Skip to main content
Top
Published in: International Ophthalmology 7/2020

01-07-2020 | Cataract | Original Paper

Refractive predictability using two optical biometers and refraction types for intraocular lens power calculation in cataract surgery

Authors: Huanhuan Cheng, Jianbing Li, Bing Cheng, Mingxing Wu

Published in: International Ophthalmology | Issue 7/2020

Login to get access

Abstract

Purpose

To evaluate the accuracy of intraocular lens (IOL) power calculation in relation to optical biometry devices and refraction types.

Methods

Patients undergoing cataract phacoemulsification and insertion of the MX60 IOL were enrolled. Optical biometric measurements were performed with both IOLMaster 700 and Lenstar 900. Biometry measurements were compared between devices. A subsample of 133 eyes (81.1%) had examination for both autorefraction and subjective refraction postoperatively. The differences between the postoperative refraction and the refraction predicted by eight formulas (Kane, Hill-RBF 2.0, Barrett Universal II, Olsen, Haigis, SRK/T, Holladay 1 and Hoffer Q) were calculated.

Results

Overall, this study comprised 164 eyes of 164 patients. High agreement between the two biometers for axial length, average keratometry readings, anterior chamber depth, lens thickness and central corneal thickness was found (interclass correlation confidents: 0.999, 0.988, 0.965, 0.865 and 0.972, respectively, all P < 0.001). The absolute prediction error calculated with IOLMaster 700 measurements was significantly lower than that calculated with Lenstar 900 measurements for Olsen (P = 0.003), Haigis (P < 0.001) and Hoffer Q (P = 0.028). OPD-Scan III gave slightly more negative readings than subjective refraction (mean difference − 0.107 ± 0.553, P = 0.003 for spherical equivalent). However, no significant difference in absolute prediction error was found between the two refraction types per each formula.

Conclusion

IOLMaster 700 and Lenstar 900 showed good agreement in biometric measurements with a trend toward better refractive outcome using IOLMaster 700. The accuracy of IOL calculation assessed with OPD autorefraction was equivalent to that assessed with subjective refraction.
Literature
1.
go back to reference Kanclerz P, Hoffer KJ, Rozema JJ, Przewłócka K, Savini G (2016) Biometry with a new swept-source optical coherence tomography biometer: repeatability and agreement with an optical low-coherence reflectometry device. J Cataract Refract Surg 42:577–581CrossRef Kanclerz P, Hoffer KJ, Rozema JJ, Przewłócka K, Savini G (2016) Biometry with a new swept-source optical coherence tomography biometer: repeatability and agreement with an optical low-coherence reflectometry device. J Cataract Refract Surg 42:577–581CrossRef
2.
go back to reference Cruysberg LP, Doors M, Verbakel F, Berendschot TT, De Brabander J, Nuijts RM (2009) Evaluation of the Lenstar LS 900 non-contact biometer. Br J Ophthalmol 94:106–110CrossRef Cruysberg LP, Doors M, Verbakel F, Berendschot TT, De Brabander J, Nuijts RM (2009) Evaluation of the Lenstar LS 900 non-contact biometer. Br J Ophthalmol 94:106–110CrossRef
3.
go back to reference Arriola-Villalobos P, Almendral-Gómez J, Garzón N, Ruiz-Medrano J, Fernández-Pérez C, Martínez-de-la-Casa JM, Díaz-Valle D (2017) Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer. Eye 31:437–442CrossRef Arriola-Villalobos P, Almendral-Gómez J, Garzón N, Ruiz-Medrano J, Fernández-Pérez C, Martínez-de-la-Casa JM, Díaz-Valle D (2017) Agreement and clinical comparison between a new swept-source optical coherence tomography-based optical biometer and an optical low-coherence reflectometry biometer. Eye 31:437–442CrossRef
4.
go back to reference Özyol P, Özyol E (2016) Agreement between swept-source optical biometry and Scheimpflug-based topography measurements of anterior segment parameters. Am J Ophthalmol 169:73–78CrossRef Özyol P, Özyol E (2016) Agreement between swept-source optical biometry and Scheimpflug-based topography measurements of anterior segment parameters. Am J Ophthalmol 169:73–78CrossRef
5.
go back to reference Asena L, Akman A, Gungor SG, Dursun Altınörs D (2018) Comparison of keratometry obtained by a swept source OCT-based biometer with a standard optical biometer and Scheimpflug imaging. Curr Eye Res 43:882–888CrossRef Asena L, Akman A, Gungor SG, Dursun Altınörs D (2018) Comparison of keratometry obtained by a swept source OCT-based biometer with a standard optical biometer and Scheimpflug imaging. Curr Eye Res 43:882–888CrossRef
6.
go back to reference El Chehab H, Agard E, Dot C (2018) Comparison of two biometers: a swept-source optical coherence tomography and an optical low-coherence reflectometry biometer. Eur J Ophthalmol 29:547–554CrossRef El Chehab H, Agard E, Dot C (2018) Comparison of two biometers: a swept-source optical coherence tomography and an optical low-coherence reflectometry biometer. Eur J Ophthalmol 29:547–554CrossRef
7.
go back to reference Norrby S (2008) Sources of error in intraocular lens power calculation. J Cataract Refract Surg 34:368–376CrossRef Norrby S (2008) Sources of error in intraocular lens power calculation. J Cataract Refract Surg 34:368–376CrossRef
8.
go back to reference Ostri C, Holfort SK, Fich MS, Riise P (2018) Automated refraction is stable 1 week after uncomplicated cataract surgery. Acta Ophthalmol 96:149–153CrossRef Ostri C, Holfort SK, Fich MS, Riise P (2018) Automated refraction is stable 1 week after uncomplicated cataract surgery. Acta Ophthalmol 96:149–153CrossRef
9.
go back to reference Hoffer KJ, Aramberri J, Haigis W, Olsen T, Savini G, Shammas HJ, Bentow S (2015) Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol 160:403–405CrossRef Hoffer KJ, Aramberri J, Haigis W, Olsen T, Savini G, Shammas HJ, Bentow S (2015) Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol 160:403–405CrossRef
10.
go back to reference Kane JX, Van Heerden A, Atik A, Petsoglou C (2016) Intraocular lens power formula accuracy: comparison of 7 formulas. J Cataract Refract Surg 42:1490–1500CrossRef Kane JX, Van Heerden A, Atik A, Petsoglou C (2016) Intraocular lens power formula accuracy: comparison of 7 formulas. J Cataract Refract Surg 42:1490–1500CrossRef
11.
go back to reference Kane JX, Van Heerden A, Atik A, Petsoglou C (2017) Accuracy of 3 new methods for intraocular lens power selection. J Cataract Refract Surg 43:333–339CrossRef Kane JX, Van Heerden A, Atik A, Petsoglou C (2017) Accuracy of 3 new methods for intraocular lens power selection. J Cataract Refract Surg 43:333–339CrossRef
12.
go back to reference Wallace HB, Misra SL, Li SS, McKelvie J (2018) Predicting pseudophakic refractive error: interplay of biometry prediction error, anterior chamber depth, and changes in corneal curvature. J Cataract Refract Surg 44:1123–1129CrossRef Wallace HB, Misra SL, Li SS, McKelvie J (2018) Predicting pseudophakic refractive error: interplay of biometry prediction error, anterior chamber depth, and changes in corneal curvature. J Cataract Refract Surg 44:1123–1129CrossRef
13.
go back to reference McGinnigle S, Naroo SA, Eperjesi F (2014) Evaluation of the auto-refraction function of the Nidek OPD-Scan III. Clin Exp Optom 97:160–163CrossRef McGinnigle S, Naroo SA, Eperjesi F (2014) Evaluation of the auto-refraction function of the Nidek OPD-Scan III. Clin Exp Optom 97:160–163CrossRef
14.
go back to reference Reitblat O, Levy A, Kleinmann G, Assia EI (2018) Accuracy of intraocular lens power calculation using three optical biometry measurement devices: the OA-2000, Lenstar-LS900 and IOLMaster-500. Eye 32:1244–1252CrossRef Reitblat O, Levy A, Kleinmann G, Assia EI (2018) Accuracy of intraocular lens power calculation using three optical biometry measurement devices: the OA-2000, Lenstar-LS900 and IOLMaster-500. Eye 32:1244–1252CrossRef
15.
go back to reference Srivannaboon S, Chirapapaisan C (2019) Comparison of refractive outcomes using conventional keratometry or total keratometry for IOL power calculation in cataract surgery. Graefes Arch Clin Exp Ophthalmol 257:2677–2682CrossRef Srivannaboon S, Chirapapaisan C (2019) Comparison of refractive outcomes using conventional keratometry or total keratometry for IOL power calculation in cataract surgery. Graefes Arch Clin Exp Ophthalmol 257:2677–2682CrossRef
16.
go back to reference Olsen T (2007) Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 85:472–485CrossRef Olsen T (2007) Calculation of intraocular lens power: a review. Acta Ophthalmol Scand 85:472–485CrossRef
17.
go back to reference Cooke DL, Cooke TL (2016) Comparison of 9 intraocular lens power calculation formulas. J Cataract Refract Surg 42:1157–1164CrossRef Cooke DL, Cooke TL (2016) Comparison of 9 intraocular lens power calculation formulas. J Cataract Refract Surg 42:1157–1164CrossRef
18.
go back to reference Savini G, Hoffer KJ, Shammas HJ, Aramberri J, Huang J, Barboni P (2017) Accuracy of a new swept-source optical coherence tomography biometer for IOL power calculation and comparison to IOLMaster. J Refract Surg 33:690–695CrossRef Savini G, Hoffer KJ, Shammas HJ, Aramberri J, Huang J, Barboni P (2017) Accuracy of a new swept-source optical coherence tomography biometer for IOL power calculation and comparison to IOLMaster. J Refract Surg 33:690–695CrossRef
19.
go back to reference Melles RB, Holladay JT, Chang WJ (2018) Accuracy of intraocular lens calculation formulas. Ophthalmology 125:169–178CrossRef Melles RB, Holladay JT, Chang WJ (2018) Accuracy of intraocular lens calculation formulas. Ophthalmology 125:169–178CrossRef
20.
go back to reference Connell BJ, Kane JX (2019) Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmol 4:e251CrossRef Connell BJ, Kane JX (2019) Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmol 4:e251CrossRef
21.
go back to reference Melles RB, Kane JX, Olsen T, Chang WJ (2019) Update on intraocular lens calculation formulas. Ophthalmology 126:1334–1335CrossRef Melles RB, Kane JX, Olsen T, Chang WJ (2019) Update on intraocular lens calculation formulas. Ophthalmology 126:1334–1335CrossRef
Metadata
Title
Refractive predictability using two optical biometers and refraction types for intraocular lens power calculation in cataract surgery
Authors
Huanhuan Cheng
Jianbing Li
Bing Cheng
Mingxing Wu
Publication date
01-07-2020
Publisher
Springer Netherlands
Keyword
Cataract
Published in
International Ophthalmology / Issue 7/2020
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-020-01355-y

Other articles of this Issue 7/2020

International Ophthalmology 7/2020 Go to the issue