Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2024

Open Access 01-12-2024 | Central Nervous System Trauma | Research

Complement propagates visual system pathology following traumatic brain injury

Authors: Davis M. Borucki, Baerbel Rohrer, Stephen Tomlinson

Published in: Journal of Neuroinflammation | Issue 1/2024

Login to get access

Abstract

Background

Traumatic brain injury (TBI) is associated with the development of visual system disorders. Visual deficits can present with delay and worsen over time, and may be associated with an ongoing neuroinflammatory response that is known to occur after TBI. Complement system activation is strongly associated with the neuroinflammatory response after TBI, but whether it contributes to vision loss after TBI is unexplored.

Methods

Acute and chronic neuroinflammatory changes within the dorsal lateral geniculate nucleus (dLGN) and retina were investigated subsequent to a moderate to severe murine unilateral controlled cortical impact. Neuroinflammatory and histopathological outcomes were interpreted in the context of behavioral and visual function data. To investigate the role of complement, cohorts were treated after TBI with the complement inhibitor, CR2-Crry.

Results

At 3 days after TBI, complement component C3 was deposited on retinogeniculate synapses in the dLGN both ipsilateral and contralateral to the lesion, which was reduced in CR2-Crry treated animals. This was associated with microglia morphological changes in both the ipsilateral and contralateral dLGN, with a less ramified phenotype in vehicle compared to CR2-Crry treated animals. Microglia in vehicle treated animals also had a greater internalized VGlut2 + synaptic volume after TBI compared to CR2-Crry treated animals. Microglia morphological changes seen acutely persisted for at least 49 days after injury. Complement inhibition also reduced microglial synaptic internalization in the contralateral dLGN and increased the association between VGLUT2 and PSD95 puncta, indicating preservation of intact synapses. Unexpectedly, there were no changes in the thickness of the inner retina, retinal nerve fiber layer or retinal ganglion layer. Neuropathological changes in the dLGN were accompanied by reduced visual acuity at subacute and chronic time points after TBI, with improvement seen in CR2-Crry treated animals.

Conclusion

TBI induces complement activation within the dLGN and promotes microglial activation and synaptic internalization. Complement inhibition after TBI in a clinically relevant paradigm reduces complement activation, maintains a more surveillance-like microglia phenotype, and preserves synaptic density within the dLGN. Together, the data indicate that complement plays a key role in the development of visual deficits after TBI via complement-dependent microglial phagocytosis of synapses within the dLGN.
Appendix
Available only for authorised users
Literature
1.
go back to reference Schneider ALC, Wang D, Gottesman RF, Selvin E. Prevalence of disability associated with head injury with loss of consciousness in adults in the United States. Neurology. 2021;97(2):e124–35.PubMedPubMedCentralCrossRef Schneider ALC, Wang D, Gottesman RF, Selvin E. Prevalence of disability associated with head injury with loss of consciousness in adults in the United States. Neurology. 2021;97(2):e124–35.PubMedPubMedCentralCrossRef
2.
go back to reference Fulkerson DH, White IK, Rees JM, Baumanis MM, Smith JL, Ackerman LL, et al. Analysis of long-term (median 10.5 years) outcomes in children presenting with traumatic brain injury and an initial Glasgow Coma Scale score of 3 or 4. J Neurosurg Pediatrics PED. 2015;16(4):410–9.CrossRef Fulkerson DH, White IK, Rees JM, Baumanis MM, Smith JL, Ackerman LL, et al. Analysis of long-term (median 10.5 years) outcomes in children presenting with traumatic brain injury and an initial Glasgow Coma Scale score of 3 or 4. J Neurosurg Pediatrics PED. 2015;16(4):410–9.CrossRef
3.
go back to reference Hac NEF, Gold DR. Neuro-visual and vestibular manifestations of concussion and mild TBI. Current Neurol Neurosci. 2022;22(3):219–28.CrossRef Hac NEF, Gold DR. Neuro-visual and vestibular manifestations of concussion and mild TBI. Current Neurol Neurosci. 2022;22(3):219–28.CrossRef
4.
go back to reference Bell CA, Grossman SN, Balcer LJ, Galetta SL. Vision as a piece of the head trauma puzzle. Eye (Basingstoke). 2023. Bell CA, Grossman SN, Balcer LJ, Galetta SL. Vision as a piece of the head trauma puzzle. Eye (Basingstoke). 2023.
5.
go back to reference Goodrich GL, Flyg HM, Kirby JE, Chang C-Y, Martinsen GL. Mechanisms of TBI and visual consequences in military and veteran populations. Optometry Vision Sci. 2013;90(2). Goodrich GL, Flyg HM, Kirby JE, Chang C-Y, Martinsen GL. Mechanisms of TBI and visual consequences in military and veteran populations. Optometry Vision Sci. 2013;90(2).
6.
go back to reference Chen B, Zhang H, Zhai Q, Li H, Wang C, Wang Y. Traumatic optic neuropathy: a review of current studies. Neurosurg Rev. 2022;45(3):1895–913.PubMedCrossRef Chen B, Zhang H, Zhai Q, Li H, Wang C, Wang Y. Traumatic optic neuropathy: a review of current studies. Neurosurg Rev. 2022;45(3):1895–913.PubMedCrossRef
8.
go back to reference Alawieh A, Langley EF, Weber S, Adkins D, Tomlinson S. Identifying the role of complement in triggering neuroinflammation after traumatic brain injury. J Neurosci. 2018;38(10):2519–32.PubMedPubMedCentralCrossRef Alawieh A, Langley EF, Weber S, Adkins D, Tomlinson S. Identifying the role of complement in triggering neuroinflammation after traumatic brain injury. J Neurosci. 2018;38(10):2519–32.PubMedPubMedCentralCrossRef
9.
go back to reference Toutonji A, Mandava M, Guglietta S, Tomlinson S. Chronic complement dysregulation drives neuroinflammation after traumatic brain injury: a transcriptomic study. Acta Neuropathol Comm. 2021;9(1):126.CrossRef Toutonji A, Mandava M, Guglietta S, Tomlinson S. Chronic complement dysregulation drives neuroinflammation after traumatic brain injury: a transcriptomic study. Acta Neuropathol Comm. 2021;9(1):126.CrossRef
10.
go back to reference Mallah K, Couch C, Alshareef M, Borucki D, Yang X, Alawieh A, et al. Complement mediates neuroinflammation and cognitive decline at extended chronic time points after traumatic brain injury. Acta Neuropathol Comm. 2021;9(1):72.CrossRef Mallah K, Couch C, Alshareef M, Borucki D, Yang X, Alawieh A, et al. Complement mediates neuroinflammation and cognitive decline at extended chronic time points after traumatic brain injury. Acta Neuropathol Comm. 2021;9(1):72.CrossRef
11.
go back to reference Alawieh A, Chalhoub R, Mallah K, Langley EF, York M, Broome H, et al. Complement Drives Synaptic Degeneration and Progressive Cognitive Decline in the Chronic Phase After Traumatic Brain Injury. J Neurosci. 2021:JN-RM-1734-20. Alawieh A, Chalhoub R, Mallah K, Langley EF, York M, Broome H, et al. Complement Drives Synaptic Degeneration and Progressive Cognitive Decline in the Chronic Phase After Traumatic Brain Injury. J Neurosci. 2021:JN-RM-1734-20.
12.
go back to reference Atkinson C, Song H, Lu B, Qiao F, Burns TA, Holers VM, et al. Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. J Clin Invest. 2005;115(9):2444–53.PubMedPubMedCentralCrossRef Atkinson C, Song H, Lu B, Qiao F, Burns TA, Holers VM, et al. Targeted complement inhibition by C3d recognition ameliorates tissue injury without apparent increase in susceptibility to infection. J Clin Invest. 2005;115(9):2444–53.PubMedPubMedCentralCrossRef
13.
go back to reference Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705.PubMedPubMedCentralCrossRef Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705.PubMedPubMedCentralCrossRef
14.
go back to reference Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):712–6.PubMedPubMedCentralCrossRef Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science. 2016;352(6286):712–6.PubMedPubMedCentralCrossRef
15.
go back to reference Vidal-Itriago A, Radford RAW, Aramideh JA, Maurel C, Scherer NM, Don EK, et al. Microglia morphophysiological diversity and its implications for the CNS. Front Immunol. 2022;13. Vidal-Itriago A, Radford RAW, Aramideh JA, Maurel C, Scherer NM, Don EK, et al. Microglia morphophysiological diversity and its implications for the CNS. Front Immunol. 2022;13.
17.
go back to reference Hetzer SM, Guilhaume-Correa F, Day D, Bedolla A, Evanson NK. Traumatic optic neuropathy is associated with visual impairment, neurodegeneration, and endoplasmic reticulum stress in adolescent mice. Cells 2021; 10(5). Hetzer SM, Guilhaume-Correa F, Day D, Bedolla A, Evanson NK. Traumatic optic neuropathy is associated with visual impairment, neurodegeneration, and endoplasmic reticulum stress in adolescent mice. Cells 2021; 10(5).
18.
go back to reference Das M, Tang X, Han JY, Mayilsamy K, Foran E, Biswal MR, et al. CCL20-CCR6 axis modulated traumatic brain injury-induced visual pathologies. J Neuroinflamm. 2019;16(1). Das M, Tang X, Han JY, Mayilsamy K, Foran E, Biswal MR, et al. CCL20-CCR6 axis modulated traumatic brain injury-induced visual pathologies. J Neuroinflamm. 2019;16(1).
19.
go back to reference Evanson NK, Guilhaume-Correa F, Herman JP, Goodman MD. Optic tract injury after closed head traumatic brain injury in mice: a model of indirect traumatic optic neuropathy. PLoS ONE. 2018;13(5): e0197346.PubMedPubMedCentralCrossRef Evanson NK, Guilhaume-Correa F, Herman JP, Goodman MD. Optic tract injury after closed head traumatic brain injury in mice: a model of indirect traumatic optic neuropathy. PLoS ONE. 2018;13(5): e0197346.PubMedPubMedCentralCrossRef
20.
go back to reference Tzekov R, Dawson C, Orlando M, Mouzon B, Reed J, Evans J, et al. Sub-chronic neuropathological and biochemical changes in mouse visual system after repetitive mild traumatic brain injury. PLoS ONE. 2016;11(4): e0153608.PubMedPubMedCentralCrossRef Tzekov R, Dawson C, Orlando M, Mouzon B, Reed J, Evans J, et al. Sub-chronic neuropathological and biochemical changes in mouse visual system after repetitive mild traumatic brain injury. PLoS ONE. 2016;11(4): e0153608.PubMedPubMedCentralCrossRef
21.
go back to reference Jiang Y, Liu L, Pagadala J, Miller DD, Steinle JJ. Compound 49b protects against blast-induced retinal injury. J Neuroinflammation. 2013;10(1):870.CrossRef Jiang Y, Liu L, Pagadala J, Miller DD, Steinle JJ. Compound 49b protects against blast-induced retinal injury. J Neuroinflammation. 2013;10(1):870.CrossRef
22.
go back to reference Evans LP, Roghair AM, Gilkes NJ, Bassuk AG. Visual outcomes in experimental rodent models of blast-mediated traumatic brain injury. Front Mol Neurosci. 2021;14:58.CrossRef Evans LP, Roghair AM, Gilkes NJ, Bassuk AG. Visual outcomes in experimental rodent models of blast-mediated traumatic brain injury. Front Mol Neurosci. 2021;14:58.CrossRef
23.
go back to reference Vien L, Dalporto C, Yang D. Retrograde degeneration of retinal ganglion cells secondary to head trauma. Optometry Vision Sci. 2017;94(1):125–34.CrossRef Vien L, Dalporto C, Yang D. Retrograde degeneration of retinal ganglion cells secondary to head trauma. Optometry Vision Sci. 2017;94(1):125–34.CrossRef
24.
go back to reference Gilmore CS, Camchong J, Davenport ND, Nelson NW, Kardon RH, Lim KO, et al. Deficits in visual system functional connectivity after blast-related mild TBI are associated with injury severity and executive dysfunction. Brain Behav. 2016;6(5):1–19.CrossRef Gilmore CS, Camchong J, Davenport ND, Nelson NW, Kardon RH, Lim KO, et al. Deficits in visual system functional connectivity after blast-related mild TBI are associated with injury severity and executive dysfunction. Brain Behav. 2016;6(5):1–19.CrossRef
25.
go back to reference Fridkis-Hareli M, Storek M, Or E, Altman R, Katti S, Sun F, et al. The human complement receptor type 2 (CR2)/CR1 fusion protein TT32, a novel targeted inhibitor of the classical and alternative pathway C3 convertases, prevents arthritis in active immunization and passive transfer mouse models. Mol Immunol. 2019;105:150–64.PubMedCrossRef Fridkis-Hareli M, Storek M, Or E, Altman R, Katti S, Sun F, et al. The human complement receptor type 2 (CR2)/CR1 fusion protein TT32, a novel targeted inhibitor of the classical and alternative pathway C3 convertases, prevents arthritis in active immunization and passive transfer mouse models. Mol Immunol. 2019;105:150–64.PubMedCrossRef
26.
go back to reference Liu F, Ryan ST, Fahnoe KC, Morgan JG, Cheung AE, Storek MJ, et al. C3d-Targeted factor H inhibits tissue complement in disease models and reduces glomerular injury without affecting circulating complement. Mol Ther. 2024;32(4):1061–79.PubMedCrossRef Liu F, Ryan ST, Fahnoe KC, Morgan JG, Cheung AE, Storek MJ, et al. C3d-Targeted factor H inhibits tissue complement in disease models and reduces glomerular injury without affecting circulating complement. Mol Ther. 2024;32(4):1061–79.PubMedCrossRef
27.
go back to reference Prusky GT, Alam NM, Beekman S, Douglas RM. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophth Vis Sci. 2004;45(12):4611–6.CrossRef Prusky GT, Alam NM, Beekman S, Douglas RM. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophth Vis Sci. 2004;45(12):4611–6.CrossRef
28.
go back to reference Knodel MM, Geiger R, Ge L, Bucher D, Grillo A, Wittum G, et al. Synaptic bouton properties are tuned to best fit the prevailing firing pattern. Front Comput Neurosci. 2014;8. Knodel MM, Geiger R, Ge L, Bucher D, Grillo A, Wittum G, et al. Synaptic bouton properties are tuned to best fit the prevailing firing pattern. Front Comput Neurosci. 2014;8.
29.
go back to reference Ali MA, Langley EF, Wuwei F, Alejandro MS, Stephen T. Complement-dependent synaptic uptake and cognitive decline after stroke and reperfusion therapy. J Neurosci. 2020;40(20):4042.CrossRef Ali MA, Langley EF, Wuwei F, Alejandro MS, Stephen T. Complement-dependent synaptic uptake and cognitive decline after stroke and reperfusion therapy. J Neurosci. 2020;40(20):4042.CrossRef
31.
go back to reference Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates cns synapse elimination. Cell. 2007;131(6):1164–78.PubMedCrossRef Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. The classical complement cascade mediates cns synapse elimination. Cell. 2007;131(6):1164–78.PubMedCrossRef
32.
go back to reference Borucki DM, Toutonji A, Couch C, Mallah K, Rohrer B, Tomlinson S. Complement-mediated microglial phagocytosis and pathological changes in the development and degeneration of the visual system. Front Immunol. 2020;11. Borucki DM, Toutonji A, Couch C, Mallah K, Rohrer B, Tomlinson S. Complement-mediated microglial phagocytosis and pathological changes in the development and degeneration of the visual system. Front Immunol. 2020;11.
33.
go back to reference Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci Transl Med. 2018;10(441). Alawieh A, Langley EF, Tomlinson S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci Transl Med. 2018;10(441).
34.
go back to reference Alam NM, Douglas RM, McGill TJ, Prusky GT, Silver BD, Tschetter WW. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Visual Neurosci. 2005;22(5):677–84.CrossRef Alam NM, Douglas RM, McGill TJ, Prusky GT, Silver BD, Tschetter WW. Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Visual Neurosci. 2005;22(5):677–84.CrossRef
35.
go back to reference Gawel K, Gibula E, Marszalek-Grabska M, Filarowska J, Kotlinska JH. Assessment of spatial learning and memory in the Barnes maze task in rodents—methodological consideration. N-S Arch Pharmacol. 2019;392(1):1–18.CrossRef Gawel K, Gibula E, Marszalek-Grabska M, Filarowska J, Kotlinska JH. Assessment of spatial learning and memory in the Barnes maze task in rodents—methodological consideration. N-S Arch Pharmacol. 2019;392(1):1–18.CrossRef
36.
go back to reference Toutonji A, Krieg C, Borucki DM, Mandava M, Guglietta S, Tomlinson S. Mass cytometric analysis of the immune cell landscape after traumatic brain injury elucidates the role of complement and complement receptors in neurologic outcomes. Acta Neuropathol Commun. 2023;11(1):92.PubMedPubMedCentralCrossRef Toutonji A, Krieg C, Borucki DM, Mandava M, Guglietta S, Tomlinson S. Mass cytometric analysis of the immune cell landscape after traumatic brain injury elucidates the role of complement and complement receptors in neurologic outcomes. Acta Neuropathol Commun. 2023;11(1):92.PubMedPubMedCentralCrossRef
37.
go back to reference Matsudaira T, Prinz M. Life and death of microglia: mechanisms governing microglial states and fates. Immunol Lett. 2022;245:51–60.PubMedCrossRef Matsudaira T, Prinz M. Life and death of microglia: mechanisms governing microglial states and fates. Immunol Lett. 2022;245:51–60.PubMedCrossRef
38.
go back to reference Werneburg S, Jung J, Kunjamma RB, Ha SK, Luciano NJ, Willis CM, et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity. 2020;52(1):167-82.e7.PubMedCrossRef Werneburg S, Jung J, Kunjamma RB, Ha SK, Luciano NJ, Willis CM, et al. Targeted complement inhibition at synapses prevents microglial synaptic engulfment and synapse loss in demyelinating disease. Immunity. 2020;52(1):167-82.e7.PubMedCrossRef
39.
go back to reference Mohan K, Kecova H, Hernandez-Merino E, Kardon RH, Harper MM. Retinal Ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury. Invest Ophth Vis Sci. 2013;54(5):3440–50.CrossRef Mohan K, Kecova H, Hernandez-Merino E, Kardon RH, Harper MM. Retinal Ganglion cell damage in an experimental rodent model of blast-mediated traumatic brain injury. Invest Ophth Vis Sci. 2013;54(5):3440–50.CrossRef
40.
go back to reference Tzekov R, Quezada A, Gautier M, Biggins D, Frances C, Mouzon B, et al. Repetitive mild traumatic brain injury causes optic nerve and retinal damage in a mouse model. J Neuropath Exp Neur. 2014;73(4):345–61.PubMedCrossRef Tzekov R, Quezada A, Gautier M, Biggins D, Frances C, Mouzon B, et al. Repetitive mild traumatic brain injury causes optic nerve and retinal damage in a mouse model. J Neuropath Exp Neur. 2014;73(4):345–61.PubMedCrossRef
41.
go back to reference Gilmore CS, Lim KO, Garvin MK, Wang JK, Ledolter J, Fenske AL, et al. Association of optical coherence tomography with longitudinal neurodegeneration in veterans with chronic mild traumatic brain injury. JAMA Netw Open. 2020;3(12): e2030824.PubMedPubMedCentralCrossRef Gilmore CS, Lim KO, Garvin MK, Wang JK, Ledolter J, Fenske AL, et al. Association of optical coherence tomography with longitudinal neurodegeneration in veterans with chronic mild traumatic brain injury. JAMA Netw Open. 2020;3(12): e2030824.PubMedPubMedCentralCrossRef
42.
go back to reference Kelman JC, Hodge C, Stanwell P, Mustafic N, Fraser CL. Retinal nerve fibre changes in sports-related repetitive traumatic brain injury. Clin Experiment Ophthalmol. 2020;48(2):204–11.PubMedCrossRef Kelman JC, Hodge C, Stanwell P, Mustafic N, Fraser CL. Retinal nerve fibre changes in sports-related repetitive traumatic brain injury. Clin Experiment Ophthalmol. 2020;48(2):204–11.PubMedCrossRef
43.
go back to reference Ng SY, Lee AYW. Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci. 2019;13. Ng SY, Lee AYW. Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci. 2019;13.
45.
go back to reference Brahm KD, Wilgenburg HM, Kirby J, Ingalla S, Chang C-Y, Goodrich GL. Visual impairment and dysfunction in combat-injured servicemembers with traumatic brain injury. Optometry Vision Sci. 2009;86(7). Brahm KD, Wilgenburg HM, Kirby J, Ingalla S, Chang C-Y, Goodrich GL. Visual impairment and dysfunction in combat-injured servicemembers with traumatic brain injury. Optometry Vision Sci. 2009;86(7).
46.
go back to reference Armstrong RA. Visual problems associated with traumatic brain injury. Clin Exp Optom. 2018;101(6):716–26.PubMedCrossRef Armstrong RA. Visual problems associated with traumatic brain injury. Clin Exp Optom. 2018;101(6):716–26.PubMedCrossRef
47.
go back to reference Scheff SW, Price DA, Hicks RR, Baldwin SA, Robinson S, Brackney C. Synaptogenesis in the hippocampal CA1 field following traumatic brain injury. J Neurotrauma. 2005;22(7):719–32.PubMedCrossRef Scheff SW, Price DA, Hicks RR, Baldwin SA, Robinson S, Brackney C. Synaptogenesis in the hippocampal CA1 field following traumatic brain injury. J Neurotrauma. 2005;22(7):719–32.PubMedCrossRef
48.
go back to reference Dickerson MR, Bailey ZS, Murphy SF, Urban MJ, VandeVord PJ. Glial activation in the thalamus contributes to vestibulomotor deficits following blast-induced neurotrauma. Front Neurol. 2020;11. Dickerson MR, Bailey ZS, Murphy SF, Urban MJ, VandeVord PJ. Glial activation in the thalamus contributes to vestibulomotor deficits following blast-induced neurotrauma. Front Neurol. 2020;11.
49.
go back to reference Jamjoom AAB, Rhodes J, Andrews PJD, Grant SGN. The synapse in traumatic brain injury. Brain. 2021;144(1):18–31.PubMedCrossRef Jamjoom AAB, Rhodes J, Andrews PJD, Grant SGN. The synapse in traumatic brain injury. Brain. 2021;144(1):18–31.PubMedCrossRef
50.
go back to reference Witkowski ED, Gao Y, Gavsyuk AF, Maor I, DeWalt GJ, Eldred WD, et al. Rapid changes in synaptic strength after mild traumatic brain injury. Front Cell Neurosci. 2019;13. Witkowski ED, Gao Y, Gavsyuk AF, Maor I, DeWalt GJ, Eldred WD, et al. Rapid changes in synaptic strength after mild traumatic brain injury. Front Cell Neurosci. 2019;13.
51.
go back to reference Hetzer SM, Shalosky EM, Torrens JN, Evanson NK. Chronic histological outcomes of indirect traumatic optic neuropathy in adolescent mice: persistent degeneration and temporally regulated glial responses. Cells. 2021;10(12). Hetzer SM, Shalosky EM, Torrens JN, Evanson NK. Chronic histological outcomes of indirect traumatic optic neuropathy in adolescent mice: persistent degeneration and temporally regulated glial responses. Cells. 2021;10(12).
52.
go back to reference Stewart AN, Lowe JL, Glaser EP, Mott CA, Shahidehpour RK, McFarlane KE, et al. Acute inflammatory profiles differ with sex and age after spinal cord injury. J Neuroinflamm. 2021;18(1). Stewart AN, Lowe JL, Glaser EP, Mott CA, Shahidehpour RK, McFarlane KE, et al. Acute inflammatory profiles differ with sex and age after spinal cord injury. J Neuroinflamm. 2021;18(1).
54.
go back to reference Priebe NJ, McGee AW. Mouse vision as a gateway for understanding how experience shapes neural circuits. Front Neural Circ. 2014;8. Priebe NJ, McGee AW. Mouse vision as a gateway for understanding how experience shapes neural circuits. Front Neural Circ. 2014;8.
55.
go back to reference Laramée M-E, Boire D. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates. Front Neural Circ. 2015;8. Laramée M-E, Boire D. Visual cortical areas of the mouse: comparison of parcellation and network structure with primates. Front Neural Circ. 2015;8.
56.
go back to reference van Erp IAM, van Essen TA, Fluiter K, van Zwet E, van Vliet P, Baas F, et al. Safety and efficacy of C1-inhibitor in traumatic brain injury (CIAO@TBI): study protocol for a randomized, placebo-controlled, multi-center trial. Trials. 2021;22(1). van Erp IAM, van Essen TA, Fluiter K, van Zwet E, van Vliet P, Baas F, et al. Safety and efficacy of C1-inhibitor in traumatic brain injury (CIAO@TBI): study protocol for a randomized, placebo-controlled, multi-center trial. Trials. 2021;22(1).
57.
go back to reference Huang Y, Qiao F, Atkinson C, Holers VM, Tomlinson S. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury1. J Immunol. 2008;181(11):8068–76.PubMedCrossRef Huang Y, Qiao F, Atkinson C, Holers VM, Tomlinson S. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury1. J Immunol. 2008;181(11):8068–76.PubMedCrossRef
58.
go back to reference Cole JT, Yarnell A, Kean WS, Gold E, Lewis B, Ren M, et al. Craniotomy: true sham for traumatic brain injury, or a Sham of a Sham? J Neurotrauma. 2010;28(3):359–69.CrossRef Cole JT, Yarnell A, Kean WS, Gold E, Lewis B, Ren M, et al. Craniotomy: true sham for traumatic brain injury, or a Sham of a Sham? J Neurotrauma. 2010;28(3):359–69.CrossRef
59.
go back to reference Fox MW. The visual cliff test for the study of visual depth perception in the mouse. Anim Behav. 1965;13(2):232-IN3. Fox MW. The visual cliff test for the study of visual depth perception in the mouse. Anim Behav. 1965;13(2):232-IN3.
60.
go back to reference Patil SS, Sunyer B, Höger H, Lubec G. Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav Brain Res. 2009;198(1):58–68.PubMedCrossRef Patil SS, Sunyer B, Höger H, Lubec G. Evaluation of spatial memory of C57BL/6J and CD1 mice in the Barnes maze, the Multiple T-maze and in the Morris water maze. Behav Brain Res. 2009;198(1):58–68.PubMedCrossRef
61.
go back to reference Ferguson LR, Dominguez Ii JM, Balaiya S, Grover S, Chalam KV. Retinal thickness normative data in wild-type mice using customized miniature SD-OCT. PLoS ONE. 2013;8(6): e67265.PubMedPubMedCentralCrossRef Ferguson LR, Dominguez Ii JM, Balaiya S, Grover S, Chalam KV. Retinal thickness normative data in wild-type mice using customized miniature SD-OCT. PLoS ONE. 2013;8(6): e67265.PubMedPubMedCentralCrossRef
62.
go back to reference Nayak D, Johnson KR, Heydari S, Roth TL, Zinselmeyer BH, McGavern DB. Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system. PLOS Pathog. 2013;9(5): e1003395.PubMedPubMedCentralCrossRef Nayak D, Johnson KR, Heydari S, Roth TL, Zinselmeyer BH, McGavern DB. Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system. PLOS Pathog. 2013;9(5): e1003395.PubMedPubMedCentralCrossRef
Metadata
Title
Complement propagates visual system pathology following traumatic brain injury
Authors
Davis M. Borucki
Baerbel Rohrer
Stephen Tomlinson
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2024
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-024-03098-4

Other articles of this Issue 1/2024

Journal of Neuroinflammation 1/2024 Go to the issue