Skip to main content
Top
Published in: Seminars in Immunopathology 4/2015

01-07-2015 | Review

Caspase-1: an integral regulator of innate immunity

Authors: Stefan Winkler, Angela Rösen-Wolff

Published in: Seminars in Immunopathology | Issue 4/2015

Login to get access

Abstract

Caspase-1 is a unique cysteine protease playing central roles in innate immunity. Pathogens, stress, and damage signals induce activation of caspase-1, typically mediated by proximity-induced autoproteolysis in multimeric protein complexes called the inflammasome. Active caspase-1 induces secretion of pro-inflammatory cytokines and mediates pyroptosis, a programmed pro-inflammatory cell death, thereby initiating an immune response finally leading to pathogen clearance. Excessive activation of caspase-1 is the underlying cause for rare diseases such as periodic fever syndromes, and more common disorders, including atherosclerosis, type 2 diabetes, and gout. Beside these well-known pro-inflammatory functions, active caspase-1 also has anti-inflammatory and protective functions contributing to cell survival, reduced inflammatory cytokine signaling, and improved outcomes in mouse models of burn injury or trauma and shock. Furthermore, naturally occurring procaspase-1 variants with reduced or abrogated enzymatic activity mediate enhanced inflammatory signaling and have been associated to autoinflammatory symptoms. Here, we review functions of caspase-1 focusing on anti-inflammatory signaling pathways and discuss the role of enzymatically inactive caspase-1 as disease-promoting factors in autoinflammatory diseases. Moreover, we illustrate differential requirements for autoproteolysis and enzymatic activity in caspase-1 functions.
Literature
5.
go back to reference Yazdi AS, Guarda G, D’Ombrain MC, Drexler SK (2010) Inflammatory caspases in innate immunity and inflammation. J Innate Immun 2:228–237PubMedCrossRef Yazdi AS, Guarda G, D’Ombrain MC, Drexler SK (2010) Inflammatory caspases in innate immunity and inflammation. J Innate Immun 2:228–237PubMedCrossRef
6.
go back to reference Kostura MJ, Tocci MJ, Limjuco G et al (1989) Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci U S A 86:5227–5231PubMedCentralPubMedCrossRef Kostura MJ, Tocci MJ, Limjuco G et al (1989) Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci U S A 86:5227–5231PubMedCentralPubMedCrossRef
7.
go back to reference Black RA, Kronheim SR, Merriam JE et al (1989) A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem 264:5323–5326PubMed Black RA, Kronheim SR, Merriam JE et al (1989) A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem 264:5323–5326PubMed
8.
go back to reference Thornberry NA, Bull HG, Calaycay JR et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774. doi:10.1038/356768a0 PubMedCrossRef Thornberry NA, Bull HG, Calaycay JR et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774. doi:10.​1038/​356768a0 PubMedCrossRef
9.
go back to reference Cerretti DP, Kozlosky CJ, Mosley B et al (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256:97–100PubMedCrossRef Cerretti DP, Kozlosky CJ, Mosley B et al (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256:97–100PubMedCrossRef
10.
go back to reference Walker NP, Talanian RV, Brady KD et al (1994) Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 78:343–352PubMedCrossRef Walker NP, Talanian RV, Brady KD et al (1994) Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 78:343–352PubMedCrossRef
12.
go back to reference Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426PubMedCrossRef Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426PubMedCrossRef
18.
26.
go back to reference McDermott MF, Aksentijevich I, Galon J et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–144PubMedCrossRef McDermott MF, Aksentijevich I, Galon J et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97:133–144PubMedCrossRef
28.
29.
go back to reference Aksentijevich I, Nowak M, Mallah M et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46:3340–3348. doi:10.1002/art.10688 PubMedCrossRef Aksentijevich I, Nowak M, Mallah M et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46:3340–3348. doi:10.​1002/​art.​10688 PubMedCrossRef
30.
go back to reference Feldmann J, Prieur A-M, Quartier P et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71:198–203PubMedCentralPubMedCrossRef Feldmann J, Prieur A-M, Quartier P et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71:198–203PubMedCentralPubMedCrossRef
37.
go back to reference Madouri F, Guillou N, Fauconnier L et al (2015) Caspase-1 activation by NLRP3 inflammasome dampens IL-33-dependent house dust mite-induced allergic lung inflammation. J Mol Cell Biol. doi:10.1093/jmcb/mjv012 PubMed Madouri F, Guillou N, Fauconnier L et al (2015) Caspase-1 activation by NLRP3 inflammasome dampens IL-33-dependent house dust mite-induced allergic lung inflammation. J Mol Cell Biol. doi:10.​1093/​jmcb/​mjv012 PubMed
40.
go back to reference Luksch H, Romanowski MJ, Chara O et al (2013) Naturally occurring genetic variants of human caspase-1 differ considerably in structure and the ability to activate interleukin-1β. Hum Mutat 34:122–131. doi:10.1002/humu.22169 PubMedCrossRef Luksch H, Romanowski MJ, Chara O et al (2013) Naturally occurring genetic variants of human caspase-1 differ considerably in structure and the ability to activate interleukin-1β. Hum Mutat 34:122–131. doi:10.​1002/​humu.​22169 PubMedCrossRef
41.
go back to reference Heymann MC, Winkler S, Luksch H et al (2014) Human procaspase-1 variants with decreased enzymatic activity are associated with febrile episodes and may contribute to inflammation via RIP2 and NF-κB signaling. J Immunol 192:4379–4385. doi:10.4049/jimmunol.1203524 PubMedCrossRef Heymann MC, Winkler S, Luksch H et al (2014) Human procaspase-1 variants with decreased enzymatic activity are associated with febrile episodes and may contribute to inflammation via RIP2 and NF-κB signaling. J Immunol 192:4379–4385. doi:10.​4049/​jimmunol.​1203524 PubMedCrossRef
43.
go back to reference Kuida K, Lippke JA, Ku G et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–2003PubMedCrossRef Kuida K, Lippke JA, Ku G et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–2003PubMedCrossRef
51.
go back to reference Kersse K, Lamkanfi M, Bertrand MJM et al (2011) Interaction patches of procaspase-1 caspase recruitment domains (CARDs) Are differently involved in procaspase-1 activation and receptor-interacting protein 2 (RIP2)-dependent nuclear factor B signaling. J Biol Chem 286:35874–35882. doi:10.1074/jbc.M111.242321 PubMedCentralPubMedCrossRef Kersse K, Lamkanfi M, Bertrand MJM et al (2011) Interaction patches of procaspase-1 caspase recruitment domains (CARDs) Are differently involved in procaspase-1 activation and receptor-interacting protein 2 (RIP2)-dependent nuclear factor B signaling. J Biol Chem 286:35874–35882. doi:10.​1074/​jbc.​M111.​242321 PubMedCentralPubMedCrossRef
52.
go back to reference Sarkar A, Duncan M, Hart J et al (2006) ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. J Immunol 176:4979–4986PubMedCrossRef Sarkar A, Duncan M, Hart J et al (2006) ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. J Immunol 176:4979–4986PubMedCrossRef
53.
go back to reference Broadley KN, Aquino AM, Woodward SC et al (1989) Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair. Lab Investig 61:571–575PubMed Broadley KN, Aquino AM, Woodward SC et al (1989) Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair. Lab Investig 61:571–575PubMed
54.
go back to reference Kumar S, Hanning CR, Brigham-Burke MR et al (2002) Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine 18:61–71. doi:10.1006/cyto.2002.0873 PubMedCrossRef Kumar S, Hanning CR, Brigham-Burke MR et al (2002) Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine 18:61–71. doi:10.​1006/​cyto.​2002.​0873 PubMedCrossRef
55.
go back to reference Sharma S, Kulk N, Nold MF et al (2008) The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines. J Immunol 180:5477–5482PubMedCrossRef Sharma S, Kulk N, Nold MF et al (2008) The IL-1 family member 7b translocates to the nucleus and down-regulates proinflammatory cytokines. J Immunol 180:5477–5482PubMedCrossRef
58.
go back to reference Mao K, Chen S, Chen M et al (2013) Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPSinduced septic shock. Cell Res 23:201–212. doi:10.1038/cr.2013.6 Mao K, Chen S, Chen M et al (2013) Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPSinduced septic shock. Cell Res 23:201–212. doi:10.​1038/​cr.​2013.​6
67.
go back to reference Gurung P, Malireddi RKS, Anand PK et al (2012) Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J Biol Chem 287:34474–34483. doi:10.1074/jbc.M112.401406 PubMedCentralPubMedCrossRef Gurung P, Malireddi RKS, Anand PK et al (2012) Toll or interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-β (TRIF)-mediated caspase-11 protease production integrates Toll-like receptor 4 (TLR4) protein- and Nlrp3 inflammasome-mediated host defense against enteropathogens. J Biol Chem 287:34474–34483. doi:10.​1074/​jbc.​M112.​401406 PubMedCentralPubMedCrossRef
80.
Metadata
Title
Caspase-1: an integral regulator of innate immunity
Authors
Stefan Winkler
Angela Rösen-Wolff
Publication date
01-07-2015
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 4/2015
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-015-0494-4

Other articles of this Issue 4/2015

Seminars in Immunopathology 4/2015 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.