Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 12/2019

01-12-2019 | Cataract | Cataract

Comparison of refractive outcomes using conventional keratometry or total keratometry for IOL power calculation in cataract surgery

Authors: Sabong Srivannaboon, Chareenun Chirapapaisan

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 12/2019

Login to get access

Abstract

Purpose

To compare the refractive outcomes following cataract surgery using conventional keratometry (K) and total keratometry (TK) for intraocular lens (IOL) calculation in the SRK/T, HofferQ, Haigis, and Holladay 1 and 2, as well as Barrett and Barrett TK Universal II formulas.

Methods

Sixty eyes of 60 patients from Siriraj Hospital, Thailand, were prospectively enrolled in this comparative study. Eyes were assessed using a swept-source optical biometer (IOLMaster 700; Carl Zeiss Meditec, Jena, Germany). Posterior keratometry, K, TK, central corneal thickness, anterior chamber depth, lens thickness, axial length, and white-to-white corneal diameter were recorded. Emmetropic IOL power was calculated using K and TK in all formulas. Selected IOL power and predicted refractive outcomes were recorded. Postoperative manifest refraction was measured 3 months postoperatively. Mean absolute errors (MAEs), median absolute errors (MedAEs), and percentage of eyes within ± 0.25, ± 0.50, and ± 1.00 D of predicted refraction were calculated for all formulas in both groups.

Results

Mean difference between K and TK was 0.03 D (44.56 ± 1.18 vs. 44.59 ± 1.22 D), showing excellent agreement (ICC = 0.99, all p < 0.001). Emmetropic IOL powers in all formulas for both groups were very similar, with a trend toward lower MAEs and MedAEs for TK when compared with K. The Barrett TK Universal II formula demonstrated the lowest MAEs. Proportion of eyes within ± 0.25, ± 0.50, and ± 1.00 D of predicted refraction were slightly higher in the TK group.

Conclusions

Conventional K and TK for IOL calculation showed strong agreement with a trend toward better refractive outcomes using TK. The same IOL constant can be used for both K and TK.
Literature
1.
go back to reference Sano M, Hiraoka T, Ueno Y (2016) Influence of posterior corneal astigmatism on postoperative refractive astigmatism in pseudophakic eyes after cataract surgery. BMC Ophthalmol 16:212CrossRef Sano M, Hiraoka T, Ueno Y (2016) Influence of posterior corneal astigmatism on postoperative refractive astigmatism in pseudophakic eyes after cataract surgery. BMC Ophthalmol 16:212CrossRef
2.
go back to reference Reitblat O, Levy A, Kleinmann G, Abulafia A, Assia EI (2016) Effect of posterior corneal astigmatism on power calculation and alignment of toric intraocular lenses: comparison of methodologies. J Cataract Refract Surg 42:217–225CrossRef Reitblat O, Levy A, Kleinmann G, Abulafia A, Assia EI (2016) Effect of posterior corneal astigmatism on power calculation and alignment of toric intraocular lenses: comparison of methodologies. J Cataract Refract Surg 42:217–225CrossRef
3.
go back to reference Savini G, Næser K (2015) An analysis of the factors influencing the residual refractive astigmatism after cataract surgery with toric intraocular lenses. Invest Ophthalmol Vis Sci 13:827–835CrossRef Savini G, Næser K (2015) An analysis of the factors influencing the residual refractive astigmatism after cataract surgery with toric intraocular lenses. Invest Ophthalmol Vis Sci 13:827–835CrossRef
4.
go back to reference Savini G, Hoffer KJ, Lomoriello DS, Ducoli P (2017) Simulated keratometry versus total corneal power by ray tracing: a comparison in prediction accuracy of intraocular lens power. Cornea 36:1368–1372CrossRef Savini G, Hoffer KJ, Lomoriello DS, Ducoli P (2017) Simulated keratometry versus total corneal power by ray tracing: a comparison in prediction accuracy of intraocular lens power. Cornea 36:1368–1372CrossRef
5.
go back to reference Kirgiz A, Atalay K, Kaldirim H, Cabuk KS, Akdemir MO, Taskapili M (2017) Scheimpflug camera combined with placido-disk corneal topography and optical biometry for intraocular lens power calculation. Int Ophthalmol 37:781–786CrossRef Kirgiz A, Atalay K, Kaldirim H, Cabuk KS, Akdemir MO, Taskapili M (2017) Scheimpflug camera combined with placido-disk corneal topography and optical biometry for intraocular lens power calculation. Int Ophthalmol 37:781–786CrossRef
6.
go back to reference Saad E, Shammas MC, Shammas HJ (2013) Scheimpflug corneal power measurements for intraocular lens power calculation in cataract surgery. Am J Ophthalmol 156:460–467CrossRef Saad E, Shammas MC, Shammas HJ (2013) Scheimpflug corneal power measurements for intraocular lens power calculation in cataract surgery. Am J Ophthalmol 156:460–467CrossRef
7.
go back to reference Srivannaboon S, Chotikavanich S, Chirapapaisan C, Kasemson S, Po-ngam W (2012) Precision analysis of posterior corneal topography measured by Visante Omni: repeatability, reproducibility, and agreement with Orbscan II. J Refract Surg 28:133–138CrossRef Srivannaboon S, Chotikavanich S, Chirapapaisan C, Kasemson S, Po-ngam W (2012) Precision analysis of posterior corneal topography measured by Visante Omni: repeatability, reproducibility, and agreement with Orbscan II. J Refract Surg 28:133–138CrossRef
8.
go back to reference Aramberri J, Araiz L, Garcia A, Illarramendi I, Olmos J, Oyanarte I, Romay A, Vigara I (2012) Dual versus single Scheimpflug camera for anterior segment analysis: precision and agreement. J Cataract Refract Surg 38:1934–1949CrossRef Aramberri J, Araiz L, Garcia A, Illarramendi I, Olmos J, Oyanarte I, Romay A, Vigara I (2012) Dual versus single Scheimpflug camera for anterior segment analysis: precision and agreement. J Cataract Refract Surg 38:1934–1949CrossRef
10.
go back to reference Rosner B (2000) Fundamental of biostatistic. Duxbury, California Rosner B (2000) Fundamental of biostatistic. Duxbury, California
11.
go back to reference Shajari M, Kolb CM, Petermann K, Böhm M, Herzog M, de’Lorenzo N, Schönbrunn S, Kohnen T (2018) Comparison of 9 modern intraocular lens power calculation formulas for a quadrifocal intraocular lens. J Cataract Refract Surg 44:942–948CrossRef Shajari M, Kolb CM, Petermann K, Böhm M, Herzog M, de’Lorenzo N, Schönbrunn S, Kohnen T (2018) Comparison of 9 modern intraocular lens power calculation formulas for a quadrifocal intraocular lens. J Cataract Refract Surg 44:942–948CrossRef
12.
go back to reference Fabian E, Wehner W (2019) Prediction accuracy of total keratometry compared to standard keratometry using different intraocular lens power formulas. J Refract Surg 35:362–368CrossRef Fabian E, Wehner W (2019) Prediction accuracy of total keratometry compared to standard keratometry using different intraocular lens power formulas. J Refract Surg 35:362–368CrossRef
13.
go back to reference Wang L, Koch DD, Hill W, Abulafia A (2017) Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes. J Cataract Refract Surg 43:999–1002CrossRef Wang L, Koch DD, Hill W, Abulafia A (2017) Pursuing perfection in intraocular lens calculations: III. Criteria for analyzing outcomes. J Cataract Refract Surg 43:999–1002CrossRef
14.
go back to reference Aristodemou P, Cartwright NK, Sparrow JM, Johnston R (2011) Intraocular lens calculations. Ophthalmology 118:1221CrossRef Aristodemou P, Cartwright NK, Sparrow JM, Johnston R (2011) Intraocular lens calculations. Ophthalmology 118:1221CrossRef
15.
go back to reference Lachin JM (1992) Power and sample size evaluation for the McNemar test with application to matched case-control studies. Stat Med 11:1239–1251CrossRef Lachin JM (1992) Power and sample size evaluation for the McNemar test with application to matched case-control studies. Stat Med 11:1239–1251CrossRef
16.
go back to reference Tang M, Wang L, Koch DD, Li Y, Huang D (2012) Intraocular lens power calculation after previous myopic laser vision correction based on corneal power measured by Fourier-domain optical coherence tomography. J Cataract Refract Surg 238:589–594CrossRef Tang M, Wang L, Koch DD, Li Y, Huang D (2012) Intraocular lens power calculation after previous myopic laser vision correction based on corneal power measured by Fourier-domain optical coherence tomography. J Cataract Refract Surg 238:589–594CrossRef
17.
go back to reference Qazi MA, Cua IY, Roberts CJ, Pepose JS (2007) Determining corneal power using Orbscan II videokeratography for intraocular lens calculation after excimer laser surgery for myopia. J Cataract Refract Surg 33:21–30CrossRef Qazi MA, Cua IY, Roberts CJ, Pepose JS (2007) Determining corneal power using Orbscan II videokeratography for intraocular lens calculation after excimer laser surgery for myopia. J Cataract Refract Surg 33:21–30CrossRef
18.
go back to reference Kwitko S, Marinho DR, Rymer S, Severo N, Arce CG (2012) Orbscan II and double-K method for IOL calculation after refractive surgery. Graefes Arch Clin Exp Ophthalmol 2250:1029–1034CrossRef Kwitko S, Marinho DR, Rymer S, Severo N, Arce CG (2012) Orbscan II and double-K method for IOL calculation after refractive surgery. Graefes Arch Clin Exp Ophthalmol 2250:1029–1034CrossRef
19.
go back to reference Shammas HJ, Hoffer KJ, Shammas MC (2009) Scheimpflug photography keratometry readings for routine intraocular lens power calculation. J Cataract Refract Surg 35:330–334CrossRef Shammas HJ, Hoffer KJ, Shammas MC (2009) Scheimpflug photography keratometry readings for routine intraocular lens power calculation. J Cataract Refract Surg 35:330–334CrossRef
20.
go back to reference Ayala M, Strandås R (2015) Accuracy of optical coherence tomography (OCT) in pachymetry for glaucoma patients. BMC Ophthalmol 15:124 Ayala M, Strandås R (2015) Accuracy of optical coherence tomography (OCT) in pachymetry for glaucoma patients. BMC Ophthalmol 15:124
21.
go back to reference Gullstrand A (1911) Einfihrung in die Methoden der Dioptrik des Auges des Menschen. Hirzel, Leipzig Gullstrand A (1911) Einfihrung in die Methoden der Dioptrik des Auges des Menschen. Hirzel, Leipzig
22.
go back to reference Stenstrom S (1964) Optics and the eye. Goteborg, Akademiforlaget Stenstrom S (1964) Optics and the eye. Goteborg, Akademiforlaget
23.
go back to reference Olsen T (1986) On the calculation of power from curvature of the cornea. Br J Ophthalmol 70:152–154CrossRef Olsen T (1986) On the calculation of power from curvature of the cornea. Br J Ophthalmol 70:152–154CrossRef
24.
go back to reference Hoffer KJ, Aramberri J, Haigis W, Olsen T, Savini G, Shammas HJ, Bentow S (2015) Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol 160:403–405CrossRef Hoffer KJ, Aramberri J, Haigis W, Olsen T, Savini G, Shammas HJ, Bentow S (2015) Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol 160:403–405CrossRef
25.
go back to reference Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL (2011) Intraocular lens formula constant optimization and partial coherence interferometry biometry: refractive outcomes in 8108 eyes after cataract surgery. J Cataract Refract Surg 37:50–62CrossRef Aristodemou P, Knox Cartwright NE, Sparrow JM, Johnston RL (2011) Intraocular lens formula constant optimization and partial coherence interferometry biometry: refractive outcomes in 8108 eyes after cataract surgery. J Cataract Refract Surg 37:50–62CrossRef
Metadata
Title
Comparison of refractive outcomes using conventional keratometry or total keratometry for IOL power calculation in cataract surgery
Authors
Sabong Srivannaboon
Chareenun Chirapapaisan
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Keyword
Cataract
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 12/2019
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-019-04443-7

Other articles of this Issue 12/2019

Graefe's Archive for Clinical and Experimental Ophthalmology 12/2019 Go to the issue