Skip to main content
Top
Published in: Clinical Pharmacokinetics 9/2021

01-09-2021 | Cefoxitin | Review Article

Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Drug Treatment of Non-Tuberculous Mycobacteria in Cystic Fibrosis

Authors: Andrew Burke, Daniel Smith, Chris Coulter, Scott C. Bell, Rachel Thomson, Jason A. Roberts

Published in: Clinical Pharmacokinetics | Issue 9/2021

Login to get access

Abstract

Non-tuberculous mycobacteria (NTM) are an emerging group of pulmonary infectious pathogens of increasing importance to the management of patients with cystic fibrosis (CF). NTM include slow-growing mycobacteria such as Mycobacterium avium complex (MAC) and rapidly growing mycobacteria such as Mycobacterium abscessus. The incidence of NTM in the CF population is increasing and infection contributes to significant morbidity to the patient and costs to the health system. Treating M. abscessus requires the combination of multiple costly antibiotics for months, with potentially significant toxicity associated with treatment. Although international guidelines for the treatment of NTM infection in CF are available, there are a lack of robust pharmacokinetic studies in CF patients to inform dosing and drug choice. This paper aims to outline the pharmacokinetic and pharmacodynamic factors informing the optimal treatment of NTM infections in CF.
Literature
1.
go back to reference Bulitta JB, Jiao Y, Drescher SK, Oliver A, Louie A, Moya B, et al. Four decades of beta-lactam antibiotic pharmacokinetics in cystic fibrosis. Clin Pharmacokinet. 2019;58(2):143–56.PubMedCrossRef Bulitta JB, Jiao Y, Drescher SK, Oliver A, Louie A, Moya B, et al. Four decades of beta-lactam antibiotic pharmacokinetics in cystic fibrosis. Clin Pharmacokinet. 2019;58(2):143–56.PubMedCrossRef
2.
go back to reference Rivosecchi RM, Samanta P, Demehin M, Nguyen MH. Pharmacokinetics of azole antifungals in cystic fibrosis. Mycopathologia. 2018;183(1):139–50.PubMedCrossRef Rivosecchi RM, Samanta P, Demehin M, Nguyen MH. Pharmacokinetics of azole antifungals in cystic fibrosis. Mycopathologia. 2018;183(1):139–50.PubMedCrossRef
3.
go back to reference Rey E, Treluyer JM, Pons G. Drug disposition in cystic fibrosis. Clin Pharmacokinet. 1998;35(4):313–29.PubMedCrossRef Rey E, Treluyer JM, Pons G. Drug disposition in cystic fibrosis. Clin Pharmacokinet. 1998;35(4):313–29.PubMedCrossRef
4.
go back to reference Prandota J. Clinical pharmacology of antibiotics and other drugs in cystic fibrosis. Drugs. 1988;35(5):542–78.PubMedCrossRef Prandota J. Clinical pharmacology of antibiotics and other drugs in cystic fibrosis. Drugs. 1988;35(5):542–78.PubMedCrossRef
5.
go back to reference Kalscheuer R, Palacios A, Anso I, Cifuente J, Anguita J, Jacobs WR Jr, et al. The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem J. 2019;476(14):1995–2016.PubMedCrossRef Kalscheuer R, Palacios A, Anso I, Cifuente J, Anguita J, Jacobs WR Jr, et al. The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem J. 2019;476(14):1995–2016.PubMedCrossRef
6.
go back to reference Adjemian J, Olivier KN, Prevots DR. Epidemiology of pulmonary nontuberculous Mycobacterial sputum positivity in patients with cystic fibrosis in the United States, 2010–2014. Ann Am Thorac Soc. 2018;15(7):817–26.PubMedPubMedCentralCrossRef Adjemian J, Olivier KN, Prevots DR. Epidemiology of pulmonary nontuberculous Mycobacterial sputum positivity in patients with cystic fibrosis in the United States, 2010–2014. Ann Am Thorac Soc. 2018;15(7):817–26.PubMedPubMedCentralCrossRef
7.
go back to reference Leung JM, Olivier KN. Nontuberculous mycobacteria: the changing epidemiology and treatment challenges in cystic fibrosis. Curr Opin Pulm Med. 2013;19(6):662–9.PubMedPubMedCentralCrossRef Leung JM, Olivier KN. Nontuberculous mycobacteria: the changing epidemiology and treatment challenges in cystic fibrosis. Curr Opin Pulm Med. 2013;19(6):662–9.PubMedPubMedCentralCrossRef
8.
go back to reference Ratnatunga CN, Lutzky VP, Kupz A, Doolan DL, Reid DW, Field M, et al. The rise of non-tuberculosis mycobacterial lung disease. Front Immunol. 2020;11:303.PubMedPubMedCentralCrossRef Ratnatunga CN, Lutzky VP, Kupz A, Doolan DL, Reid DW, Field M, et al. The rise of non-tuberculosis mycobacterial lung disease. Front Immunol. 2020;11:303.PubMedPubMedCentralCrossRef
9.
go back to reference Sherrard LJ, Tay GT, Butler CA, Wood ME, Yerkovich S, Ramsay KA, et al. Tropical Australia is a potential reservoir of non-tuberculous mycobacteria in cystic fibrosis. Eur Respir J. 2017;49(5):1700046.PubMedCrossRef Sherrard LJ, Tay GT, Butler CA, Wood ME, Yerkovich S, Ramsay KA, et al. Tropical Australia is a potential reservoir of non-tuberculous mycobacteria in cystic fibrosis. Eur Respir J. 2017;49(5):1700046.PubMedCrossRef
10.
go back to reference Gardner AI, McClenaghan E, Saint G, McNamara PS, Brodlie M, Thomas MF. Epidemiology of nontuberculous mycobacteria infection in children and young people with cystic fibrosis: analysis of UK cystic fibrosis registry. Clin Infect Dis. 2019;68(5):731–7.PubMedCrossRef Gardner AI, McClenaghan E, Saint G, McNamara PS, Brodlie M, Thomas MF. Epidemiology of nontuberculous mycobacteria infection in children and young people with cystic fibrosis: analysis of UK cystic fibrosis registry. Clin Infect Dis. 2019;68(5):731–7.PubMedCrossRef
11.
go back to reference Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2016;71(Suppl 1):i1-22.PubMedCrossRef Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2016;71(Suppl 1):i1-22.PubMedCrossRef
12.
go back to reference Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, et al. British Thoracic Society Guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ open respiratory research. 2017;4(1):e000242.PubMedPubMedCentralCrossRef Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, et al. British Thoracic Society Guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). BMJ open respiratory research. 2017;4(1):e000242.PubMedPubMedCentralCrossRef
13.
go back to reference Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416.PubMedCrossRef Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416.PubMedCrossRef
14.
go back to reference Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary. Thorax. 2016;71(1):88–90.PubMedCrossRef Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary. Thorax. 2016;71(1):88–90.PubMedCrossRef
15.
go back to reference Koh WJ, Jeong BH, Jeon K, Kim SY, Park KU, Park HY, et al. Oral macrolide therapy following short-term combination antibiotic treatment for Mycobacterium massiliense lung disease. Chest. 2016;150(6):1211–21.PubMedCrossRef Koh WJ, Jeong BH, Jeon K, Kim SY, Park KU, Park HY, et al. Oral macrolide therapy following short-term combination antibiotic treatment for Mycobacterium massiliense lung disease. Chest. 2016;150(6):1211–21.PubMedCrossRef
16.
go back to reference Koh WJ, Jeong BH, Kim SY, Jeon K, Park KU, Jhun BW, et al. Mycobacterial characteristics and treatment outcomes in Mycobacterium abscessus lung disease. Clin Infect Dis. 2017;64(3):309–16.PubMedCrossRef Koh WJ, Jeong BH, Kim SY, Jeon K, Park KU, Jhun BW, et al. Mycobacterial characteristics and treatment outcomes in Mycobacterium abscessus lung disease. Clin Infect Dis. 2017;64(3):309–16.PubMedCrossRef
17.
go back to reference Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax. 2017;72(Suppl 2):ii1–64.PubMedCrossRef Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax. 2017;72(Suppl 2):ii1–64.PubMedCrossRef
18.
go back to reference Goutelle S, Bourguignon L, Maire P, Jelliffe RW, Neely MN. The case for using higher doses of first line anti-tuberculosis drugs to optimize efficacy. Curr Pharm Des. 2014;20(39):6191–206.PubMedCrossRef Goutelle S, Bourguignon L, Maire P, Jelliffe RW, Neely MN. The case for using higher doses of first line anti-tuberculosis drugs to optimize efficacy. Curr Pharm Des. 2014;20(39):6191–206.PubMedCrossRef
19.
go back to reference Sekaggya-Wiltshire C, Lamorde M, Kiragga AN, Dooley KE, Kamya MR, Kambugu A, et al. The utility of pharmacokinetic studies for the evaluation of exposure-response relationships for standard dose anti-tuberculosis drugs. Tuberculosis (Edinburgh). 2018;108:77–82.CrossRef Sekaggya-Wiltshire C, Lamorde M, Kiragga AN, Dooley KE, Kamya MR, Kambugu A, et al. The utility of pharmacokinetic studies for the evaluation of exposure-response relationships for standard dose anti-tuberculosis drugs. Tuberculosis (Edinburgh). 2018;108:77–82.CrossRef
20.
go back to reference Fernandez-Roblas R, Martin-de-Hijas NZ, Fernandez-Martinez AI, Garcia-Almeida D, Gadea I, Esteban J. In vitro activities of tigecycline and 10 other antimicrobials against nonpigmented rapidly growing mycobacteria. Antimicrob Agents Chemother. 2008;52(11):4184–6.PubMedPubMedCentralCrossRef Fernandez-Roblas R, Martin-de-Hijas NZ, Fernandez-Martinez AI, Garcia-Almeida D, Gadea I, Esteban J. In vitro activities of tigecycline and 10 other antimicrobials against nonpigmented rapidly growing mycobacteria. Antimicrob Agents Chemother. 2008;52(11):4184–6.PubMedPubMedCentralCrossRef
21.
go back to reference van Ingen J, Egelund EF, Levin A, Totten SE, Boeree MJ, Mouton JW, et al. The pharmacokinetics and pharmacodynamics of pulmonary Mycobacterium avium complex disease treatment. Am J Respir Crit Care Med. 2012;186(6):559–65.PubMedCrossRef van Ingen J, Egelund EF, Levin A, Totten SE, Boeree MJ, Mouton JW, et al. The pharmacokinetics and pharmacodynamics of pulmonary Mycobacterium avium complex disease treatment. Am J Respir Crit Care Med. 2012;186(6):559–65.PubMedCrossRef
22.
go back to reference Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline: executive summary. Clin Infect Dis. 2020;71(4):905–13.PubMedPubMedCentralCrossRef Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline: executive summary. Clin Infect Dis. 2020;71(4):905–13.PubMedPubMedCentralCrossRef
23.
go back to reference Schon T, Matuschek E, Mohamed S, Utukuri M, Heysell S, Alffenaar JW, et al. Standards for MIC testing that apply to the majority of bacterial pathogens should also be enforced for Mycobacterium tuberculosis complex. Clin Microbiol Infect. 2019;25(4):403–5.PubMedPubMedCentralCrossRef Schon T, Matuschek E, Mohamed S, Utukuri M, Heysell S, Alffenaar JW, et al. Standards for MIC testing that apply to the majority of bacterial pathogens should also be enforced for Mycobacterium tuberculosis complex. Clin Microbiol Infect. 2019;25(4):403–5.PubMedPubMedCentralCrossRef
24.
go back to reference Li L, Somerset S. Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy. Dig Liver Dis. 2014;46(10):865–74.PubMedCrossRef Li L, Somerset S. Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy. Dig Liver Dis. 2014;46(10):865–74.PubMedCrossRef
25.
go back to reference Molloy L, Nichols K. Infectious Diseases Pharmacotherapy for Children With Cystic Fibrosis. J Pediatric Health Care. 2015;29(6):565–78 (quiz 79–80).CrossRef Molloy L, Nichols K. Infectious Diseases Pharmacotherapy for Children With Cystic Fibrosis. J Pediatric Health Care. 2015;29(6):565–78 (quiz 79–80).CrossRef
26.
go back to reference Oshikoya KA, Senbanjo IO. Pathophysiological changes that affect drug disposition in protein-energy malnourished children. Nutr Metab. 2009;6:50.CrossRef Oshikoya KA, Senbanjo IO. Pathophysiological changes that affect drug disposition in protein-energy malnourished children. Nutr Metab. 2009;6:50.CrossRef
27.
go back to reference Vinks AA, van Rossem RN, Mathot RA, Heijerman HG, Mouton JW. Pharmacokinetics of aztreonam in healthy subjects and patients with cystic fibrosis and evaluation of dose-exposure relationships using monte carlo simulation. Antimicrob Agents Chemother. 2007;51(9):3049–55.PubMedPubMedCentralCrossRef Vinks AA, van Rossem RN, Mathot RA, Heijerman HG, Mouton JW. Pharmacokinetics of aztreonam in healthy subjects and patients with cystic fibrosis and evaluation of dose-exposure relationships using monte carlo simulation. Antimicrob Agents Chemother. 2007;51(9):3049–55.PubMedPubMedCentralCrossRef
28.
go back to reference Oshikoya KA, Senbanjo IO. Caution when treating tuberculosis in malnourished children. Arch Dis Child. 2018;103(12):1101–3.PubMedCrossRef Oshikoya KA, Senbanjo IO. Caution when treating tuberculosis in malnourished children. Arch Dis Child. 2018;103(12):1101–3.PubMedCrossRef
29.
go back to reference Oshikoya KA, Sammons HM, Choonara I. A systematic review of pharmacokinetics studies in children with protein-energy malnutrition. Eur J Clin Pharmacol. 2010;66(10):1025–35.PubMedCrossRef Oshikoya KA, Sammons HM, Choonara I. A systematic review of pharmacokinetics studies in children with protein-energy malnutrition. Eur J Clin Pharmacol. 2010;66(10):1025–35.PubMedCrossRef
30.
go back to reference Beringer P, Huynh KM, Kriengkauykiat J, Bi L, Hoem N, Louie S, et al. Absolute bioavailability and intracellular pharmacokinetics of azithromycin in patients with cystic fibrosis. Antimicrob Agents Chemother. 2005;49(12):5013–7.PubMedPubMedCentralCrossRef Beringer P, Huynh KM, Kriengkauykiat J, Bi L, Hoem N, Louie S, et al. Absolute bioavailability and intracellular pharmacokinetics of azithromycin in patients with cystic fibrosis. Antimicrob Agents Chemother. 2005;49(12):5013–7.PubMedPubMedCentralCrossRef
31.
go back to reference Beringer PM, Owens H, Nguyen A, Benitez D, Rao A, D’Argenio DZ. Pharmacokinetics of doxycycline in adults with cystic fibrosis. Antimicrob Agents Chemother. 2012;56(1):70–4.PubMedPubMedCentralCrossRef Beringer PM, Owens H, Nguyen A, Benitez D, Rao A, D’Argenio DZ. Pharmacokinetics of doxycycline in adults with cystic fibrosis. Antimicrob Agents Chemother. 2012;56(1):70–4.PubMedPubMedCentralCrossRef
32.
go back to reference Healy DP, Brodbeck MC, Clendening CE. Ciprofloxacin absorption is impaired in patients given enteral feedings orally and via gastrostomy and jejunostomy tubes. Antimicrob Agents Chemother. 1996;40(1):6–10.PubMedPubMedCentralCrossRef Healy DP, Brodbeck MC, Clendening CE. Ciprofloxacin absorption is impaired in patients given enteral feedings orally and via gastrostomy and jejunostomy tubes. Antimicrob Agents Chemother. 1996;40(1):6–10.PubMedPubMedCentralCrossRef
34.
go back to reference Leeuwen L, Fitzgerald DA, Gaskin KJ. Liver disease in cystic fibrosis. Paediatr Respir Rev. 2014;15(1):69–74.PubMed Leeuwen L, Fitzgerald DA, Gaskin KJ. Liver disease in cystic fibrosis. Paediatr Respir Rev. 2014;15(1):69–74.PubMed
35.
go back to reference Haack A, Aragao GG, Novaes MR. Pathophysiology of cystic fibrosis and drugs used in associated digestive tract diseases. World J Gastroenterol. 2013;19(46):8552–61.PubMedPubMedCentralCrossRef Haack A, Aragao GG, Novaes MR. Pathophysiology of cystic fibrosis and drugs used in associated digestive tract diseases. World J Gastroenterol. 2013;19(46):8552–61.PubMedPubMedCentralCrossRef
36.
go back to reference Brater DC. Measurement of renal function during drug development. Br J Clin Pharmacol. 2002;54(1):87–95.PubMedCrossRef Brater DC. Measurement of renal function during drug development. Br J Clin Pharmacol. 2002;54(1):87–95.PubMedCrossRef
38.
go back to reference Prestidge C, Chilvers MA, Davidson AG, Cho E, McMahon V, White CT. Renal function in pediatric cystic fibrosis patients in the first decade of life. Pediatr Nephrol. 2011;26(4):605–12.PubMedCrossRef Prestidge C, Chilvers MA, Davidson AG, Cho E, McMahon V, White CT. Renal function in pediatric cystic fibrosis patients in the first decade of life. Pediatr Nephrol. 2011;26(4):605–12.PubMedCrossRef
39.
go back to reference Zobell JT, Waters CD, Young DC, Stockmann C, Ampofo K, Sherwin CM, et al. Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: II. cephalosporins and penicillins. Pediatric Pulmonol. 2013;48(2):107–22.CrossRef Zobell JT, Waters CD, Young DC, Stockmann C, Ampofo K, Sherwin CM, et al. Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: II. cephalosporins and penicillins. Pediatric Pulmonol. 2013;48(2):107–22.CrossRef
40.
go back to reference Touw DJ. Clinical pharmacokinetics of antimicrobial drugs in cystic fibrosis. Pharm World Sci. 1998;20(4):149–60.PubMedCrossRef Touw DJ. Clinical pharmacokinetics of antimicrobial drugs in cystic fibrosis. Pharm World Sci. 1998;20(4):149–60.PubMedCrossRef
41.
go back to reference Reed MD, Stern RC, O’Brien CA, Yamashita TS, Myers CM, Blumer JL. Pharmacokinetics of imipenem and cilastatin in patients with cystic fibrosis. Antimicrob Agents Chemother. 1985;27(4):583–8.PubMedPubMedCentralCrossRef Reed MD, Stern RC, O’Brien CA, Yamashita TS, Myers CM, Blumer JL. Pharmacokinetics of imipenem and cilastatin in patients with cystic fibrosis. Antimicrob Agents Chemother. 1985;27(4):583–8.PubMedPubMedCentralCrossRef
42.
go back to reference Bulitta JB, Landersdorfer CB, Hüttner SJ, Drusano GL, Kinzig M, Holzgrabe U, et al. Population pharmacokinetic comparison and pharmacodynamic breakpoints of ceftazidime in cystic fibrosis patients and healthy volunteers. Antimicrob Agents Chemother. 2010;54(3):1275–82.PubMedPubMedCentralCrossRef Bulitta JB, Landersdorfer CB, Hüttner SJ, Drusano GL, Kinzig M, Holzgrabe U, et al. Population pharmacokinetic comparison and pharmacodynamic breakpoints of ceftazidime in cystic fibrosis patients and healthy volunteers. Antimicrob Agents Chemother. 2010;54(3):1275–82.PubMedPubMedCentralCrossRef
43.
go back to reference Hong LT, Liou TG, Deka R, King JB, Stevens V, Young DC. Pharmacokinetics of continuous infusion beta-lactams in the treatment of acute pulmonary exacerbations in adult patients with cystic fibrosis. Chest. 2018;154(5):1108–14.PubMedPubMedCentralCrossRef Hong LT, Liou TG, Deka R, King JB, Stevens V, Young DC. Pharmacokinetics of continuous infusion beta-lactams in the treatment of acute pulmonary exacerbations in adult patients with cystic fibrosis. Chest. 2018;154(5):1108–14.PubMedPubMedCentralCrossRef
44.
go back to reference Rogers JD, Meisinger MA, Ferber F, Calandra GB, Demetriades JL, Bland JA. Pharmacokinetics of imipenem and cilastatin in volunteers. Rev Infect Dis. 1985;7(Suppl 3):S435–46.PubMedCrossRef Rogers JD, Meisinger MA, Ferber F, Calandra GB, Demetriades JL, Bland JA. Pharmacokinetics of imipenem and cilastatin in volunteers. Rev Infect Dis. 1985;7(Suppl 3):S435–46.PubMedCrossRef
45.
go back to reference Balfour JA, Bryson HM, Brogden RN. Imipenem/cilastatin: an update of its antibacterial activity, pharmacokinetics and therapeutic efficacy in the treatment of serious infections. Drugs. 1996;51(1):99–136.PubMedCrossRef Balfour JA, Bryson HM, Brogden RN. Imipenem/cilastatin: an update of its antibacterial activity, pharmacokinetics and therapeutic efficacy in the treatment of serious infections. Drugs. 1996;51(1):99–136.PubMedCrossRef
46.
go back to reference Primaxin(Imipenem/Cilastatin) [product Insert], Whitehouse Station: Merck and Co.; 2006. Primaxin(Imipenem/Cilastatin) [product Insert], Whitehouse Station: Merck and Co.; 2006.
47.
go back to reference Rizk ML, Rhee EG, Jumes PA, Gotfried MH, Zhao T, Mangin E, et al. Intrapulmonary pharmacokinetics of relebactam, a novel beta-lactamase inhibitor, dosed in combination with imipenem-cilastatin in healthy subjects. Antimicrob Agents Chemother. 2018;62(3):e01411-e1417.PubMedPubMedCentralCrossRef Rizk ML, Rhee EG, Jumes PA, Gotfried MH, Zhao T, Mangin E, et al. Intrapulmonary pharmacokinetics of relebactam, a novel beta-lactamase inhibitor, dosed in combination with imipenem-cilastatin in healthy subjects. Antimicrob Agents Chemother. 2018;62(3):e01411-e1417.PubMedPubMedCentralCrossRef
48.
go back to reference Lavollay M, Dubee V, Heym B, Herrmann JL, Gaillard JL, Gutmann L, et al. In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex. Clin Microbiol Infect. 2014;20(5):O297-300.PubMedCrossRef Lavollay M, Dubee V, Heym B, Herrmann JL, Gaillard JL, Gutmann L, et al. In vitro activity of cefoxitin and imipenem against Mycobacterium abscessus complex. Clin Microbiol Infect. 2014;20(5):O297-300.PubMedCrossRef
49.
go back to reference Brown-Elliott BA, Killingley J, Vasireddy S, Bridge L, Wallace RJ Jr. In vitro comparison of ertapenem, meropenem, and imipenem against isolates of rapidly growing mycobacteria and nocardia by use of broth microdilution and etest. J Clin Microbiol. 2016;54(6):1586–92.PubMedPubMedCentralCrossRef Brown-Elliott BA, Killingley J, Vasireddy S, Bridge L, Wallace RJ Jr. In vitro comparison of ertapenem, meropenem, and imipenem against isolates of rapidly growing mycobacteria and nocardia by use of broth microdilution and etest. J Clin Microbiol. 2016;54(6):1586–92.PubMedPubMedCentralCrossRef
50.
go back to reference Luthra S, Rominski A, Sander P. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front Microbiol. 2018;9:2179.PubMedPubMedCentralCrossRef Luthra S, Rominski A, Sander P. The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front Microbiol. 2018;9:2179.PubMedPubMedCentralCrossRef
51.
go back to reference Story-Roller E, Maggioncalda EC, Cohen KA, Lamichhane G. Mycobacterium abscessus and beta-Lactams: emerging insights and potential opportunities. Front Microbiol. 2018;9:2273.PubMedPubMedCentralCrossRef Story-Roller E, Maggioncalda EC, Cohen KA, Lamichhane G. Mycobacterium abscessus and beta-Lactams: emerging insights and potential opportunities. Front Microbiol. 2018;9:2273.PubMedPubMedCentralCrossRef
52.
go back to reference Kaushik A, Ammerman NC, Lee J, Martins O, Kreiswirth BN, Lamichhane G, et al. In vitro activity of the new beta-lactamase inhibitors relebactam and vaborbactam in combination with beta-lactams against Mycobacterium abscessus complex clinical isolates. Antimicrob Agents Chemother. 2019;63(3):e02623-e2718.PubMedPubMedCentralCrossRef Kaushik A, Ammerman NC, Lee J, Martins O, Kreiswirth BN, Lamichhane G, et al. In vitro activity of the new beta-lactamase inhibitors relebactam and vaborbactam in combination with beta-lactams against Mycobacterium abscessus complex clinical isolates. Antimicrob Agents Chemother. 2019;63(3):e02623-e2718.PubMedPubMedCentralCrossRef
53.
go back to reference Clinical and Laboratory Standards Institute (CLSI). Performance standards for suscetibility testing of Mycobacteria, Nocardia spp., and other aerobic actinomycetes. Wayne: CLSI; 2018. Clinical and Laboratory Standards Institute (CLSI). Performance standards for suscetibility testing of Mycobacteria, Nocardia spp., and other aerobic actinomycetes. Wayne: CLSI; 2018.
54.
go back to reference Carver PL, Nightingale CH, Quintiliani R. Pharmacokinetics and pharmacodynamics of total and unbound cefoxitin and cefotetan in healthy volunteers. J Antimicrob Chemother. 1989;23(1):99–106.PubMedCrossRef Carver PL, Nightingale CH, Quintiliani R. Pharmacokinetics and pharmacodynamics of total and unbound cefoxitin and cefotetan in healthy volunteers. J Antimicrob Chemother. 1989;23(1):99–106.PubMedCrossRef
55.
go back to reference Perea EJ, Garcia-Iglesias MC, Ayarra J, Loscertales J. Comparative concentrations of cefoxitin in human lungs and sera. Antimicrob Agents Chemother. 1983;23(2):323–4.PubMedPubMedCentralCrossRef Perea EJ, Garcia-Iglesias MC, Ayarra J, Loscertales J. Comparative concentrations of cefoxitin in human lungs and sera. Antimicrob Agents Chemother. 1983;23(2):323–4.PubMedPubMedCentralCrossRef
56.
go back to reference Moine P, Mueller SW, Schoen JA, Rothchild KB, Fish DN. Pharmacokinetic and pharmacodynamic evaluation of a weight-based dosing regimen of cefoxitin for perioperative surgical prophylaxis in obese and morbidly obese patients. Antimicrob Agents Chemother. 2016;60(10):5885–93.PubMedPubMedCentralCrossRef Moine P, Mueller SW, Schoen JA, Rothchild KB, Fish DN. Pharmacokinetic and pharmacodynamic evaluation of a weight-based dosing regimen of cefoxitin for perioperative surgical prophylaxis in obese and morbidly obese patients. Antimicrob Agents Chemother. 2016;60(10):5885–93.PubMedPubMedCentralCrossRef
57.
go back to reference Ferro BE, van Ingen J, Wattenberg M, van Soolingen D, Mouton JW. Time-kill kinetics of antibiotics active against rapidly growing mycobacteria. J Antimicrob Chemother. 2015;70(3):811–7.PubMedCrossRef Ferro BE, van Ingen J, Wattenberg M, van Soolingen D, Mouton JW. Time-kill kinetics of antibiotics active against rapidly growing mycobacteria. J Antimicrob Chemother. 2015;70(3):811–7.PubMedCrossRef
58.
go back to reference Clinical and Laboratories Standards Institute. CLSI susceptibility of mycobacteria, noacardiae, and other aerobic actinomycetes: approved standard—second edition CLSI Document M24–A2. Wayne: CLSI; 2011. Clinical and Laboratories Standards Institute. CLSI susceptibility of mycobacteria, noacardiae, and other aerobic actinomycetes: approved standard—second edition CLSI Document M24–A2. Wayne: CLSI; 2011.
59.
go back to reference Czaja CA, Levin A, Moridani M, Krank JL, Curran-Everett D, Anderson PL. Cefoxitin continuous infusion for lung infection caused by the Mycobacterium abscessus group. Antimicrob Agents Chemother. 2014;58(6):3570–1.PubMedPubMedCentralCrossRef Czaja CA, Levin A, Moridani M, Krank JL, Curran-Everett D, Anderson PL. Cefoxitin continuous infusion for lung infection caused by the Mycobacterium abscessus group. Antimicrob Agents Chemother. 2014;58(6):3570–1.PubMedPubMedCentralCrossRef
60.
go back to reference Perks SJ, Lanskey C, Robinson N, Pain T, Franklin R. Systematic review of stability data pertaining to selected antibiotics used for extended infusions in outpatient parenteral antimicrobial therapy (OPAT) at standard room temperature and in warmer climates. Eur J Hosp Pharm. 2020;27(2):65–72.PubMedCrossRef Perks SJ, Lanskey C, Robinson N, Pain T, Franklin R. Systematic review of stability data pertaining to selected antibiotics used for extended infusions in outpatient parenteral antimicrobial therapy (OPAT) at standard room temperature and in warmer climates. Eur J Hosp Pharm. 2020;27(2):65–72.PubMedCrossRef
61.
go back to reference Stiles ML, Tu YH, Allen LV Jr. Stability of cefazolin sodium, cefoxitin sodium, ceftazidime, and penicillin G sodium in portable pump reservoirs. Am J Hosp Pharm. 1989;46(7):1408–12.PubMed Stiles ML, Tu YH, Allen LV Jr. Stability of cefazolin sodium, cefoxitin sodium, ceftazidime, and penicillin G sodium in portable pump reservoirs. Am J Hosp Pharm. 1989;46(7):1408–12.PubMed
62.
go back to reference Jeon K, Kwon OJ, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med. 2009;180(9):896–902.PubMedCrossRef Jeon K, Kwon OJ, Lee NY, Kim BJ, Kook YH, Lee SH, et al. Antibiotic treatment of Mycobacterium abscessus lung disease: a retrospective analysis of 65 patients. Am J Respir Crit Care Med. 2009;180(9):896–902.PubMedCrossRef
63.
go back to reference Yagi K, Ishii M, Namkoong H, Asami T, Iketani O, Asakura T, et al. The efficacy, safety, and feasibility of inhaled amikacin for the treatment of difficult-to-treat non-tuberculous mycobacterial lung diseases. BMC Infect Dis. 2017;17(1):558.PubMedPubMedCentralCrossRef Yagi K, Ishii M, Namkoong H, Asami T, Iketani O, Asakura T, et al. The efficacy, safety, and feasibility of inhaled amikacin for the treatment of difficult-to-treat non-tuberculous mycobacterial lung diseases. BMC Infect Dis. 2017;17(1):558.PubMedPubMedCentralCrossRef
64.
65.
go back to reference Griffith DE, Eagle G, Thomson R, Aksamit TR, Hasegawa N, Morimoto K, et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am J Respir Crit Care Med. 2018;198(12):1559–69.PubMedCrossRef Griffith DE, Eagle G, Thomson R, Aksamit TR, Hasegawa N, Morimoto K, et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am J Respir Crit Care Med. 2018;198(12):1559–69.PubMedCrossRef
66.
go back to reference Olivier KN, Griffith DE, Eagle G, McGinnis JP 2nd, Micioni L, Liu K, et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med. 2017;195(6):814–23.PubMedPubMedCentralCrossRef Olivier KN, Griffith DE, Eagle G, McGinnis JP 2nd, Micioni L, Liu K, et al. Randomized trial of liposomal amikacin for inhalation in nontuberculous mycobacterial lung disease. Am J Respir Crit Care Med. 2017;195(6):814–23.PubMedPubMedCentralCrossRef
67.
go back to reference Khan O, Chaudary N. The use of amikacin liposome inhalation suspension (Arikayce) in the treatment of refractory nontuberculous mycobacterial lung disease in adults. Drug Des Dev Ther. 2020;14:2287–94.CrossRef Khan O, Chaudary N. The use of amikacin liposome inhalation suspension (Arikayce) in the treatment of refractory nontuberculous mycobacterial lung disease in adults. Drug Des Dev Ther. 2020;14:2287–94.CrossRef
68.
go back to reference Zhang J, Leifer F, Rose S, Chun DY, Thaisz J, Herr T, et al. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol. 2018;9:915.PubMedPubMedCentralCrossRef Zhang J, Leifer F, Rose S, Chun DY, Thaisz J, Herr T, et al. Amikacin liposome inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances amikacin uptake into macrophages. Front Microbiol. 2018;9:915.PubMedPubMedCentralCrossRef
70.
go back to reference Weers J, Metzheiser B, Taylor G, Warren S, Meers P, Perkins WR. A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J Aerosol Med Pulm Drug Deliv. 2009;22(2):131–8.PubMedCrossRef Weers J, Metzheiser B, Taylor G, Warren S, Meers P, Perkins WR. A gamma scintigraphy study to investigate lung deposition and clearance of inhaled amikacin-loaded liposomes in healthy male volunteers. J Aerosol Med Pulm Drug Deliv. 2009;22(2):131–8.PubMedCrossRef
71.
go back to reference Okusanya OO, Bhavnani SM, Hammel J, Minic P, Dupont LJ, Forrest A, et al. Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob Agents Chemother. 2009;53(9):3847–54.PubMedPubMedCentralCrossRef Okusanya OO, Bhavnani SM, Hammel J, Minic P, Dupont LJ, Forrest A, et al. Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob Agents Chemother. 2009;53(9):3847–54.PubMedPubMedCentralCrossRef
72.
go back to reference Ellender CM, Law DB, Thomson RM, Eather GW. Safety of IV amikacin in the treatment of pulmonary non-tuberculous mycobacterial disease. Respirology. 2016;21(2):357–62.PubMedCrossRef Ellender CM, Law DB, Thomson RM, Eather GW. Safety of IV amikacin in the treatment of pulmonary non-tuberculous mycobacterial disease. Respirology. 2016;21(2):357–62.PubMedCrossRef
73.
go back to reference Sturkenboom MGG, Simbar N, Akkerman OW, Ghimire S, Bolhuis MS, Alffenaar JC. Amikacin dosing for MDR tuberculosis: a systematic review to establish or revise the current recommended dose for tuberculosis treatment. Clin Infect Dis. 2018;67(Suppl 3):S303–7.PubMedCrossRef Sturkenboom MGG, Simbar N, Akkerman OW, Ghimire S, Bolhuis MS, Alffenaar JC. Amikacin dosing for MDR tuberculosis: a systematic review to establish or revise the current recommended dose for tuberculosis treatment. Clin Infect Dis. 2018;67(Suppl 3):S303–7.PubMedCrossRef
74.
go back to reference Srivastava S, Modongo C, Siyambalapitiyage Dona CW, Pasipanodya JG, Deshpande D, Gumbo T. Amikacin optimal exposure targets in the hollow-fiber system model of tuberculosis. Antimicrob Agents Chemother. 2016;60(10):5922–7.PubMedPubMedCentralCrossRef Srivastava S, Modongo C, Siyambalapitiyage Dona CW, Pasipanodya JG, Deshpande D, Gumbo T. Amikacin optimal exposure targets in the hollow-fiber system model of tuberculosis. Antimicrob Agents Chemother. 2016;60(10):5922–7.PubMedPubMedCentralCrossRef
75.
go back to reference Caceres Guido P, Perez M, Halac A, Ferrari M, Ibarra M, Licciardone N, et al. Population pharmacokinetics of amikacin in patients with pediatric cystic fibrosis. Pediatr Pulmonol. 2019;54(11):1801–10.PubMedCrossRef Caceres Guido P, Perez M, Halac A, Ferrari M, Ibarra M, Licciardone N, et al. Population pharmacokinetics of amikacin in patients with pediatric cystic fibrosis. Pediatr Pulmonol. 2019;54(11):1801–10.PubMedCrossRef
76.
go back to reference Nolt VD, Pijut KD, Autry EB, Williams WC, Burgess DS, Burgess DR, et al. Amikacin target achievement in adult cystic fibrosis patients utilizing Monte Carlo simulation. Pediatr Pulmonol. 2019;54(1):33–9.PubMedCrossRef Nolt VD, Pijut KD, Autry EB, Williams WC, Burgess DS, Burgess DR, et al. Amikacin target achievement in adult cystic fibrosis patients utilizing Monte Carlo simulation. Pediatr Pulmonol. 2019;54(1):33–9.PubMedCrossRef
77.
go back to reference Ferro BE, Srivastava S, Deshpande D, Sherman CM, Pasipanodya JG, van Soolingen D, et al. Amikacin pharmacokinetics/pharmacodynamics in a novel hollow-fiber mycobacterium abscessus disease model. Antimicrob Agents Chemother. 2015;60(3):1242–8.PubMedCrossRef Ferro BE, Srivastava S, Deshpande D, Sherman CM, Pasipanodya JG, van Soolingen D, et al. Amikacin pharmacokinetics/pharmacodynamics in a novel hollow-fiber mycobacterium abscessus disease model. Antimicrob Agents Chemother. 2015;60(3):1242–8.PubMedCrossRef
78.
go back to reference Ferro BE, Srivastava S, Deshpande D, Pasipanodya JG, van Soolingen D, Mouton JW, et al. Failure of the amikacin, cefoxitin, and clarithromycin combination regimen for treating pulmonary mycobacterium abscessus infection. Antimicrob Agents Chemother. 2016;60(10):6374–6.PubMedPubMedCentralCrossRef Ferro BE, Srivastava S, Deshpande D, Pasipanodya JG, van Soolingen D, Mouton JW, et al. Failure of the amikacin, cefoxitin, and clarithromycin combination regimen for treating pulmonary mycobacterium abscessus infection. Antimicrob Agents Chemother. 2016;60(10):6374–6.PubMedPubMedCentralCrossRef
79.
go back to reference Peloquin CA, Berning SE, Nitta AT, Simone PM, Goble M, Huitt GA, et al. Aminoglycoside toxicity: daily versus thrice-weekly dosing for treatment of mycobacterial diseases. Clin Infect Dis. 2004;38(11):1538–44.PubMedCrossRef Peloquin CA, Berning SE, Nitta AT, Simone PM, Goble M, Huitt GA, et al. Aminoglycoside toxicity: daily versus thrice-weekly dosing for treatment of mycobacterial diseases. Clin Infect Dis. 2004;38(11):1538–44.PubMedCrossRef
80.
go back to reference Modongo C, Pasipanodya JG, Zetola NM, Williams SM, Sirugo G, Gumbo T. Amikacin concentrations predictive of ototoxicity in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother. 2015;59(10):6337–43.PubMedPubMedCentralCrossRef Modongo C, Pasipanodya JG, Zetola NM, Williams SM, Sirugo G, Gumbo T. Amikacin concentrations predictive of ototoxicity in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother. 2015;59(10):6337–43.PubMedPubMedCentralCrossRef
81.
go back to reference Nichols DP, Odem-Davis K, Cogen JD, Goss CH, Ren CL, Skalland M, et al. Pulmonary outcomes associated with long-term azithromycin therapy in cystic fibrosis. Am J Respir Crit Care Med. 2020;201(4):430–7.PubMedPubMedCentralCrossRef Nichols DP, Odem-Davis K, Cogen JD, Goss CH, Ren CL, Skalland M, et al. Pulmonary outcomes associated with long-term azithromycin therapy in cystic fibrosis. Am J Respir Crit Care Med. 2020;201(4):430–7.PubMedPubMedCentralCrossRef
82.
go back to reference Cooper MA, Nye K, Andrews JM, Wise R. The pharmacokinetics and inflammatory fluid penetration of orally administered azithromycin. J Antimicrob Chemother. 1990;26(4):533–8.PubMedCrossRef Cooper MA, Nye K, Andrews JM, Wise R. The pharmacokinetics and inflammatory fluid penetration of orally administered azithromycin. J Antimicrob Chemother. 1990;26(4):533–8.PubMedCrossRef
83.
go back to reference Wilms EB, Touw DJ, Heijerman HG, van der Ent CK. Azithromycin maintenance therapy in patients with cystic fibrosis: a dose advice based on a review of pharmacokinetics, efficacy, and side effects. Pediatr Pulmonol. 2012;47(7):658–65.PubMedCrossRef Wilms EB, Touw DJ, Heijerman HG, van der Ent CK. Azithromycin maintenance therapy in patients with cystic fibrosis: a dose advice based on a review of pharmacokinetics, efficacy, and side effects. Pediatr Pulmonol. 2012;47(7):658–65.PubMedCrossRef
84.
go back to reference Wilms EB, Touw DJ, Heijerman HG. Pharmacokinetics of azithromycin in plasma, blood, polymorphonuclear neutrophils and sputum during long-term therapy in patients with cystic fibrosis. Ther Drug Monit. 2006;28(2):219–25.PubMedCrossRef Wilms EB, Touw DJ, Heijerman HG. Pharmacokinetics of azithromycin in plasma, blood, polymorphonuclear neutrophils and sputum during long-term therapy in patients with cystic fibrosis. Ther Drug Monit. 2006;28(2):219–25.PubMedCrossRef
85.
go back to reference Cipolli M, Cazzola G, Novelli A, Cassetta M, Fallani S, Mazzei T. Azithromycin concentrations in serum and bronchial secretions of patients with cystic fibrosis. Clin Drug Invest. 2001;21(5):353–60.CrossRef Cipolli M, Cazzola G, Novelli A, Cassetta M, Fallani S, Mazzei T. Azithromycin concentrations in serum and bronchial secretions of patients with cystic fibrosis. Clin Drug Invest. 2001;21(5):353–60.CrossRef
86.
go back to reference Shimomura H, Andachi S, Aono T, Kigure A, Yamamoto Y, Miyajima A, et al. Serum concentrations of clarithromycin and rifampicin in pulmonary Mycobacterium avium complex disease: long-term changes due to drug interactions and their association with clinical outcomes. J Pharm Health Care Sci. 2015;1:32.PubMedPubMedCentralCrossRef Shimomura H, Andachi S, Aono T, Kigure A, Yamamoto Y, Miyajima A, et al. Serum concentrations of clarithromycin and rifampicin in pulmonary Mycobacterium avium complex disease: long-term changes due to drug interactions and their association with clinical outcomes. J Pharm Health Care Sci. 2015;1:32.PubMedPubMedCentralCrossRef
87.
go back to reference Deshpande D, Pasipanodya JG, Gumbo T. Azithromycin dose to maximize efficacy and suppress acquired drug resistance in pulmonary Mycobacterium avium disease. Antimicrob Agents Chemother. 2016;60(4):2157–63.PubMedPubMedCentralCrossRef Deshpande D, Pasipanodya JG, Gumbo T. Azithromycin dose to maximize efficacy and suppress acquired drug resistance in pulmonary Mycobacterium avium disease. Antimicrob Agents Chemother. 2016;60(4):2157–63.PubMedPubMedCentralCrossRef
88.
go back to reference Choi GE, Shin SJ, Won CJ, Min KN, Oh T, Hahn MY, et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med. 2012;186(9):917–25.PubMedCrossRef Choi GE, Shin SJ, Won CJ, Min KN, Oh T, Hahn MY, et al. Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med. 2012;186(9):917–25.PubMedCrossRef
89.
go back to reference Richard M, Gutiérrez AV, Kremer L. Dissecting erm(41)-mediated macrolide-inducible resistance in Mycobacterium abscessus. Antimicrob Agents Chemother. 2020;64(2):e01879-e1919.PubMedPubMedCentralCrossRef Richard M, Gutiérrez AV, Kremer L. Dissecting erm(41)-mediated macrolide-inducible resistance in Mycobacterium abscessus. Antimicrob Agents Chemother. 2020;64(2):e01879-e1919.PubMedPubMedCentralCrossRef
90.
91.
go back to reference Dalboge CS, Nielsen XC, Dalhoff K, Alffenaar JW, Duno M, Buchard A, et al. Pharmacokinetic variability of clarithromycin and differences in CYP3A4 activity in patients with cystic fibrosis. J Cyst Fibros. 2014;13(2):179–85.PubMedCrossRef Dalboge CS, Nielsen XC, Dalhoff K, Alffenaar JW, Duno M, Buchard A, et al. Pharmacokinetic variability of clarithromycin and differences in CYP3A4 activity in patients with cystic fibrosis. J Cyst Fibros. 2014;13(2):179–85.PubMedCrossRef
92.
go back to reference Schon T, Chryssanthou E. Minimum inhibitory concentration distributions for Mycobacterium avium complex-towards evidence-based susceptibility breakpoints. Int J Infect Dis. 2017;55:122–4.PubMedCrossRef Schon T, Chryssanthou E. Minimum inhibitory concentration distributions for Mycobacterium avium complex-towards evidence-based susceptibility breakpoints. Int J Infect Dis. 2017;55:122–4.PubMedCrossRef
94.
go back to reference Guo Q, Chu H, Ye M, Zhang Z, Li B, Yang S, et al. The clarithromycin susceptibility genotype affects the treatment outcome of patients with Mycobacterium abscessus lung disease. Antimicrob Agents Chemother. 2018;62(5):e02360-e2417.PubMedPubMedCentralCrossRef Guo Q, Chu H, Ye M, Zhang Z, Li B, Yang S, et al. The clarithromycin susceptibility genotype affects the treatment outcome of patients with Mycobacterium abscessus lung disease. Antimicrob Agents Chemother. 2018;62(5):e02360-e2417.PubMedPubMedCentralCrossRef
95.
go back to reference Li H, Tong L, Wang J, Liang Q, Zhang Y, Chu N, et al. An intensified regimen containing linezolid could improve treatment response in Mycobacterium abscessus lung disease. Biomed Res Int. 2019;2019:8631563.PubMedPubMedCentralCrossRef Li H, Tong L, Wang J, Liang Q, Zhang Y, Chu N, et al. An intensified regimen containing linezolid could improve treatment response in Mycobacterium abscessus lung disease. Biomed Res Int. 2019;2019:8631563.PubMedPubMedCentralCrossRef
96.
go back to reference Brown-Elliott BA, Wallace RJ Jr. In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria. J Clin Microbiol. 2017;55(6):1747–54.PubMedPubMedCentralCrossRef Brown-Elliott BA, Wallace RJ Jr. In vitro susceptibility testing of tedizolid against nontuberculous mycobacteria. J Clin Microbiol. 2017;55(6):1747–54.PubMedPubMedCentralCrossRef
97.
go back to reference Keel RA, Schaeftlein A, Kloft C, Pope JS, Knauft RF, Muhlebach M, et al. Pharmacokinetics of intravenous and oral linezolid in adults with cystic fibrosis. Antimicrob Agents Chemother. 2011;55(7):3393–8.PubMedPubMedCentralCrossRef Keel RA, Schaeftlein A, Kloft C, Pope JS, Knauft RF, Muhlebach M, et al. Pharmacokinetics of intravenous and oral linezolid in adults with cystic fibrosis. Antimicrob Agents Chemother. 2011;55(7):3393–8.PubMedPubMedCentralCrossRef
98.
99.
go back to reference Santos RP, Prestidge CB, Brown ME, Urbancyzk B, Murphey DK, Salvatore CM, et al. Pharmacokinetics and pharmacodynamics of linezolid in children with cystic fibrosis. Pediatr Pulmonol. 2009;44(2):148–54.PubMedCrossRef Santos RP, Prestidge CB, Brown ME, Urbancyzk B, Murphey DK, Salvatore CM, et al. Pharmacokinetics and pharmacodynamics of linezolid in children with cystic fibrosis. Pediatr Pulmonol. 2009;44(2):148–54.PubMedCrossRef
100.
go back to reference Nuermberger E. Evolving strategies for dose optimization of linezolid for treatment of tuberculosis. Int J Tuberc Lung Dis. 2016;20(12):48–51.PubMedCrossRef Nuermberger E. Evolving strategies for dose optimization of linezolid for treatment of tuberculosis. Int J Tuberc Lung Dis. 2016;20(12):48–51.PubMedCrossRef
101.
go back to reference World Health Organization. Technical Report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. Contract No.: 2018 (WHO/CDS/TB/2018.5). Licence: CC BY-NC-SA 3.0 IGO. Geneva: World Health Organization; 2018. World Health Organization. Technical Report on critical concentrations for drug susceptibility testing of medicines used in the treatment of drug-resistant tuberculosis. Contract No.: 2018 (WHO/CDS/TB/2018.5). Licence: CC BY-NC-SA 3.0 IGO. Geneva: World Health Organization; 2018.
102.
go back to reference Zhang Z, Lu J, Song Y, Pang Y. In vitro activity between linezolid and other antimicrobial agents against Mycobacterium abscessus complex. Diagn Microbiol Infect Dis. 2018;90(1):31–4.PubMedCrossRef Zhang Z, Lu J, Song Y, Pang Y. In vitro activity between linezolid and other antimicrobial agents against Mycobacterium abscessus complex. Diagn Microbiol Infect Dis. 2018;90(1):31–4.PubMedCrossRef
103.
go back to reference Rao GG, Konicki R, Cattaneo D, Alffenaar JW, Marriott DJE, Neely M. Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice: a review of linezolid pharmacokinetics and pharmacodynamics. Ther Drug Monit. 2020;42(1):83–92.PubMedCrossRef Rao GG, Konicki R, Cattaneo D, Alffenaar JW, Marriott DJE, Neely M. Therapeutic drug monitoring can improve linezolid dosing regimens in current clinical practice: a review of linezolid pharmacokinetics and pharmacodynamics. Ther Drug Monit. 2020;42(1):83–92.PubMedCrossRef
104.
go back to reference Cattaneo D, Orlando G, Cozzi V, Cordier L, Baldelli S, Merli S, et al. Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents. 2013;41(6):586–9.PubMedCrossRef Cattaneo D, Orlando G, Cozzi V, Cordier L, Baldelli S, Merli S, et al. Linezolid plasma concentrations and occurrence of drug-related haematological toxicity in patients with gram-positive infections. Int J Antimicrob Agents. 2013;41(6):586–9.PubMedCrossRef
105.
go back to reference Song T, Lee M, Jeon HS, Park Y, Dodd LE, Dartois V, et al. Linezolid trough concentrations correlate with mitochondrial toxicity-related adverse events in the treatment of chronic extensively drug-resistant tuberculosis. EBioMedicine. 2015;2(11):1627–33.PubMedPubMedCentralCrossRef Song T, Lee M, Jeon HS, Park Y, Dodd LE, Dartois V, et al. Linezolid trough concentrations correlate with mitochondrial toxicity-related adverse events in the treatment of chronic extensively drug-resistant tuberculosis. EBioMedicine. 2015;2(11):1627–33.PubMedPubMedCentralCrossRef
106.
go back to reference Shoen C, Benaroch D, Sklaney M, Cynamon M. In vitro activities of omadacycline against rapidly growing mycobacteria. Antimicrob Agents Chemother. 2019;63(5):e02522-e2618.PubMedPubMedCentralCrossRef Shoen C, Benaroch D, Sklaney M, Cynamon M. In vitro activities of omadacycline against rapidly growing mycobacteria. Antimicrob Agents Chemother. 2019;63(5):e02522-e2618.PubMedPubMedCentralCrossRef
107.
go back to reference Gotfried MH, Horn K, Garrity-Ryan L, Villano S, Tzanis E, Chitra S, et al. Comparison of omadacycline and tigecycline pharmacokinetics in the plasma, epithelial lining fluid, and alveolar cells of healthy adult subjects. Antimicrob Agents Chemother. 2017;61(9):e01137-e1217.CrossRef Gotfried MH, Horn K, Garrity-Ryan L, Villano S, Tzanis E, Chitra S, et al. Comparison of omadacycline and tigecycline pharmacokinetics in the plasma, epithelial lining fluid, and alveolar cells of healthy adult subjects. Antimicrob Agents Chemother. 2017;61(9):e01137-e1217.CrossRef
108.
go back to reference Wallace RJ Jr, Dukart G, Brown-Elliott BA, Griffith DE, Scerpella EG, Marshall B. Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother. 2014;69(7):1945–53.PubMedPubMedCentralCrossRef Wallace RJ Jr, Dukart G, Brown-Elliott BA, Griffith DE, Scerpella EG, Marshall B. Clinical experience in 52 patients with tigecycline-containing regimens for salvage treatment of Mycobacterium abscessus and Mycobacterium chelonae infections. J Antimicrob Chemother. 2014;69(7):1945–53.PubMedPubMedCentralCrossRef
109.
go back to reference Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother. 2006;58(2):256–65.PubMedCrossRef Agwuh KN, MacGowan A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother. 2006;58(2):256–65.PubMedCrossRef
110.
go back to reference Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin Drug Metab Toxicol. 2011;7(11):1459–70.PubMedCrossRef Giamarellou H, Poulakou G. Pharmacokinetic and pharmacodynamic evaluation of tigecycline. Expert Opin Drug Metab Toxicol. 2011;7(11):1459–70.PubMedCrossRef
111.
go back to reference Ferro BE, Srivastava S, Deshpande D, Pasipanodya JG, van Soolingen D, Mouton JW, et al. Tigecycline is highly efficacious against Mycobacterium abscessus pulmonary disease. Antimicrob Agents Chemother. 2016;60(5):2895–900.PubMedPubMedCentralCrossRef Ferro BE, Srivastava S, Deshpande D, Pasipanodya JG, van Soolingen D, Mouton JW, et al. Tigecycline is highly efficacious against Mycobacterium abscessus pulmonary disease. Antimicrob Agents Chemother. 2016;60(5):2895–900.PubMedPubMedCentralCrossRef
112.
go back to reference Kwon YS, Levin A, Kasperbauer SH, Huitt GA, Daley CL. Efficacy and safety of tigecycline for Mycobacterium abscessus disease. Respir Med. 2019;158:89–91.PubMedCrossRef Kwon YS, Levin A, Kasperbauer SH, Huitt GA, Daley CL. Efficacy and safety of tigecycline for Mycobacterium abscessus disease. Respir Med. 2019;158:89–91.PubMedCrossRef
113.
go back to reference Pryjma M, Burian J, Thompson CJ. Rifabutin acts in synergy and is bactericidal with frontline Mycobacterium abscessus antibiotics clarithromycin and tigecycline, suggesting a potent treatment combination. Antimicrob Agents Chemother. 2018;62(8):e00283-e318.PubMedPubMedCentralCrossRef Pryjma M, Burian J, Thompson CJ. Rifabutin acts in synergy and is bactericidal with frontline Mycobacterium abscessus antibiotics clarithromycin and tigecycline, suggesting a potent treatment combination. Antimicrob Agents Chemother. 2018;62(8):e00283-e318.PubMedPubMedCentralCrossRef
114.
go back to reference Cheng A, Tsai YT, Chang SY, Sun HY, Wu UI, Sheng WH, et al. In vitro synergism of rifabutin with clarithromycin, imipenem and tigecycline against the Mycobacterium abscessus complex. Antimicrob Agents Chemother. 2019;63(4):e02234-e2318.PubMedPubMedCentralCrossRef Cheng A, Tsai YT, Chang SY, Sun HY, Wu UI, Sheng WH, et al. In vitro synergism of rifabutin with clarithromycin, imipenem and tigecycline against the Mycobacterium abscessus complex. Antimicrob Agents Chemother. 2019;63(4):e02234-e2318.PubMedPubMedCentralCrossRef
115.
116.
go back to reference Ruth MM, Sangen JJN, Pennings LJ, Schildkraut JA, Hoefsloot W, Magis-Escurra C, et al. Minocycline has no clear role in the treatment of Mycobacterium abscessus disease. Antimicrob Agents Chemother. 2018;62(10):e01208-e1218.PubMedPubMedCentralCrossRef Ruth MM, Sangen JJN, Pennings LJ, Schildkraut JA, Hoefsloot W, Magis-Escurra C, et al. Minocycline has no clear role in the treatment of Mycobacterium abscessus disease. Antimicrob Agents Chemother. 2018;62(10):e01208-e1218.PubMedPubMedCentralCrossRef
117.
go back to reference Ruth MM, Magombedze G, Gumbo T, Bendet P, Sangen JJN, Zweijpfenning S, et al. Minocycline treatment for pulmonary Mycobacterium avium complex disease based on pharmacokinetics/pharmacodynamics and Bayesian framework mathematical models. J Antimicrob Chemother. 2019;74(7):1952–61.PubMedCrossRef Ruth MM, Magombedze G, Gumbo T, Bendet P, Sangen JJN, Zweijpfenning S, et al. Minocycline treatment for pulmonary Mycobacterium avium complex disease based on pharmacokinetics/pharmacodynamics and Bayesian framework mathematical models. J Antimicrob Chemother. 2019;74(7):1952–61.PubMedCrossRef
118.
119.
go back to reference Magis-Escurra C, Later-Nijland HM, Alffenaar JW, Broeders J, Burger DM, van Crevel R, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents. 2014;44(3):229–34.PubMedCrossRef Magis-Escurra C, Later-Nijland HM, Alffenaar JW, Broeders J, Burger DM, van Crevel R, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents. 2014;44(3):229–34.PubMedCrossRef
120.
go back to reference Abulfathi AA, Decloedt EH, Svensson EM, Diacon AH, Donald P, Reuter H. Clinical pharmacokinetics and pharmacodynamics of rifampicin in human tuberculosis. Clin Pharmacokinet. 2019;58(9):1103–29.PubMedCrossRef Abulfathi AA, Decloedt EH, Svensson EM, Diacon AH, Donald P, Reuter H. Clinical pharmacokinetics and pharmacodynamics of rifampicin in human tuberculosis. Clin Pharmacokinet. 2019;58(9):1103–29.PubMedCrossRef
121.
go back to reference Chen J, Raymond K. Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob. 2006;5:3.PubMedPubMedCentralCrossRef Chen J, Raymond K. Roles of rifampicin in drug-drug interactions: underlying molecular mechanisms involving the nuclear pregnane X receptor. Ann Clin Microbiol Antimicrob. 2006;5:3.PubMedPubMedCentralCrossRef
122.
go back to reference Naidoo A, Naidoo K, McIlleron H, Essack S, Padayatchi N. A review of moxifloxacin for the treatment of drug-susceptible tuberculosis. J Clin Pharmacol. 2017;57(11):1369–86.PubMedPubMedCentralCrossRef Naidoo A, Naidoo K, McIlleron H, Essack S, Padayatchi N. A review of moxifloxacin for the treatment of drug-susceptible tuberculosis. J Clin Pharmacol. 2017;57(11):1369–86.PubMedPubMedCentralCrossRef
123.
go back to reference Jordan CL, Noah TL, Henry MM. Therapeutic challenges posed by critical drug-drug interactions in cystic fibrosis. Pediatr Pulmonol. 2016;51(S44):S61-s70.PubMedCrossRef Jordan CL, Noah TL, Henry MM. Therapeutic challenges posed by critical drug-drug interactions in cystic fibrosis. Pediatr Pulmonol. 2016;51(S44):S61-s70.PubMedCrossRef
124.
go back to reference Azuma J, Ohno M, Kubota R, Yokota S, Nagai T, Tsuyuguchi K, et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol. 2013;69(5):1091–101.PubMedCrossRef Azuma J, Ohno M, Kubota R, Yokota S, Nagai T, Tsuyuguchi K, et al. NAT2 genotype guided regimen reduces isoniazid-induced liver injury and early treatment failure in the 6-month four-drug standard treatment of tuberculosis: a randomized controlled trial for pharmacogenetics-based therapy. Eur J Clin Pharmacol. 2013;69(5):1091–101.PubMedCrossRef
125.
go back to reference Berge M, Guillemain R, Tregouet DA, Amrein C, Boussaud V, Chevalier P, et al. Effect of cytochrome P450 2C19 genotype on voriconazole exposure in cystic fibrosis lung transplant patients. Eur J Clin Pharmacol. 2011;67(3):253–60.PubMedCrossRef Berge M, Guillemain R, Tregouet DA, Amrein C, Boussaud V, Chevalier P, et al. Effect of cytochrome P450 2C19 genotype on voriconazole exposure in cystic fibrosis lung transplant patients. Eur J Clin Pharmacol. 2011;67(3):253–60.PubMedCrossRef
126.
go back to reference van Ingen J, Hoefsloot W, Mouton JW, Boeree MJ, van Soolingen D. Synergistic activity of rifampicin and ethambutol against slow-growing nontuberculous mycobacteria is currently of questionable clinical significance. Int J Antimicrob Agents. 2013;42(1):80–2.PubMedCrossRef van Ingen J, Hoefsloot W, Mouton JW, Boeree MJ, van Soolingen D. Synergistic activity of rifampicin and ethambutol against slow-growing nontuberculous mycobacteria is currently of questionable clinical significance. Int J Antimicrob Agents. 2013;42(1):80–2.PubMedCrossRef
127.
go back to reference Aziz DB, Low JL, Wu ML, Gengenbacher M, Teo JWP, Dartois V, et al. Rifabutin is active against Mycobacterium abscessus Complex. Antimicrob Agents Chemother. 2017;61(6):e00155-e217.PubMedPubMedCentralCrossRef Aziz DB, Low JL, Wu ML, Gengenbacher M, Teo JWP, Dartois V, et al. Rifabutin is active against Mycobacterium abscessus Complex. Antimicrob Agents Chemother. 2017;61(6):e00155-e217.PubMedPubMedCentralCrossRef
128.
go back to reference Jonsson S, Davidse A, Wilkins J, Van der Walt JS, Simonsson US, Karlsson MO, et al. Population pharmacokinetics of ethambutol in South African tuberculosis patients. Antimicrob Agents Chemother. 2011;55(9):4230–7.PubMedPubMedCentralCrossRef Jonsson S, Davidse A, Wilkins J, Van der Walt JS, Simonsson US, Karlsson MO, et al. Population pharmacokinetics of ethambutol in South African tuberculosis patients. Antimicrob Agents Chemother. 2011;55(9):4230–7.PubMedPubMedCentralCrossRef
129.
go back to reference Varughese A, Brater DC, Benet LZ, Lee CS. Ethambutol kinetics in patients with impaired renal function. Am Rev Respir Dis. 1986;134(1):34–8.PubMed Varughese A, Brater DC, Benet LZ, Lee CS. Ethambutol kinetics in patients with impaired renal function. Am Rev Respir Dis. 1986;134(1):34–8.PubMed
130.
go back to reference Hall RG 2nd, Swancutt MA, Meek C, Leff RD, Gumbo T. Ethambutol pharmacokinetic variability is linked to body mass in overweight, obese, and extremely obese people. Antimicrob Agents Chemother. 2012;56(3):1502–7.PubMedPubMedCentralCrossRef Hall RG 2nd, Swancutt MA, Meek C, Leff RD, Gumbo T. Ethambutol pharmacokinetic variability is linked to body mass in overweight, obese, and extremely obese people. Antimicrob Agents Chemother. 2012;56(3):1502–7.PubMedPubMedCentralCrossRef
131.
go back to reference Kim HJ, Lee JS, Kwak N, Cho J, Lee CH, Han SK, et al. Role of ethambutol and rifampicin in the treatment of Mycobacterium avium complex pulmonary disease. BMC Pulm Med. 2019;19(1):212.PubMedPubMedCentralCrossRef Kim HJ, Lee JS, Kwak N, Cho J, Lee CH, Han SK, et al. Role of ethambutol and rifampicin in the treatment of Mycobacterium avium complex pulmonary disease. BMC Pulm Med. 2019;19(1):212.PubMedPubMedCentralCrossRef
132.
go back to reference Deshpande D, Srivastava S, Meek C, Leff R, Gumbo T. Ethambutol optimal clinical dose and susceptibility breakpoint identification by use of a novel pharmacokinetic-pharmacodynamic model of disseminated intracellular Mycobacterium avium. Antimicrob Agents Chemother. 2010;54(5):1728–33.PubMedPubMedCentralCrossRef Deshpande D, Srivastava S, Meek C, Leff R, Gumbo T. Ethambutol optimal clinical dose and susceptibility breakpoint identification by use of a novel pharmacokinetic-pharmacodynamic model of disseminated intracellular Mycobacterium avium. Antimicrob Agents Chemother. 2010;54(5):1728–33.PubMedPubMedCentralCrossRef
133.
go back to reference Kwon BS, Kim MN, Sung H, Koh Y, Kim WS, Song JW, et al. In vitro MIC values of rifampin and ethambutol and treatment outcome in Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2018;62(10):e00491-e518.PubMedPubMedCentralCrossRef Kwon BS, Kim MN, Sung H, Koh Y, Kim WS, Song JW, et al. In vitro MIC values of rifampin and ethambutol and treatment outcome in Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2018;62(10):e00491-e518.PubMedPubMedCentralCrossRef
134.
go back to reference Ferro BE, Meletiadis J, Wattenberg M, de Jong A, van Soolingen D, Mouton JW, et al. Clofazimine prevents the regrowth of Mycobacterium abscessus and Mycobacterium avium type strains exposed to amikacin and clarithromycin. Antimicrob Agents Chemother. 2016;60(2):1097–105.PubMedPubMedCentralCrossRef Ferro BE, Meletiadis J, Wattenberg M, de Jong A, van Soolingen D, Mouton JW, et al. Clofazimine prevents the regrowth of Mycobacterium abscessus and Mycobacterium avium type strains exposed to amikacin and clarithromycin. Antimicrob Agents Chemother. 2016;60(2):1097–105.PubMedPubMedCentralCrossRef
135.
go back to reference Reddy VM, O’Sullivan JF, Gangadharam PR. Antimycobacterial activities of riminophenazines. J Antimicrob Chemother. 1999;43(5):615–23.PubMedCrossRef Reddy VM, O’Sullivan JF, Gangadharam PR. Antimycobacterial activities of riminophenazines. J Antimicrob Chemother. 1999;43(5):615–23.PubMedCrossRef
136.
go back to reference van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother. 2012;56(12):6324–7.PubMedPubMedCentralCrossRef van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in treatment of nontuberculous mycobacterial disease. Antimicrob Agents Chemother. 2012;56(12):6324–7.PubMedPubMedCentralCrossRef
137.
go back to reference Schwartz M, Fisher S, Story-Roller E, Lamichhane G, Parrish N. Activities of dual combinations of antibiotics against multidrug-resistant nontuberculous mycobacteria recovered from patients with cystic fibrosis. Microb Drug Resist. 2018;24(8):1191–7.PubMedPubMedCentralCrossRef Schwartz M, Fisher S, Story-Roller E, Lamichhane G, Parrish N. Activities of dual combinations of antibiotics against multidrug-resistant nontuberculous mycobacteria recovered from patients with cystic fibrosis. Microb Drug Resist. 2018;24(8):1191–7.PubMedPubMedCentralCrossRef
138.
go back to reference Luo J, Yu X, Jiang G, Fu Y, Huo F, Ma Y, et al. In vitro activity of clofazimine against nontuberculous mycobacteria isolated in Beijing, China. Antimicrobial Agents Chemotherapy. 2018;62(7):e00072-e118.PubMedPubMedCentralCrossRef Luo J, Yu X, Jiang G, Fu Y, Huo F, Ma Y, et al. In vitro activity of clofazimine against nontuberculous mycobacteria isolated in Beijing, China. Antimicrobial Agents Chemotherapy. 2018;62(7):e00072-e118.PubMedPubMedCentralCrossRef
139.
go back to reference Elborn JS, Ramsey BW, Boyle MP, Konstan MW, Huang X, Marigowda G, et al. Efficacy and safety of lumacaftor/ivacaftor combination therapy in patients with cystic fibrosis homozygous for Phe508del CFTR by pulmonary function subgroup: a pooled analysis. Lancet Respir Med. 2016;4(8):617–26.PubMedPubMedCentralCrossRef Elborn JS, Ramsey BW, Boyle MP, Konstan MW, Huang X, Marigowda G, et al. Efficacy and safety of lumacaftor/ivacaftor combination therapy in patients with cystic fibrosis homozygous for Phe508del CFTR by pulmonary function subgroup: a pooled analysis. Lancet Respir Med. 2016;4(8):617–26.PubMedPubMedCentralCrossRef
140.
go back to reference Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220–31.PubMedPubMedCentralCrossRef Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220–31.PubMedPubMedCentralCrossRef
141.
go back to reference Vertex Pharmaceuticals Incorporated. KALYDECO (ivacaftor) product insert. Vertex Pharmaceuticals Incorporated. KALYDECO (ivacaftor) product insert.
142.
go back to reference Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Risk of clinically relevant pharmacokinetic-based drug-drug interactions with drugs approved by the U.S. food and drug administration between 2013 and 2016. Drug Metab Dispos. 2018;46(6):835–45.PubMedCrossRef Yu J, Zhou Z, Tay-Sontheimer J, Levy RH, Ragueneau-Majlessi I. Risk of clinically relevant pharmacokinetic-based drug-drug interactions with drugs approved by the U.S. food and drug administration between 2013 and 2016. Drug Metab Dispos. 2018;46(6):835–45.PubMedCrossRef
143.
go back to reference Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Br J Clin Pharmacol. 2000;50(4):285–95.PubMedPubMedCentralCrossRef Westphal JF. Macrolide-induced clinically relevant drug interactions with cytochrome P-450A (CYP) 3A4: an update focused on clarithromycin, azithromycin and dirithromycin. Br J Clin Pharmacol. 2000;50(4):285–95.PubMedPubMedCentralCrossRef
144.
go back to reference Vertex Pharmaceuticals Incorporated. Orkambi (lumacaftor/ivacaftor) product information. Vertex Phaarmaceuticals Incorporated; 2018. Vertex Pharmaceuticals Incorporated. Orkambi (lumacaftor/ivacaftor) product information. Vertex Phaarmaceuticals Incorporated; 2018.
145.
go back to reference Middleton PG, Mall MA, Dřevínek P, Lands LC, McKone EF, Polineni D, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med. 2019;381(19):1809–19.PubMedPubMedCentralCrossRef Middleton PG, Mall MA, Dřevínek P, Lands LC, McKone EF, Polineni D, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med. 2019;381(19):1809–19.PubMedPubMedCentralCrossRef
146.
go back to reference Vertex Pharmaceuticals Incorporated. Investigator’s Brochure: Elexacaftor/Tezacaftor/Ivacaftor(VX-445/VX-661/VX-770). Vertex Pharmaceuticals Incorporated; 2019. Vertex Pharmaceuticals Incorporated. Investigator’s Brochure: Elexacaftor/Tezacaftor/Ivacaftor(VX-445/VX-661/VX-770). Vertex Pharmaceuticals Incorporated; 2019.
147.
go back to reference Sangana RGH, Yu Chun D, Einolf H. Evaluation of clinical drug interaction potential of clofazimine using static and dynamic modelling approaches. Drug Metab Depos. 2018;46:26–32.CrossRef Sangana RGH, Yu Chun D, Einolf H. Evaluation of clinical drug interaction potential of clofazimine using static and dynamic modelling approaches. Drug Metab Depos. 2018;46:26–32.CrossRef
148.
go back to reference Borowitz D, Lubarsky B, Wilschanski M, Munck A, Gelfond D, Bodewes F, et al. Nutritional status improved in cystic fibrosis patients with the G551D mutation after treatment with ivacaftor. Dig Dis Sci. 2016;61(1):198–207.PubMedCrossRef Borowitz D, Lubarsky B, Wilschanski M, Munck A, Gelfond D, Bodewes F, et al. Nutritional status improved in cystic fibrosis patients with the G551D mutation after treatment with ivacaftor. Dig Dis Sci. 2016;61(1):198–207.PubMedCrossRef
149.
go back to reference Wilms EB, Touw DJ, Heijerman HG. Pharmacokinetics and sputum penetration of azithromycin during once weekly dosing in cystic fibrosis patients. J Cyst Fibros. 2008;7(1):79–84.PubMedCrossRef Wilms EB, Touw DJ, Heijerman HG. Pharmacokinetics and sputum penetration of azithromycin during once weekly dosing in cystic fibrosis patients. J Cyst Fibros. 2008;7(1):79–84.PubMedCrossRef
150.
go back to reference Baumann U, King M, App EM, Tai S, Konig A, Fischer JJ, et al. Long term azithromycin therapy in cystic fibrosis patients: a study on drug levels and sputum properties. Can Respir J. 2004;11(2):151–5.PubMedCrossRef Baumann U, King M, App EM, Tai S, Konig A, Fischer JJ, et al. Long term azithromycin therapy in cystic fibrosis patients: a study on drug levels and sputum properties. Can Respir J. 2004;11(2):151–5.PubMedCrossRef
151.
go back to reference Saralaya D, Peckham DG, Hulme B, Tobin CM, Denton M, Conway S, et al. Serum and sputum concentrations following the oral administration of linezolid in adult patients with cystic fibrosis. J Antimicrob Chemother. 2004;53(2):325–8.PubMedCrossRef Saralaya D, Peckham DG, Hulme B, Tobin CM, Denton M, Conway S, et al. Serum and sputum concentrations following the oral administration of linezolid in adult patients with cystic fibrosis. J Antimicrob Chemother. 2004;53(2):325–8.PubMedCrossRef
152.
go back to reference Illamola SM, Huynh HQ, Liu X, Bhakta ZN, Sherwin CM, Liou TG, et al. Population pharmacokinetics of amikacin in adult patients with cystic fibrosis. Antimicrob Agents Chemother. 2018;62(10):e00877-e918.PubMedPubMedCentralCrossRef Illamola SM, Huynh HQ, Liu X, Bhakta ZN, Sherwin CM, Liou TG, et al. Population pharmacokinetics of amikacin in adult patients with cystic fibrosis. Antimicrob Agents Chemother. 2018;62(10):e00877-e918.PubMedPubMedCentralCrossRef
153.
go back to reference Byl B, Baran D, Jacobs F, Herschuelz A, Thys JP. Serum pharmacokinetics and sputum penetration of amikacin 30 mg/kg once daily and of ceftazidime 200 mg/kg/day as a continuous infusion in cystic fibrosis patients. J Antimicrob Chemother. 2001;48(2):325–7.PubMedCrossRef Byl B, Baran D, Jacobs F, Herschuelz A, Thys JP. Serum pharmacokinetics and sputum penetration of amikacin 30 mg/kg once daily and of ceftazidime 200 mg/kg/day as a continuous infusion in cystic fibrosis patients. J Antimicrob Chemother. 2001;48(2):325–7.PubMedCrossRef
154.
go back to reference Grenier B, Autret E, Marchand S, Thompson R. Kinetic parameters of amikacin in cystic fibrosis children. Infection. 1987;15(4):295–9.PubMedCrossRef Grenier B, Autret E, Marchand S, Thompson R. Kinetic parameters of amikacin in cystic fibrosis children. Infection. 1987;15(4):295–9.PubMedCrossRef
155.
go back to reference Bergan T, Michalsen H, Malmborg AS, Pedersen SS, Pressler T, Storrosten OT, et al. Pharmacokinetic evaluation of imipenem combined with cilastatin in cystic fibrosis. Chemotherapy. 1993;39(6):369–73.PubMedCrossRef Bergan T, Michalsen H, Malmborg AS, Pedersen SS, Pressler T, Storrosten OT, et al. Pharmacokinetic evaluation of imipenem combined with cilastatin in cystic fibrosis. Chemotherapy. 1993;39(6):369–73.PubMedCrossRef
156.
go back to reference Sanofi-Aventis. Rifampicin product insert. Paris: Sanofi-Aventis; 2017. Sanofi-Aventis. Rifampicin product insert. Paris: Sanofi-Aventis; 2017.
157.
go back to reference Stott KE, Pertinez H, Sturkenboom MGG, Boeree MJ, Aarnoutse R, Ramachandran G, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2305–13.PubMedPubMedCentralCrossRef Stott KE, Pertinez H, Sturkenboom MGG, Boeree MJ, Aarnoutse R, Ramachandran G, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(9):2305–13.PubMedPubMedCentralCrossRef
158.
go back to reference Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47(7):2118–24.PubMedPubMedCentralCrossRef Jayaram R, Gaonkar S, Kaur P, Suresh BL, Mahesh BN, Jayashree R, et al. Pharmacokinetics-pharmacodynamics of rifampin in an aerosol infection model of tuberculosis. Antimicrob Agents Chemother. 2003;47(7):2118–24.PubMedPubMedCentralCrossRef
159.
go back to reference Schon T, Jureen P, Giske CG, Chryssanthou E, Sturegard E, Werngren J, et al. Evaluation of wild-type MIC distributions as a tool for determination of clinical breakpoints for Mycobacterium tuberculosis. J Antimicrob Chemother. 2009;64(4):786–93.PubMedCrossRef Schon T, Jureen P, Giske CG, Chryssanthou E, Sturegard E, Werngren J, et al. Evaluation of wild-type MIC distributions as a tool for determination of clinical breakpoints for Mycobacterium tuberculosis. J Antimicrob Chemother. 2009;64(4):786–93.PubMedCrossRef
160.
go back to reference Dura Pharmaceuticals. Ethambutol package insert. San Diego: Dura Pharmaceuticals; 2001. Dura Pharmaceuticals. Ethambutol package insert. San Diego: Dura Pharmaceuticals; 2001.
161.
go back to reference McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.PubMedPubMedCentralCrossRef McIlleron H, Wash P, Burger A, Norman J, Folb PI, Smith P. Determinants of rifampin, isoniazid, pyrazinamide, and ethambutol pharmacokinetics in a cohort of tuberculosis patients. Antimicrob Agents Chemother. 2006;50(4):1170–7.PubMedPubMedCentralCrossRef
162.
go back to reference Burkhardt O, Borner K, Stass H, Beyer G, Allewelt M, Nord CE, et al. Single- and multiple-dose pharmacokinetics of oral moxifloxacin and clarithromycin, and concentrations in serum, saliva and faeces. Scand J Infect Dis. 2002;34(12):898–903.PubMedCrossRef Burkhardt O, Borner K, Stass H, Beyer G, Allewelt M, Nord CE, et al. Single- and multiple-dose pharmacokinetics of oral moxifloxacin and clarithromycin, and concentrations in serum, saliva and faeces. Scand J Infect Dis. 2002;34(12):898–903.PubMedCrossRef
163.
go back to reference Reed MD, Blumer JL. Azithromycin: a critical review of the first azilide antibiotic and its role in pediatric practice. Pediatr Infect Dis J. 1997;16(11):1069–83.PubMedCrossRef Reed MD, Blumer JL. Azithromycin: a critical review of the first azilide antibiotic and its role in pediatric practice. Pediatr Infect Dis J. 1997;16(11):1069–83.PubMedCrossRef
164.
go back to reference Deshpande D, Srivastava S, Meek C, Leff R, Hall GS, Gumbo T. Moxifloxacin pharmacokinetics/pharmacodynamics and optimal dose and susceptibility breakpoint identification for treatment of disseminated Mycobacterium avium infection. Antimicrob Agents Chemother. 2010;54(6):2534–9.PubMedPubMedCentralCrossRef Deshpande D, Srivastava S, Meek C, Leff R, Hall GS, Gumbo T. Moxifloxacin pharmacokinetics/pharmacodynamics and optimal dose and susceptibility breakpoint identification for treatment of disseminated Mycobacterium avium infection. Antimicrob Agents Chemother. 2010;54(6):2534–9.PubMedPubMedCentralCrossRef
165.
go back to reference Peloquin CA, Hadad DJ, Molino LP, Palaci M, Boom WH, Dietze R, et al. Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2008;52(3):852–7.PubMedCrossRef Peloquin CA, Hadad DJ, Molino LP, Palaci M, Boom WH, Dietze R, et al. Population pharmacokinetics of levofloxacin, gatifloxacin, and moxifloxacin in adults with pulmonary tuberculosis. Antimicrob Agents Chemother. 2008;52(3):852–7.PubMedCrossRef
166.
go back to reference Rodvold KA, Neuhauser M. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Pharmacotherapy. 2001;21(10 Pt 2):233s-s252.PubMedCrossRef Rodvold KA, Neuhauser M. Pharmacokinetics and pharmacodynamics of fluoroquinolones. Pharmacotherapy. 2001;21(10 Pt 2):233s-s252.PubMedCrossRef
167.
go back to reference Grayson L, editor. Kucers’ the use of antibiotics. 6th ed. London: Hodder Arnold; 2010. Grayson L, editor. Kucers’ the use of antibiotics. 6th ed. London: Hodder Arnold; 2010.
168.
go back to reference van Ingen J, van der Laan T, Dekhuijzen R, Boeree M, van Soolingen D. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents. 2010;35(2):169–73.PubMedCrossRef van Ingen J, van der Laan T, Dekhuijzen R, Boeree M, van Soolingen D. In vitro drug susceptibility of 2275 clinical non-tuberculous Mycobacterium isolates of 49 species in The Netherlands. Int J Antimicrob Agents. 2010;35(2):169–73.PubMedCrossRef
169.
go back to reference Novartis Pharmaceutical Incorporated. Clofazimine (Lamprene) product information. New Jersey: Novartis Pharmaceutical Incorporated; 2016. Novartis Pharmaceutical Incorporated. Clofazimine (Lamprene) product information. New Jersey: Novartis Pharmaceutical Incorporated; 2016.
170.
go back to reference Swanson RV, Adamson J, Moodley C, Ngcobo B, Ammerman NC, Dorasamy A, et al. Pharmacokinetics and pharmacodynamics of clofazimine in a mouse model of tuberculosis. Antimicrob Agents Chemother. 2015;59(6):3042–51.PubMedPubMedCentralCrossRef Swanson RV, Adamson J, Moodley C, Ngcobo B, Ammerman NC, Dorasamy A, et al. Pharmacokinetics and pharmacodynamics of clofazimine in a mouse model of tuberculosis. Antimicrob Agents Chemother. 2015;59(6):3042–51.PubMedPubMedCentralCrossRef
171.
go back to reference Clarke JT, Libke RD, Regamey C, Kirby WM. Comparative pharmacokinetics of amikacin and kanamycin. Clin Pharmacol Ther. 1974;15(6):610–6.PubMedCrossRef Clarke JT, Libke RD, Regamey C, Kirby WM. Comparative pharmacokinetics of amikacin and kanamycin. Clin Pharmacol Ther. 1974;15(6):610–6.PubMedCrossRef
172.
go back to reference Chua KY, Bustamante A, Jelfs P, Chen SC, Sintchenko V. Antibiotic susceptibility of diverse Mycobacterium abscessus complex strains in New South Wales. Australia Pathology. 2015;47(7):678–82.PubMed Chua KY, Bustamante A, Jelfs P, Chen SC, Sintchenko V. Antibiotic susceptibility of diverse Mycobacterium abscessus complex strains in New South Wales. Australia Pathology. 2015;47(7):678–82.PubMed
173.
go back to reference Acocella G. Pharmacokinetics and metabolism of rifampin in humans. Rev Infect Dis. 1983;5(Suppl 3):S428–32.PubMedCrossRef Acocella G. Pharmacokinetics and metabolism of rifampin in humans. Rev Infect Dis. 1983;5(Suppl 3):S428–32.PubMedCrossRef
174.
go back to reference Kucers’ the use of antibiotics. a clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs. 7th ed. Boca Raton: CRC Press; 2018. Kucers’ the use of antibiotics. a clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs. 7th ed. Boca Raton: CRC Press; 2018.
175.
go back to reference Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, Childs JM, Nix DE. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother. 1999;43(3):568–72.PubMedPubMedCentralCrossRef Peloquin CA, Bulpitt AE, Jaresko GS, Jelliffe RW, Childs JM, Nix DE. Pharmacokinetics of ethambutol under fasting conditions, with food, and with antacids. Antimicrob Agents Chemother. 1999;43(3):568–72.PubMedPubMedCentralCrossRef
176.
go back to reference Zhu M, Burman WJ, Starke JR, Stambaugh JJ, Steiner P, Bulpitt AE, et al. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int J Tuberc Lung Dis. 2004;8(11):1360–7.PubMed Zhu M, Burman WJ, Starke JR, Stambaugh JJ, Steiner P, Bulpitt AE, et al. Pharmacokinetics of ethambutol in children and adults with tuberculosis. Int J Tuberc Lung Dis. 2004;8(11):1360–7.PubMed
177.
go back to reference Jeong BH, Jeon K, Park HY, Moon SM, Kim SY, Lee SY, et al. Peak plasma concentration of azithromycin and treatment responses in Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2016;60(10):6076–83.PubMedPubMedCentralCrossRef Jeong BH, Jeon K, Park HY, Moon SM, Kim SY, Lee SY, et al. Peak plasma concentration of azithromycin and treatment responses in Mycobacterium avium complex lung disease. Antimicrob Agents Chemother. 2016;60(10):6076–83.PubMedPubMedCentralCrossRef
178.
go back to reference Alffenaar JW, Kosterink JG, van Altena R, van der Werf TS, Uges DR, Proost JH. Limited sampling strategies for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Ther Drug Monit. 2010;32(1):97–101.PubMedCrossRef Alffenaar JW, Kosterink JG, van Altena R, van der Werf TS, Uges DR, Proost JH. Limited sampling strategies for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Ther Drug Monit. 2010;32(1):97–101.PubMedCrossRef
179.
go back to reference Buerger C, Plock N, Dehghanyar P, Joukhadar C, Kloft C. Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother. 2006;50(7):2455–63.PubMedPubMedCentralCrossRef Buerger C, Plock N, Dehghanyar P, Joukhadar C, Kloft C. Pharmacokinetics of unbound linezolid in plasma and tissue interstitium of critically ill patients after multiple dosing using microdialysis. Antimicrob Agents Chemother. 2006;50(7):2455–63.PubMedPubMedCentralCrossRef
180.
go back to reference Watanabe A, Anzai Y, Niitsuma K, Saito M, Yanase K, Nakamura M. Penetration of minocycline hydrochloride into lung tissue and sputum. Chemotherapy. 2001;47(1):1–9.PubMedCrossRef Watanabe A, Anzai Y, Niitsuma K, Saito M, Yanase K, Nakamura M. Penetration of minocycline hydrochloride into lung tissue and sputum. Chemotherapy. 2001;47(1):1–9.PubMedCrossRef
181.
go back to reference Pharmaceuticals T. Minocycline hydrochloride product insert. Cranford: Triax Pharmaceuticals; 2010. Pharmaceuticals T. Minocycline hydrochloride product insert. Cranford: Triax Pharmaceuticals; 2010.
182.
go back to reference Cholo MC, Mothiba MT, Fourie B, Anderson R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother. 2017;72(2):338–53.PubMedCrossRef Cholo MC, Mothiba MT, Fourie B, Anderson R. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother. 2017;72(2):338–53.PubMedCrossRef
183.
go back to reference Nix DE, Adam RD, Auclair B, Krueger TS, Godo PG, Peloquin CA. Pharmacokinetics and relative bioavailability of clofazimine in relation to food, orange juice and antacid. Tuberculosis (Edinb). 2004;84(6):365–73.PubMedCrossRef Nix DE, Adam RD, Auclair B, Krueger TS, Godo PG, Peloquin CA. Pharmacokinetics and relative bioavailability of clofazimine in relation to food, orange juice and antacid. Tuberculosis (Edinb). 2004;84(6):365–73.PubMedCrossRef
185.
go back to reference Lee H, Sohn YM, Ko JY, Lee SY, Jhun BW, Park HY, et al. Once-daily dosing of amikacin for treatment of Mycobacterium abscessus lung disease. Int J Tuberc Lung Dis. 2017;21(7):818–24.PubMedCrossRef Lee H, Sohn YM, Ko JY, Lee SY, Jhun BW, Park HY, et al. Once-daily dosing of amikacin for treatment of Mycobacterium abscessus lung disease. Int J Tuberc Lung Dis. 2017;21(7):818–24.PubMedCrossRef
186.
go back to reference Barbour A, Schmidt S, Ma B, Schiefelbein L, Rand KH, Burkhardt O, et al. Clinical pharmacokinetics and pharmacodynamics of tigecycline. Clin Pharmacokinet. 2009;48(9):575–84.PubMedCrossRef Barbour A, Schmidt S, Ma B, Schiefelbein L, Rand KH, Burkhardt O, et al. Clinical pharmacokinetics and pharmacodynamics of tigecycline. Clin Pharmacokinet. 2009;48(9):575–84.PubMedCrossRef
187.
go back to reference Vic P, Ategbo S, Turck D, Husson M, Tassin E, Loeuille G, Deschildre A, Druon D, Elian J, Arrouet-Lagandre C, Farriaux J. Tolerance, pharmacokinetics and efficacy of once daily amikacin for treatment of Pseudomonas aeruginosa pulmonary exacerbations in custic fibrosis patients. Eur J Paeds. 1996;155:948–53.CrossRef Vic P, Ategbo S, Turck D, Husson M, Tassin E, Loeuille G, Deschildre A, Druon D, Elian J, Arrouet-Lagandre C, Farriaux J. Tolerance, pharmacokinetics and efficacy of once daily amikacin for treatment of Pseudomonas aeruginosa pulmonary exacerbations in custic fibrosis patients. Eur J Paeds. 1996;155:948–53.CrossRef
Metadata
Title
Clinical Pharmacokinetic and Pharmacodynamic Considerations in the Drug Treatment of Non-Tuberculous Mycobacteria in Cystic Fibrosis
Authors
Andrew Burke
Daniel Smith
Chris Coulter
Scott C. Bell
Rachel Thomson
Jason A. Roberts
Publication date
01-09-2021
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 9/2021
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-021-01010-4

Other articles of this Issue 9/2021

Clinical Pharmacokinetics 9/2021 Go to the issue