Skip to main content
Top
Published in: Neurocritical Care 3/2021

Open Access 01-12-2021 | Central Nervous System Trauma | Original work

The Antiedematous Effect of Exogenous Lactate Therapy in Traumatic Brain Injury: A Physiological and Mechanistic Approach

Authors: David Emmanuel Duhaut, Catherine Heurteaux, Carine Gandin, Carole Ichai, Hervé Quintard

Published in: Neurocritical Care | Issue 3/2021

Login to get access

Abstract

Background

Sodium lactate (SL) has been described as an efficient therapy in treating raised intracranial pressure (ICP). However, the precise mechanism by which SL reduces intracranial hypertension is not well defined. An antiedematous effect has been proposed but never demonstrated. In this context, the involvement of chloride channels, aquaporins, or K–Cl cotransporters has also been suggested, but these mechanisms have never been assessed when using SL.

Methods

In a rat model of traumatic brain injury (TBI), we compared the effect of SL versus mannitol 20% on ICP, cerebral tissue oxygen pressure, and brain water content. We attempted to clarify the involvement of chloride channels in the antiedematous effects associated with lactate therapy in TBI.

Results

An equimolar single bolus of SL and mannitol significantly reduced brain water content and ICP and improved cerebral tissue oxygen pressure 4 h after severe TBI. The effect of SL on brain water content was much longer than that of mannitol and persisted at 24 h post TBI. Western blot and immunofluorescence staining analyses performed 24 h after TBI revealed that SL infusion is associated with an upregulation of aquaporin 4 and K–Cl cotransporter 2.

Conclusions

SL is an effective therapy for treating brain edema after TBI. This study suggests, for the first time, the potential role of chloride channels in the antiedematous effect induced by exogenous SL.
Literature
1.
go back to reference Oddo M, Poole D, Helbok R, Meyfroidt G, Stocchetti N, Bouzat P, et al. Fluid therapy in neurointensive care patients: ESICM consensus and clinical practice recommendations. Intensive Care Med. 2018;44(4):449–63.PubMedCrossRef Oddo M, Poole D, Helbok R, Meyfroidt G, Stocchetti N, Bouzat P, et al. Fluid therapy in neurointensive care patients: ESICM consensus and clinical practice recommendations. Intensive Care Med. 2018;44(4):449–63.PubMedCrossRef
2.
go back to reference Gallagher CN, Carpenter KLH, Grice P, Howe DJ, Mason A, Timofeev I, et al. The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain. 2009;132(Pt 10):2839–49.PubMedCrossRef Gallagher CN, Carpenter KLH, Grice P, Howe DJ, Mason A, Timofeev I, et al. The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain. 2009;132(Pt 10):2839–49.PubMedCrossRef
3.
go back to reference Bisri T, Utomo BA, Fuadi I. Exogenous lactate infusion improved neurocognitive function of patients with mild traumatic brain injury. Asian J Neurosurg. 2016;11(2):151–9.PubMedPubMedCentralCrossRef Bisri T, Utomo BA, Fuadi I. Exogenous lactate infusion improved neurocognitive function of patients with mild traumatic brain injury. Asian J Neurosurg. 2016;11(2):151–9.PubMedPubMedCentralCrossRef
4.
go back to reference Bouzat P, Sala N, Suys T, Zerlauth J-B, Marques-Vidal P, Feihl F, et al. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med. 2014;40(3):412–21.PubMedCrossRef Bouzat P, Sala N, Suys T, Zerlauth J-B, Marques-Vidal P, Feihl F, et al. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med. 2014;40(3):412–21.PubMedCrossRef
5.
go back to reference Quintard H, Patet C, Zerlauth J-B, Suys T, Bouzat P, Pellerin L, et al. Improvement of neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/pyruvate ratio. J Neurotrauma. 2016;33(7):681–7.PubMedPubMedCentralCrossRef Quintard H, Patet C, Zerlauth J-B, Suys T, Bouzat P, Pellerin L, et al. Improvement of neuroenergetics by hypertonic lactate therapy in patients with traumatic brain injury is dependent on baseline cerebral lactate/pyruvate ratio. J Neurotrauma. 2016;33(7):681–7.PubMedPubMedCentralCrossRef
6.
go back to reference Ichai C, Armando G, Orban J-C, Berthier F, Rami L, Samat-Long C, et al. Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med. 2009;35(3):471–9.PubMedCrossRef Ichai C, Armando G, Orban J-C, Berthier F, Rami L, Samat-Long C, et al. Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med. 2009;35(3):471–9.PubMedCrossRef
7.
go back to reference Ichai C, Payen J-F, Orban J-C, Quintard H, Roth H, Legrand R, et al. Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. Intensive Care Med. 2013;39(8):1413–22.PubMedCrossRef Ichai C, Payen J-F, Orban J-C, Quintard H, Roth H, Legrand R, et al. Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. Intensive Care Med. 2013;39(8):1413–22.PubMedCrossRef
8.
go back to reference Verkman AS, Galietta LJV. Chloride channels as drug targets. Nat Rev Drug Discov. 2009;8(2):153–71.PubMedCrossRef Verkman AS, Galietta LJV. Chloride channels as drug targets. Nat Rev Drug Discov. 2009;8(2):153–71.PubMedCrossRef
9.
go back to reference Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, et al. Roles of the cation–chloride cotransporters in neurological disease. Nat Clin Pract Neurol. 2008;4(9):490–503.PubMedCrossRef Kahle KT, Staley KJ, Nahed BV, Gamba G, Hebert SC, Lifton RP, et al. Roles of the cation–chloride cotransporters in neurological disease. Nat Clin Pract Neurol. 2008;4(9):490–503.PubMedCrossRef
10.
go back to reference Glykys J, Dzhala V, Egawa K, Kahle KT, Delpire E, Staley K. Chloride dysregulation, seizures, and cerebral edema: a relationship with therapeutic potential. Trends Neurosci. 2017;40(5):276–94.PubMedPubMedCentralCrossRef Glykys J, Dzhala V, Egawa K, Kahle KT, Delpire E, Staley K. Chloride dysregulation, seizures, and cerebral edema: a relationship with therapeutic potential. Trends Neurosci. 2017;40(5):276–94.PubMedPubMedCentralCrossRef
11.
go back to reference Hübner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ. Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron. 2001;30(2):515–24.PubMedCrossRef Hübner CA, Stein V, Hermans-Borgmeyer I, Meyer T, Ballanyi K, Jentsch TJ. Disruption of KCC2 reveals an essential role of K-Cl cotransport already in early synaptic inhibition. Neuron. 2001;30(2):515–24.PubMedCrossRef
12.
go back to reference Zhu L, Lovinger D, Delpire E. Cortical neurons lacking KCC2 expression show impaired regulation of intracellular chloride. J Neurophysiol. 2005;93(3):1557–68.PubMedCrossRef Zhu L, Lovinger D, Delpire E. Cortical neurons lacking KCC2 expression show impaired regulation of intracellular chloride. J Neurophysiol. 2005;93(3):1557–68.PubMedCrossRef
13.
go back to reference Jayakumar AR, Norenberg MD. The Na–K–Cl co-transporter in astrocyte swelling. Metab Brain Dis. 2010;25(1):31–8.PubMedCrossRef Jayakumar AR, Norenberg MD. The Na–K–Cl co-transporter in astrocyte swelling. Metab Brain Dis. 2010;25(1):31–8.PubMedCrossRef
14.
go back to reference Jayakumar AR, Panickar KS, Curtis KM, Tong XY, Moriyama M, Norenberg MD. Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J Neurochem. 2011;117(3):437–48.PubMedCrossRef Jayakumar AR, Panickar KS, Curtis KM, Tong XY, Moriyama M, Norenberg MD. Na-K-Cl cotransporter-1 in the mechanism of cell swelling in cultured astrocytes after fluid percussion injury. J Neurochem. 2011;117(3):437–48.PubMedCrossRef
15.
16.
go back to reference Fukuda AM, Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflamm. 2012;9:279. CrossRef Fukuda AM, Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflamm. 2012;9:279. CrossRef
17.
go back to reference Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg. 1987;67(1):110–9.PubMedCrossRef Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, et al. A fluid percussion model of experimental brain injury in the rat. J Neurosurg. 1987;67(1):110–9.PubMedCrossRef
18.
go back to reference Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, et al. Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma. 2005;22(1):42–75.PubMedCrossRef Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, et al. Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma. 2005;22(1):42–75.PubMedCrossRef
19.
go back to reference Bareyre F, Wahl F, McIntosh TK, Stutzmann JM. Time course of cerebral edema after traumatic brain injury in rats: effects of riluzole and mannitol. J Neurotrauma. 1997;14(11):839–49.PubMedCrossRef Bareyre F, Wahl F, McIntosh TK, Stutzmann JM. Time course of cerebral edema after traumatic brain injury in rats: effects of riluzole and mannitol. J Neurotrauma. 1997;14(11):839–49.PubMedCrossRef
20.
go back to reference Ernst O, Zor T. Linearization of the Bradford protein assay. J Vis Exp. 2010;38:1918. Ernst O, Zor T. Linearization of the Bradford protein assay. J Vis Exp. 2010;38:1918.
21.
go back to reference Shackford SR, Zhuang J, Schmoker J. Intravenous fluid tonicity: effect on intracranial pressure, cerebral blood flow, and cerebral oxygen delivery in focal brain injury. J Neurosurg. 1992;76(1):91–8.PubMedCrossRef Shackford SR, Zhuang J, Schmoker J. Intravenous fluid tonicity: effect on intracranial pressure, cerebral blood flow, and cerebral oxygen delivery in focal brain injury. J Neurosurg. 1992;76(1):91–8.PubMedCrossRef
22.
go back to reference Halestrap AP, Wilson MC. The monocarboxylate transporter family—role and regulation. IUBMB Life. 2012;64(2):109–19.PubMedCrossRef Halestrap AP, Wilson MC. The monocarboxylate transporter family—role and regulation. IUBMB Life. 2012;64(2):109–19.PubMedCrossRef
23.
go back to reference Pellerin L, Magistretti PJ. Sweet sixteen for ANLS. J Cereb Blood Flow Metab. 2012;32(7):1152–66.CrossRef Pellerin L, Magistretti PJ. Sweet sixteen for ANLS. J Cereb Blood Flow Metab. 2012;32(7):1152–66.CrossRef
24.
go back to reference Somasetia DH, Setiati TE, Sjahrodji AM, Idjradinata PS, Setiabudi D, Roth H, et al. Early resuscitation of dengue shock syndrome in children with hyperosmolar sodium-lactate: a randomized single-blind clinical trial of efficacy and safety. Crit Care. 2014;18(5):466.PubMedPubMedCentralCrossRef Somasetia DH, Setiati TE, Sjahrodji AM, Idjradinata PS, Setiabudi D, Roth H, et al. Early resuscitation of dengue shock syndrome in children with hyperosmolar sodium-lactate: a randomized single-blind clinical trial of efficacy and safety. Crit Care. 2014;18(5):466.PubMedPubMedCentralCrossRef
25.
go back to reference Schilte C, Bouzat P, Millet A, Boucheix P, Pernet-Gallay K, Lemasson B, et al. Mannitol improves brain tissue oxygenation in a model of diffuse traumatic brain injury. Crit Care Med. 2015;43(10):2212–8.PubMedCrossRef Schilte C, Bouzat P, Millet A, Boucheix P, Pernet-Gallay K, Lemasson B, et al. Mannitol improves brain tissue oxygenation in a model of diffuse traumatic brain injury. Crit Care Med. 2015;43(10):2212–8.PubMedCrossRef
26.
go back to reference Schwarzmaier SM, Kim S-W, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27(1):121–30.PubMedCrossRef Schwarzmaier SM, Kim S-W, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27(1):121–30.PubMedCrossRef
27.
go back to reference Millet A, Cuisinier A, Bouzat P, Batandier C, Lemasson B, Stupar V, et al. Hypertonic sodium lactate reverses brain oxygenation and metabolism dysfunction after traumatic brain injury. Br J Anaesth. 2018;120(6):1295–303.PubMedCrossRef Millet A, Cuisinier A, Bouzat P, Batandier C, Lemasson B, Stupar V, et al. Hypertonic sodium lactate reverses brain oxygenation and metabolism dysfunction after traumatic brain injury. Br J Anaesth. 2018;120(6):1295–303.PubMedCrossRef
28.
29.
go back to reference Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature. 2008;456(7223):745–9.PubMedPubMedCentralCrossRef Gordon GRJ, Choi HB, Rungta RL, Ellis-Davies GCR, MacVicar BA. Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature. 2008;456(7223):745–9.PubMedPubMedCentralCrossRef
30.
go back to reference Bouzat P, Oddo M. Lactate and the injured brain: friend or foe? Curr Opin Crit Care. 2014;20(2):133–40.PubMedCrossRef Bouzat P, Oddo M. Lactate and the injured brain: friend or foe? Curr Opin Crit Care. 2014;20(2):133–40.PubMedCrossRef
31.
go back to reference King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol. 1996;58:619–48.PubMedCrossRef King LS, Agre P. Pathophysiology of the aquaporin water channels. Annu Rev Physiol. 1996;58:619–48.PubMedCrossRef
32.
go back to reference Steiner E, Enzmann GU, Lin S, Ghavampour S, Hannocks M-J, Zuber B, et al. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia. 2012;60(11):1646–59.PubMedCrossRef Steiner E, Enzmann GU, Lin S, Ghavampour S, Hannocks M-J, Zuber B, et al. Loss of astrocyte polarization upon transient focal brain ischemia as a possible mechanism to counteract early edema formation. Glia. 2012;60(11):1646–59.PubMedCrossRef
33.
go back to reference Shenaq M, Kassem H, Peng C, Schafer S, Ding JY, Fredrickson V, et al. Neuronal damage and functional deficits are ameliorated by inhibition of aquaporin and HIF1α after traumatic brain injury (TBI). J Neurol Sci. 2012;323:134–40.PubMedCrossRef Shenaq M, Kassem H, Peng C, Schafer S, Ding JY, Fredrickson V, et al. Neuronal damage and functional deficits are ameliorated by inhibition of aquaporin and HIF1α after traumatic brain injury (TBI). J Neurol Sci. 2012;323:134–40.PubMedCrossRef
34.
go back to reference Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18(11):1291–3.PubMedCrossRef Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18(11):1291–3.PubMedCrossRef
35.
go back to reference Hirt L, Ternon B, Price M, Mastour N, Brunet J-F, Badaut J. Protective role of early aquaporin 4 induction against postischemic edema formation. J Cereb Blood Flow Metab. 2009;29(2):423–33.PubMedCrossRef Hirt L, Ternon B, Price M, Mastour N, Brunet J-F, Badaut J. Protective role of early aquaporin 4 induction against postischemic edema formation. J Cereb Blood Flow Metab. 2009;29(2):423–33.PubMedCrossRef
36.
go back to reference Quintard H, Lorivel T, Gandin C, Lazdunski M, Heurteaux C. MLC901, a traditional Chinese medicine induces neuroprotective and neuroregenerative benefits after traumatic brain injury in rats. Neuroscience. 2014;277:72–86.PubMedCrossRef Quintard H, Lorivel T, Gandin C, Lazdunski M, Heurteaux C. MLC901, a traditional Chinese medicine induces neuroprotective and neuroregenerative benefits after traumatic brain injury in rats. Neuroscience. 2014;277:72–86.PubMedCrossRef
37.
go back to reference MacAulay N, Hamann S, Zeuthen T. Water transport in the brain: role of cotransporters. Neuroscience. 2004;129(4):1029–42.CrossRef MacAulay N, Hamann S, Zeuthen T. Water transport in the brain: role of cotransporters. Neuroscience. 2004;129(4):1029–42.CrossRef
38.
go back to reference Kahle KT, Khanna AR, Alper SL, Adragna NC, Lauf PK, Sun D, et al. K-Cl cotransporters, cell volume homeostasis, and neurological disease. Trends Mol Med. 2015;21(8):513–23. PubMedPubMedCentralCrossRef Kahle KT, Khanna AR, Alper SL, Adragna NC, Lauf PK, Sun D, et al. K-Cl cotransporters, cell volume homeostasis, and neurological disease. Trends Mol Med. 2015;21(8):513–23. PubMedPubMedCentralCrossRef
39.
go back to reference Jentsch TJ. VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat Rev Mol Cell Biol. 2016;17(5):293–307.PubMedCrossRef Jentsch TJ. VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nat Rev Mol Cell Biol. 2016;17(5):293–307.PubMedCrossRef
40.
go back to reference Mongin AA. Volume-regulated anion channel—a frenemy within the brain. Pflugers Arch. 2016;468(3):421–41.PubMedCrossRef Mongin AA. Volume-regulated anion channel—a frenemy within the brain. Pflugers Arch. 2016;468(3):421–41.PubMedCrossRef
41.
go back to reference Carteron L, Solari D, Patet C, Quintard H, Miroz J-P, Bloch J, et al. Hypertonic lactate to improve cerebral perfusion and glucose availability after acute brain injury. Crit Care Med. 2018;46(10):1649–55.PubMedCrossRef Carteron L, Solari D, Patet C, Quintard H, Miroz J-P, Bloch J, et al. Hypertonic lactate to improve cerebral perfusion and glucose availability after acute brain injury. Crit Care Med. 2018;46(10):1649–55.PubMedCrossRef
Metadata
Title
The Antiedematous Effect of Exogenous Lactate Therapy in Traumatic Brain Injury: A Physiological and Mechanistic Approach
Authors
David Emmanuel Duhaut
Catherine Heurteaux
Carine Gandin
Carole Ichai
Hervé Quintard
Publication date
01-12-2021
Publisher
Springer US
Published in
Neurocritical Care / Issue 3/2021
Print ISSN: 1541-6933
Electronic ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-021-01219-y

Other articles of this Issue 3/2021

Neurocritical Care 3/2021 Go to the issue