl Med. 2010;2:60rv5.View Article
  67. Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol. 2011;225(1):54–62. doi:10.​1002/​path.​2912.PubMedView Article
  68. Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6. doi:10.​1038/​nature01137.PubMedView Article
  69. Wang H-Y, editor. The diabetes drug liraglutide ameliorates insulin resistance in the hippocampal formation of Alzheimer’s disease (AD) cases. 2011 Neuroscience Meeting Planner; 2011; Washington, DC: Society for Neuroscience.
  70. McClean PL, Parthsarathy V, Faivre E, Holscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci. 2011;31(17):6587–94. doi:10.​1523/​JNEUROSCI.​0529-11.​2011.PubMedView Article
  71. Zhao WQ, Alkon DL. Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol. 2001;177:125–34.PubMedView Article
  72. Chiu S-L, Chen C-M, Cline HT. Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron. 2008;58(5):708–19. doi:10.​1016/​j.​neuron.​2008.​04.​014.PubMedView Article
  73. Zhao WQ, Chen H, Quon MJ, Alkon DL. Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol. 2004;490(1–3):71–81. doi:10.​1016/​j.​ejphar.​2004.​02.​045.PubMedView Article
  74. Haj-ali V, Mohaddes G, Babri SH. Intracerebroventricular insulin improves spatial learning and memory in male Wistar rats. Behav Neurosci. 2009;123(6):1309–14. doi:10.​1037/​a0017722.PubMedView Article
  75. Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, et al. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain. 2008;131(12):3311–34. doi:10.​1093/​brain/​awn288.PubMedView Article
  76. Li L, Hölscher C. Common pathological processes in Alzheimer disease and type 2 diabetes: a review. Brain Res Rev. 2007;56(2):384–402. doi:10.​1016/​j.​brainresrev.​2007.​09.​001.PubMedView Article
  77. Fernandez AM, Torres-Alemán I. The many faces of insulin-like peptide signalling in the brain. Nat Rev Neurosci. 2012;13(4):225–39. doi:10.​1038/​nrn3209.PubMedView Article
  78. Bohringer A, Schwabe L, Richter S, Schachinger H. Intranasal insulin attenuates the hypothalamic-pituitary-adrenal axis response to psychosocial stress. Psychoneuroendocrinology. 2008;33(10):1394–400. doi:10.​1016/​j.​psyneuen.​2008.​08.​002.PubMedView Article
  79. Townsend M, Mehta T, Selkoe DJ. Soluble Abeta inhibits specific signal transduction cascades common to the insulin receptor pathway. J Biol Chem. 2007;282:33305–12.PubMedView Article
  80. Pandini G, Pace V, Copani A, Squatrito S, Milardi D, Vigneri R. Insulin has multiple antiamyloidogenic effects on human neuronal cells. Endocrinology. 2012;154(1):375–87. doi:10.​1210/​en.​2012-1661.PubMedView Article
  81. Hallschmid M, Higgs S, Thienel M, Ott V, Lehnert H. Postprandial administration of intranasal insulin intensifies satiety and reduces intake of palatable snacks in women. Diabetes. 2012;61(4):782–9. doi:10.​2337/​db11-1390.PubMedView Article
  82. Hallschmid M, Benedict C, Schultes B, Fehm HL, Born J, Kern W. Intranasal insulin reduces body fat in men but not in women. Diabetes. 2004;53(11):3024–9.PubMedView Article
  83. Benedict C, Brede S, Schioth HB, Lehnert H, Schultes B, Born J, et al. Intranasal insulin enhances postprandial thermogenesis and lowers postprandial serum insulin levels in healthy men. Diabetes. 2011;60(1):114–8. doi:10.​2337/​db10-0329.PubMedView Article
  84. Ott V, Benedict C, Schultes B, Born J, Hallschmid M. Intranasal administration of insulin to the brain impacts cognitive function and peripheral metabolism. Diabetes Obes Metab. 2012;14(3):214–21. doi:10.​1111/​j.​1463-1326.​2011.​01490.​x.PubMedView Article
  85. Wallum BJ, Taborsky GJ Jr, Porte D Jr, Figlewicz DP, Jacobson L, Beard JC, et al. Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J Clin Endocrinol Metab. 1987;64(1):190–4.PubMedView Article
  86. Kern W, Peters A, Fruehwald-Schultes B, Deininger E, Born J, Fehm HL. Improving influence of insulin on cognitive functions in humans. Neuroendocrinology. 2001;74(4):270–80. doi:54694.PubMedView Article
  87. Hanson LR, Frey WH 2nd. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci. 2008;9(Suppl 3):S5. doi:10.​1186/​1471-2202-9-S3-S5.PubMedView Article
  88. Thorne RG, Emory CR, Ala TA, Frey WH 2nd. Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 1995;692(1–2):278–82. doi:10.​1016/​0006-8993(95)00637-6.PubMedView Article
  89. Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64(7):614–28. doi:10.​1016/​j.​addr.​2011.​11.​002.PubMedView Article
  90. Chapman CD, Frey WH 2nd, Craft S, Danielyan L, Hallschmid M, Schioth HB, et al. Intranasal treatment of central nervous system dysfunction in humans. Pharm Res. 2012. doi:10.​1007/​s11095-012-0915-1.PubMed
  91. Baura GD, Foster DM, Porte D Jr, Kahn SE, Bergman RN, Cobelli C, et al. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. A mechanism for regulated insulin delivery to the brain. J Clin Invest. 1993;92(4):1824–30. doi:10.​1172/​JCI116773.PubMedView Article
  92. Renner DB, Svitak AL, Gallus NJ, Ericson ME, Frey WH 2nd, Hanson LR. Intranasal delivery of insulin via the olfactory nerve pathway. J Pharm Pharmacol. 2012;64(12):1709–14. doi:10.​1111/​j.​2042-7158.​2012.​01555.​x.PubMedView Article
  93. Marks DR, Tucker K, Cavallin MA, Mast TG, Fadool DA. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors. J Neurosci. 2009;29(20):6734–51. doi:10.​1523/​JNEUROSCI.​1350-09.​2009.PubMedView Article
  94. Khafagy el-S, Morishita M, Onuki Y, Takayama K. Current challenges in non-invasive insulin delivery systems: a comparative review. Adv Drug Deliv Rev. 2007;59(15):1521–46. doi: 10.​1016/​j.​addr.​2007.​08.​019.
  95. Kupila A, Sipila J, Keskinen P, Simell T, Knip M, Pulkki K, et al. Intranasally administered insulin intended for prevention of type 1 diabetes—a safety study in healthy adults. Diabetes Metab Res Rev. 2003;19(5):415–20. doi:10.​1002/​dmrr.​397.PubMedView Article
  96. Claxton A, Baker LD, Wilkinson CW, Trittschuh EH, Chapman D, Watson GS, et al. Sex and ApoE genotype differences in treatment response to two doses of intranasal insulin in adults with mild cognitive impairment or Alzheimer’s disease. J Alzheimer’s Dis. 2013. doi:10.​3233/​JAD-122308.
Metadata
Title
Intranasal Insulin as a Treatment for Alzheimer’s Disease: A Review of Basic Research and Clinical Evidence
Authors
Jessica Freiherr
Manfred Hallschmid
William H. Frey II
Yvonne F. Brünner
Colin D. Chapman
Christian Hölscher
Suzanne Craft
Fernanda G. De Felice
Christian Benedict
Publication date
01-07-2013
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 7/2013
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.1007/s40263-013-0076-8

Other articles of this Issue 7/2013

CNS Drugs 7/2013 Go to the issue