Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2022

Open Access 01-12-2022 | Central Nervous System Trauma | Research

Temporal proteomics of human cerebrospinal fluid after severe traumatic brain injury

Authors: Sandy R. Shultz, Anup D. Shah, Cheng Huang, Larissa K. Dill, Ralf B. Schittenhelm, M. Cristina Morganti-Kossmann, Bridgette D. Semple

Published in: Journal of Neuroinflammation | Issue 1/2022

Login to get access

Abstract

The pathophysiology of traumatic brain injury (TBI) requires further characterization to fully elucidate changes in molecular pathways. Cerebrospinal fluid (CSF) provides a rich repository of brain-associated proteins. In this retrospective observational study, we implemented high-resolution mass spectrometry to evaluate changes to the CSF proteome after severe TBI. 91 CSF samples were analyzed with mass spectrometry, collected from 16 patients with severe TBI (mean 32 yrs; 81% male) on day 0, 1, 2, 4, 7 and/or 10 post-injury (8–16 samples/timepoint) and compared to CSF obtained from 11 non-injured controls. We quantified 1152 proteins with mass spectrometry, of which approximately 80% were associated with CSF. 1083 proteins were differentially regulated after TBI compared to control samples. The most highly-upregulated proteins at each timepoint included neutrophil elastase, myeloperoxidase, cathepsin G, matrix metalloproteinase-8, and S100 calcium-binding proteins A8, A9 and A12—all proteins involved in neutrophil activation, recruitment, and degranulation. Pathway enrichment analysis confirmed the robust upregulation of proteins associated with innate immune responses. Conversely, downregulated pathways included those involved in nervous system development, and several proteins not previously identified after TBI such as testican-1 and latrophilin-1. We also identified 7 proteins (GM2A, Calsyntenin 1, FAT2, GANAB, Lumican, NPTX1, SFRP2) positively associated with an unfavorable outcome at 6 months post-injury. Together, these findings highlight the robust innate immune response that occurs after severe TBI, supporting future studies to target neutrophil-related processes. In addition, the novel proteins we identified to be differentially regulated by severe TBI warrant further investigation as potential biomarkers of brain damage or therapeutic targets.
Literature
2.
go back to reference Colantonio A, Ratcliff G, Chase S, et al. Long-term outcomes after moderate to severe traumatic brain injury. Disabil Rehabil. 2004;26(5):253–61.CrossRef Colantonio A, Ratcliff G, Chase S, et al. Long-term outcomes after moderate to severe traumatic brain injury. Disabil Rehabil. 2004;26(5):253–61.CrossRef
4.
go back to reference Santacruz CA, Vincent JL, Bader A, et al. Association of cerebrospinal fluid protein biomarkers with outcomes in patients with traumatic and non-traumatic acute brain injury: systematic review of the literature. Crit Care (London, England). 2021;25(1):278.CrossRef Santacruz CA, Vincent JL, Bader A, et al. Association of cerebrospinal fluid protein biomarkers with outcomes in patients with traumatic and non-traumatic acute brain injury: systematic review of the literature. Crit Care (London, England). 2021;25(1):278.CrossRef
5.
go back to reference Romeo MJ, Espina V, Lowenthal M, et al. CSF proteome: a protein repository for potential biomarker identification. Expert Rev Proteomics. 2005;2(1):57–70.CrossRef Romeo MJ, Espina V, Lowenthal M, et al. CSF proteome: a protein repository for potential biomarker identification. Expert Rev Proteomics. 2005;2(1):57–70.CrossRef
6.
go back to reference Fried HI, Nathan BR, Rowe AS, et al. The insertion and management of external ventricular drains: an evidence-based consensus statement: a statement for healthcare professionals from the Neurocritical Care Society. Neurocrit Care. 2016;24(1):61–81.CrossRef Fried HI, Nathan BR, Rowe AS, et al. The insertion and management of external ventricular drains: an evidence-based consensus statement: a statement for healthcare professionals from the Neurocritical Care Society. Neurocrit Care. 2016;24(1):61–81.CrossRef
7.
go back to reference Jiang W, Jin P, Wei W, et al. Apoptosis in cerebrospinal fluid as outcome predictors in severe traumatic brain injury: an observational study. Medicine. 2020;99(26): e20922.CrossRef Jiang W, Jin P, Wei W, et al. Apoptosis in cerebrospinal fluid as outcome predictors in severe traumatic brain injury: an observational study. Medicine. 2020;99(26): e20922.CrossRef
8.
go back to reference Papa L, Robertson CS, Wang KK, et al. Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury. Neurocrit Care. 2015;22(1):52–64.CrossRef Papa L, Robertson CS, Wang KK, et al. Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury. Neurocrit Care. 2015;22(1):52–64.CrossRef
9.
go back to reference Böhmer AE, Oses JP, Schmidt AP, et al. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery. 2011;68(6):1624–30.CrossRef Böhmer AE, Oses JP, Schmidt AP, et al. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery. 2011;68(6):1624–30.CrossRef
10.
go back to reference Lindblad C, Nelson DW, Zeiler FA, et al. Influence of blood-brain barrier integrity on brain protein biomarker clearance in severe traumatic brain injury: a longitudinal prospective study. J Neurotrauma. 2020;37(12):1381–91.CrossRef Lindblad C, Nelson DW, Zeiler FA, et al. Influence of blood-brain barrier integrity on brain protein biomarker clearance in severe traumatic brain injury: a longitudinal prospective study. J Neurotrauma. 2020;37(12):1381–91.CrossRef
11.
go back to reference Csuka E, Morganti-Kossmann MC, Lenzlinger PM, et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol. 1999;101(2):211–21.CrossRef Csuka E, Morganti-Kossmann MC, Lenzlinger PM, et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-alpha, TGF-beta1 and blood-brain barrier function. J Neuroimmunol. 1999;101(2):211–21.CrossRef
12.
go back to reference Lindblad C, Pin E, Just D, et al. Fluid proteomics of CSF and serum reveal important neuroinflammatory proteins in blood-brain barrier disruption and outcome prediction following severe traumatic brain injury: a prospective, observational study. Crit Care. 2021;25(1):103.CrossRef Lindblad C, Pin E, Just D, et al. Fluid proteomics of CSF and serum reveal important neuroinflammatory proteins in blood-brain barrier disruption and outcome prediction following severe traumatic brain injury: a prospective, observational study. Crit Care. 2021;25(1):103.CrossRef
13.
go back to reference Kossmann T, Stahel PF, Morganti-Kossmann MC, et al. Elevated levels of the complement components C3 and factor B in ventricular cerebrospinal fluid of patients with traumatic brain injury. J Neuroimmunol. 1997;73(1–2):63–9.CrossRef Kossmann T, Stahel PF, Morganti-Kossmann MC, et al. Elevated levels of the complement components C3 and factor B in ventricular cerebrospinal fluid of patients with traumatic brain injury. J Neuroimmunol. 1997;73(1–2):63–9.CrossRef
14.
go back to reference Kossmann T, Stahel PF, Lenzlinger PM, et al. Interleukin-8 released into the cerebrospinal fluid after brain injury is associated with blood-brain barrier dysfunction and nerve growth factor production. J Cereb Blood Flow Metab. 1997;17(3):280–9.CrossRef Kossmann T, Stahel PF, Lenzlinger PM, et al. Interleukin-8 released into the cerebrospinal fluid after brain injury is associated with blood-brain barrier dysfunction and nerve growth factor production. J Cereb Blood Flow Metab. 1997;17(3):280–9.CrossRef
15.
go back to reference Lenzlinger PM, Hans VH, Jöller-Jemelka HI, et al. Markers for cell-mediated immune response are elevated in cerebrospinal fluid and serum after severe traumatic brain injury in humans. J Neurotrauma. 2001;18(5):479–89.CrossRef Lenzlinger PM, Hans VH, Jöller-Jemelka HI, et al. Markers for cell-mediated immune response are elevated in cerebrospinal fluid and serum after severe traumatic brain injury in humans. J Neurotrauma. 2001;18(5):479–89.CrossRef
16.
go back to reference Kossmann T, Hans V, Imhof HG, et al. Interleukin-6 released in human cerebrospinal fluid following traumatic brain injury may trigger nerve growth factor production in astrocytes. Brain Res. 1996;713(1–2):143–52.CrossRef Kossmann T, Hans V, Imhof HG, et al. Interleukin-6 released in human cerebrospinal fluid following traumatic brain injury may trigger nerve growth factor production in astrocytes. Brain Res. 1996;713(1–2):143–52.CrossRef
17.
go back to reference Phillips DJ, Nguyen P, Adamides AA, et al. Activin a release into cerebrospinal fluid in a subset of patients with severe traumatic brain injury. J Neurotrauma. 2006;23(9):1283–94.CrossRef Phillips DJ, Nguyen P, Adamides AA, et al. Activin a release into cerebrospinal fluid in a subset of patients with severe traumatic brain injury. J Neurotrauma. 2006;23(9):1283–94.CrossRef
18.
go back to reference Raby CA, Morganti-Kossmann MC, Kossmann T, et al. Traumatic brain injury increases beta-amyloid peptide 1–42 in cerebrospinal fluid. J Neurochem. 1998;71(6):2505–9.CrossRef Raby CA, Morganti-Kossmann MC, Kossmann T, et al. Traumatic brain injury increases beta-amyloid peptide 1–42 in cerebrospinal fluid. J Neurochem. 1998;71(6):2505–9.CrossRef
19.
go back to reference Pleines UE, Morganti-Kossmann MC, Rancan M, et al. S-100 beta reflects the extent of injury and outcome, whereas neuronal specific enolase is a better indicator of neuroinflammation in patients with severe traumatic brain injury. J Neurotrauma. 2001;18(5):491–8.CrossRef Pleines UE, Morganti-Kossmann MC, Rancan M, et al. S-100 beta reflects the extent of injury and outcome, whereas neuronal specific enolase is a better indicator of neuroinflammation in patients with severe traumatic brain injury. J Neurotrauma. 2001;18(5):491–8.CrossRef
20.
go back to reference Yan EB, Frugier T, Lim CK, et al. Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans. J Neuroinflammation. 2015;12:110.CrossRef Yan EB, Frugier T, Lim CK, et al. Activation of the kynurenine pathway and increased production of the excitotoxin quinolinic acid following traumatic brain injury in humans. J Neuroinflammation. 2015;12:110.CrossRef
21.
go back to reference Yan EB, Satgunaseelan L, Paul E, et al. Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma. 2014;31:618–29.CrossRef Yan EB, Satgunaseelan L, Paul E, et al. Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J Neurotrauma. 2014;31:618–29.CrossRef
22.
go back to reference Wilson JT, Pettigrew LE, Teasdale GM. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: guidelines for their use. J Neurotrauma. 1998;15(8):573–85.CrossRef Wilson JT, Pettigrew LE, Teasdale GM. Structured interviews for the Glasgow Outcome Scale and the extended Glasgow Outcome Scale: guidelines for their use. J Neurotrauma. 1998;15(8):573–85.CrossRef
23.
go back to reference Macron C, Núñez Galindo A, Cominetti O, et al. A versatile workflow for cerebrospinal fluid proteomic analysis with mass spectrometry: a matter of choice between deep coverage and sample throughput. In: Santamaría E, Fernández-Irigoyen J, editors., et al., Cerebrospinal Fluid (CSF) proteomics: methods and protocols. New York: Springer; 2019. Macron C, Núñez Galindo A, Cominetti O, et al. A versatile workflow for cerebrospinal fluid proteomic analysis with mass spectrometry: a matter of choice between deep coverage and sample throughput. In: Santamaría E, Fernández-Irigoyen J, editors., et al., Cerebrospinal Fluid (CSF) proteomics: methods and protocols. New York: Springer; 2019.
24.
go back to reference Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301–19.CrossRef Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016;11(12):2301–19.CrossRef
25.
go back to reference Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.CrossRef Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7): e47.CrossRef
26.
go back to reference Macron C, Lane L, Galindo AN, et al. Deep dive on the proteome of human cerebrospinal fluid: a valuable data resource for biomarker discovery and missing protein identification. J Proteome Res. 2018;17:4113–26.CrossRef Macron C, Lane L, Galindo AN, et al. Deep dive on the proteome of human cerebrospinal fluid: a valuable data resource for biomarker discovery and missing protein identification. J Proteome Res. 2018;17:4113–26.CrossRef
27.
go back to reference Hudak AM, Caesar RR, Frol AB, et al. Functional outcome scales in traumatic brain injury: a comparison of the Glasgow Outcome Scale (Extended) and the functional status examination. J Neurotrauma. 2005;22(11):1319–26.CrossRef Hudak AM, Caesar RR, Frol AB, et al. Functional outcome scales in traumatic brain injury: a comparison of the Glasgow Outcome Scale (Extended) and the functional status examination. J Neurotrauma. 2005;22(11):1319–26.CrossRef
28.
go back to reference Marshall LF, Marshall SB, Klauber MR, et al. A new classification of head injury based on computerized tomography. Spec Suppl. 1991;75:S14–20. Marshall LF, Marshall SB, Klauber MR, et al. A new classification of head injury based on computerized tomography. Spec Suppl. 1991;75:S14–20.
29.
go back to reference Morganti-Kossmann MC, Hans VH, Lenzlinger PM, et al. TGF-beta is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood-brain barrier function. J Neurotrauma. 1999;16(7):617–28.CrossRef Morganti-Kossmann MC, Hans VH, Lenzlinger PM, et al. TGF-beta is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood-brain barrier function. J Neurotrauma. 1999;16(7):617–28.CrossRef
30.
go back to reference Zheng K, Li C, Shan X, et al. Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with moderate and severe traumatic brain injury. Neurol India. 2013;61(6):606–9.CrossRef Zheng K, Li C, Shan X, et al. Matrix metalloproteinases and their tissue inhibitors in serum and cerebrospinal fluid of patients with moderate and severe traumatic brain injury. Neurol India. 2013;61(6):606–9.CrossRef
31.
go back to reference McDonald SJ, O’Brien WT, Symons GF, et al. Prolonged elevation of serum neurofilament light after concussion in male Australian football players. Biomarker Res. 2021;9(1):4.CrossRef McDonald SJ, O’Brien WT, Symons GF, et al. Prolonged elevation of serum neurofilament light after concussion in male Australian football players. Biomarker Res. 2021;9(1):4.CrossRef
32.
go back to reference Hellewell SC, Mondello S, Conquest A, et al. Erythropoietin does not alter serum profiles of neuronal and axonal biomarkers after traumatic brain injury: findings from the Australian EPO-TBI clinical trial. Crit Care Med. 2018;46(4):554–61.CrossRef Hellewell SC, Mondello S, Conquest A, et al. Erythropoietin does not alter serum profiles of neuronal and axonal biomarkers after traumatic brain injury: findings from the Australian EPO-TBI clinical trial. Crit Care Med. 2018;46(4):554–61.CrossRef
33.
go back to reference Shangguan Y, Xu X, Ganbat B, et al. CNTNAP4 impacts epilepsy through GABAA receptors regulation: evidence from temporal lobe epilepsy patients and mouse models. Cereb Cortex. 2018;28(10):3491–504.CrossRef Shangguan Y, Xu X, Ganbat B, et al. CNTNAP4 impacts epilepsy through GABAA receptors regulation: evidence from temporal lobe epilepsy patients and mouse models. Cereb Cortex. 2018;28(10):3491–504.CrossRef
34.
go back to reference Lee Y, Lee W, Chang HH, et al. Testican-1, as a novel diagnosis of sepsis. J Cell Biochem. 2018;119(5):4216–23.CrossRef Lee Y, Lee W, Chang HH, et al. Testican-1, as a novel diagnosis of sepsis. J Cell Biochem. 2018;119(5):4216–23.CrossRef
35.
go back to reference Silva JP, Lelianova VG, Ermolyuk YS, et al. Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci USA. 2011;108(29):12113–8.CrossRef Silva JP, Lelianova VG, Ermolyuk YS, et al. Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci USA. 2011;108(29):12113–8.CrossRef
36.
go back to reference Proenca CC, Gao KP, Shmelkov SV, et al. Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends Neurosci. 2011;34(3):143–53.CrossRef Proenca CC, Gao KP, Shmelkov SV, et al. Slitrks as emerging candidate genes involved in neuropsychiatric disorders. Trends Neurosci. 2011;34(3):143–53.CrossRef
37.
go back to reference Marques TM, van Rumund A, Kersten I, et al. Identification of cerebrospinal fluid biomarkers for parkinsonism using a proteomics approach. NPJ Parkinsons Dis. 2021;7(1):107.CrossRef Marques TM, van Rumund A, Kersten I, et al. Identification of cerebrospinal fluid biomarkers for parkinsonism using a proteomics approach. NPJ Parkinsons Dis. 2021;7(1):107.CrossRef
38.
go back to reference Lambert de Rouvroit C, Goffinet AM. The reeler mouse as a model of brain development. Adv Anat Embryol Cell Biol. 1998;150:1–106.CrossRef Lambert de Rouvroit C, Goffinet AM. The reeler mouse as a model of brain development. Adv Anat Embryol Cell Biol. 1998;150:1–106.CrossRef
40.
go back to reference Thelin EP, Zeiler FA, Ercole A, et al. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: a systematic review. Front Neurol. 2017;8:300.CrossRef Thelin EP, Zeiler FA, Ercole A, et al. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: a systematic review. Front Neurol. 2017;8:300.CrossRef
41.
go back to reference Nwachuku EL, Puccio AM, Adeboye A, et al. Time course of cerebrospinal fluid inflammatory biomarkers and relationship to 6-month neurologic outcome in adult severe traumatic brain injury. Clin Neurol Neurosurg. 2016;149:1–5.CrossRef Nwachuku EL, Puccio AM, Adeboye A, et al. Time course of cerebrospinal fluid inflammatory biomarkers and relationship to 6-month neurologic outcome in adult severe traumatic brain injury. Clin Neurol Neurosurg. 2016;149:1–5.CrossRef
42.
go back to reference Tardif MR, Chapeton-Montes JA, Posvandzic A, et al. Secretion of S100A8, S100A9, and S100A12 by neutrophils involves reactive oxygen species and potassium efflux. J Immunol Res. 2015;2015: 296149.CrossRef Tardif MR, Chapeton-Montes JA, Posvandzic A, et al. Secretion of S100A8, S100A9, and S100A12 by neutrophils involves reactive oxygen species and potassium efflux. J Immunol Res. 2015;2015: 296149.CrossRef
43.
go back to reference Korkmaz B, Moreau T, Gauthier F. Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie. 2008;90(2):227–42.CrossRef Korkmaz B, Moreau T, Gauthier F. Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie. 2008;90(2):227–42.CrossRef
44.
go back to reference Qiu X, Ping S, Kyle M, et al. S100 calcium-binding protein A9 knockout contributes to neuroprotection and functional improvement after traumatic brain injury. J Neurotrauma. 2020;37(7):950–65.CrossRef Qiu X, Ping S, Kyle M, et al. S100 calcium-binding protein A9 knockout contributes to neuroprotection and functional improvement after traumatic brain injury. J Neurotrauma. 2020;37(7):950–65.CrossRef
45.
go back to reference He GY, Zhao CH, Wu DG, et al. S100A8 promotes inflammation via toll-like receptor 4 after experimental traumatic brain injury. Front Neurosci. 2020;14: 616559.CrossRef He GY, Zhao CH, Wu DG, et al. S100A8 promotes inflammation via toll-like receptor 4 after experimental traumatic brain injury. Front Neurosci. 2020;14: 616559.CrossRef
46.
go back to reference Feng MJ, Ning WB, Wang W, et al. Serum S100A12 as a prognostic biomarker of severe traumatic brain injury. Clin Chim Acta. 2018;480:84–91.CrossRef Feng MJ, Ning WB, Wang W, et al. Serum S100A12 as a prognostic biomarker of severe traumatic brain injury. Clin Chim Acta. 2018;480:84–91.CrossRef
47.
go back to reference Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation. 2018;15(1):146.CrossRef Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation. 2018;15(1):146.CrossRef
48.
go back to reference von Leden RE, Parker KN, Bates AA, et al. The emerging role of neutrophils as modifiers of recovery after traumatic injury to the developing brain. Exp Neurol. 2019;317:144–54.CrossRef von Leden RE, Parker KN, Bates AA, et al. The emerging role of neutrophils as modifiers of recovery after traumatic injury to the developing brain. Exp Neurol. 2019;317:144–54.CrossRef
49.
go back to reference Bao F, Shultz SR, Hepburn JD, et al. A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats. J Neurotrauma. 2012;29(14):2375–92.CrossRef Bao F, Shultz SR, Hepburn JD, et al. A CD11d monoclonal antibody treatment reduces tissue injury and improves neurological outcome after fluid percussion brain injury in rats. J Neurotrauma. 2012;29(14):2375–92.CrossRef
50.
go back to reference Semple BD, Trivedi A, Gimlin K, et al. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain. Neurobiol Dis. 2015;74:263–80.CrossRef Semple BD, Trivedi A, Gimlin K, et al. Neutrophil elastase mediates acute pathogenesis and is a determinant of long-term behavioral recovery after traumatic injury to the immature brain. Neurobiol Dis. 2015;74:263–80.CrossRef
51.
go back to reference Semple BD, Bye N, Ziebell JM, et al. Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol Dis. 2010;40:394–403.CrossRef Semple BD, Bye N, Ziebell JM, et al. Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol Dis. 2010;40:394–403.CrossRef
52.
go back to reference Webster KM, Sun M, Crack P, et al. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation. 2017;14(1):10.CrossRef Webster KM, Sun M, Crack P, et al. Inflammation in epileptogenesis after traumatic brain injury. J Neuroinflammation. 2017;14(1):10.CrossRef
53.
go back to reference Al Shweiki MR, Oeckl P, Steinacker P, et al. Proteomic analysis reveals a biosignature of decreased synaptic protein in cerebrospinal fluid of major depressive disorder. Transl Psychiatry. 2020;10(1):144.CrossRef Al Shweiki MR, Oeckl P, Steinacker P, et al. Proteomic analysis reveals a biosignature of decreased synaptic protein in cerebrospinal fluid of major depressive disorder. Transl Psychiatry. 2020;10(1):144.CrossRef
54.
go back to reference Brady RD, Casillas-Espinosa PM, Agoston DV, et al. Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiol Dis. 2019;123:8–19.CrossRef Brady RD, Casillas-Espinosa PM, Agoston DV, et al. Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiol Dis. 2019;123:8–19.CrossRef
55.
go back to reference Tubi MA, Lutkenhoff E, Blanco MB, et al. Early seizures and temporal lobe trauma predict post-traumatic epilepsy: a longitudinal study. Neurobiol Dis. 2019;123:115–21.CrossRef Tubi MA, Lutkenhoff E, Blanco MB, et al. Early seizures and temporal lobe trauma predict post-traumatic epilepsy: a longitudinal study. Neurobiol Dis. 2019;123:115–21.CrossRef
56.
go back to reference Pedrero-Prieto CM, Frontiñán-Rubio J, Alcaín FJ, et al. Biological significance of the protein changes occurring in the cerebrospinal fluid of Alzheimer’s disease patients getting clues from proteomic studies. Diagnostics. 2021;11(9):ENEURO.0294-16.2016.CrossRef Pedrero-Prieto CM, Frontiñán-Rubio J, Alcaín FJ, et al. Biological significance of the protein changes occurring in the cerebrospinal fluid of Alzheimer’s disease patients getting clues from proteomic studies. Diagnostics. 2021;11(9):ENEURO.0294-16.2016.CrossRef
57.
go back to reference Khoonsari PE, Häggmark A, Lönnberg M, et al. Analysis of the cerebrospinal fluid proteome in Alzheimer’s disease. PLoS ONE. 2016;11(3): e0150672.CrossRef Khoonsari PE, Häggmark A, Lönnberg M, et al. Analysis of the cerebrospinal fluid proteome in Alzheimer’s disease. PLoS ONE. 2016;11(3): e0150672.CrossRef
58.
go back to reference Dal Pozzo V, Crowell B, Briski N, et al. Reduced reelin expression in the hippocampus after traumatic brain injury. Biomolecules. 2020;10(7):975.CrossRef Dal Pozzo V, Crowell B, Briski N, et al. Reduced reelin expression in the hippocampus after traumatic brain injury. Biomolecules. 2020;10(7):975.CrossRef
59.
go back to reference Brymer KJ, Johnston J, Botterill JJ, et al. Fast-acting antidepressant-like effects of Reelin evaluated in the repeated-corticosterone chronic stress paradigm. Neuropsychopharmacology. 2020;45(10):1707–16.CrossRef Brymer KJ, Johnston J, Botterill JJ, et al. Fast-acting antidepressant-like effects of Reelin evaluated in the repeated-corticosterone chronic stress paradigm. Neuropsychopharmacology. 2020;45(10):1707–16.CrossRef
60.
go back to reference Baron O, Grieshober D, Dias C, et al. Fat cadherins in mouse models of degenerative ataxias. Sci Rep. 2019;9(1):16155.CrossRef Baron O, Grieshober D, Dias C, et al. Fat cadherins in mouse models of degenerative ataxias. Sci Rep. 2019;9(1):16155.CrossRef
61.
go back to reference Sjödin S, Brinkmalm G, Öhrfelt A, et al. Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer’s and Parkinson’s disease. Alzheimers Res Ther. 2019;11(1):82.CrossRef Sjödin S, Brinkmalm G, Öhrfelt A, et al. Endo-lysosomal proteins and ubiquitin CSF concentrations in Alzheimer’s and Parkinson’s disease. Alzheimers Res Ther. 2019;11(1):82.CrossRef
62.
go back to reference Lleó A, Núñez-Llaves R, Alcolea D, et al. Changes in synaptic proteins precede neurodegeneration markers in preclinical Alzheimer’s disease cerebrospinal fluid. Mol Cell Proteom. 2019;18(3):546–60.CrossRef Lleó A, Núñez-Llaves R, Alcolea D, et al. Changes in synaptic proteins precede neurodegeneration markers in preclinical Alzheimer’s disease cerebrospinal fluid. Mol Cell Proteom. 2019;18(3):546–60.CrossRef
64.
go back to reference Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, et al. A comprehensive systematic review of CSF proteins and peptides that define Alzheimer’s disease. Clin Proteomics. 2020;17:21.CrossRef Pedrero-Prieto CM, García-Carpintero S, Frontiñán-Rubio J, et al. A comprehensive systematic review of CSF proteins and peptides that define Alzheimer’s disease. Clin Proteomics. 2020;17:21.CrossRef
65.
go back to reference van der Ende EL, Xiao M, Xu D, et al. Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2020;91(6):612–21.CrossRef van der Ende EL, Xiao M, Xu D, et al. Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2020;91(6):612–21.CrossRef
66.
go back to reference Baird GS, Nelson SK, Keeney TR, et al. Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am J Pathol. 2012;180(2):446–56.CrossRef Baird GS, Nelson SK, Keeney TR, et al. Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am J Pathol. 2012;180(2):446–56.CrossRef
67.
go back to reference Garton MJ, Keir G, Lakshmi MV, et al. Age-related changes in cerebrospinal fluid protein concentrations. J Neurol Sci. 1991;104(1):74–80.CrossRef Garton MJ, Keir G, Lakshmi MV, et al. Age-related changes in cerebrospinal fluid protein concentrations. J Neurol Sci. 1991;104(1):74–80.CrossRef
Metadata
Title
Temporal proteomics of human cerebrospinal fluid after severe traumatic brain injury
Authors
Sandy R. Shultz
Anup D. Shah
Cheng Huang
Larissa K. Dill
Ralf B. Schittenhelm
M. Cristina Morganti-Kossmann
Bridgette D. Semple
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2022
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/s12974-022-02654-0

Other articles of this Issue 1/2022

Journal of Neuroinflammation 1/2022 Go to the issue