Skip to main content
Top
Published in: Seminars in Immunopathology 4/2015

01-07-2015 | Review

Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond

Authors: Amma F. Agyemang, Stephanie R. Harrison, Richard M. Siegel, Michael F. McDermott

Published in: Seminars in Immunopathology | Issue 4/2015

Login to get access

Abstract

Cells have a number of mechanisms to maintain protein homeostasis, including proteasome-mediated degradation of ubiquitinated proteins and autophagy, a regulated process of “self-eating” where the contents of entire organelles can be recycled for other uses. The unfolded protein response prevents protein overload in the secretory pathway. In the past decade, it has become clear that these fundamental cellular processes also help contain inflammation though degrading pro-inflammatory protein complexes such as the NLRP3 inflammasome. Signaling pathways such as the UPR can also be co-opted by toll-like receptor and mitochondrial reactive oxygen species signaling to induce inflammatory responses. Mutations that alter key inflammatory proteins, such as NLRP3 or TNFR1, can overcome normal protein homeostasis mechanisms, resulting in autoinflammatory diseases. Conversely, Mendelian defects in the proteasome cause protein accumulation, which can trigger interferon-dependent autoinflammatory disease. In non-Mendelian inflammatory diseases, polymorphisms in genes affecting the UPR or autophagy pathways can contribute to disease, and in diseases not formerly considered inflammatory such as neurodegenerative conditions and type 2 diabetes, there is increasing evidence that cell intrinsic or environmental alterations in protein homeostasis may contribute to pathogenesis.
Literature
1.
go back to reference Hetz C et al (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 91(4):1219–1243PubMed Hetz C et al (2011) The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 91(4):1219–1243PubMed
2.
go back to reference Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13(3):374–384PubMed Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the unfolded protein response. Cell Death Differ 13(3):374–384PubMed
3.
go back to reference Urano F et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666PubMed Urano F et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287(5453):664–666PubMed
6.
go back to reference Park H et al (2012) Lighting the fires within: the cell biology of autoinflammatory diseases. Nat Rev Immunol 12(8):570–580PubMedCentralPubMed Park H et al (2012) Lighting the fires within: the cell biology of autoinflammatory diseases. Nat Rev Immunol 12(8):570–580PubMedCentralPubMed
7.
go back to reference McDermott MF et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97(1):133–144PubMed McDermott MF et al (1999) Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 97(1):133–144PubMed
8.
9.
go back to reference Savic S et al (2012) Autoinflammatory syndromes and cellular responses to stress: pathophysiology, diagnosis and new treatment perspectives. Best Pract Res Clin Rheumatol 26(4):505–533PubMed Savic S et al (2012) Autoinflammatory syndromes and cellular responses to stress: pathophysiology, diagnosis and new treatment perspectives. Best Pract Res Clin Rheumatol 26(4):505–533PubMed
10.
go back to reference Yao Q, Furst DE (2008) Autoinflammatory diseases: an update of clinical and genetic aspects. Rheumatology (Oxford) 47(7):946–951 Yao Q, Furst DE (2008) Autoinflammatory diseases: an update of clinical and genetic aspects. Rheumatology (Oxford) 47(7):946–951
11.
go back to reference McKusick AV (1986, 2008) Periodic fever, familial, autosomal dominant (OMIM:142680) [Online]. [cited 2015 Feb 07] McKusick AV (1986, 2008) Periodic fever, familial, autosomal dominant (OMIM:142680) [Online]. [cited 2015 Feb 07]
13.
go back to reference Cantarini L et al (2012) Tumour necrosis factor receptor-associated periodic syndrome (TRAPS): state of the art and future perspectives. Autoimmun Rev 12(1):38–43PubMed Cantarini L et al (2012) Tumour necrosis factor receptor-associated periodic syndrome (TRAPS): state of the art and future perspectives. Autoimmun Rev 12(1):38–43PubMed
14.
go back to reference Simon A et al (2010) Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc Natl Acad Sci U S A 107(21):9801–9806PubMedCentralPubMed Simon A et al (2010) Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc Natl Acad Sci U S A 107(21):9801–9806PubMedCentralPubMed
15.
go back to reference Xanthoulea S et al (2004) Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J Exp Med 200(3):367–376PubMedCentralPubMed Xanthoulea S et al (2004) Tumor necrosis factor (TNF) receptor shedding controls thresholds of innate immune activation that balance opposing TNF functions in infectious and inflammatory diseases. J Exp Med 200(3):367–376PubMedCentralPubMed
16.
go back to reference Huggins ML et al (2004) Shedding of mutant tumor necrosis factor receptor superfamily 1A associated with tumor necrosis factor receptor-associated periodic syndrome: differences between cell types. Arthritis Rheum 50(8):2651–2659PubMed Huggins ML et al (2004) Shedding of mutant tumor necrosis factor receptor superfamily 1A associated with tumor necrosis factor receptor-associated periodic syndrome: differences between cell types. Arthritis Rheum 50(8):2651–2659PubMed
17.
go back to reference Todd I et al (2007) Mutant tumor necrosis factor receptor associated with tumor necrosis factor receptor-associated periodic syndrome is altered antigenically and is retained within patients’ leukocytes. Arthritis Rheum 56(8):2765–2773PubMed Todd I et al (2007) Mutant tumor necrosis factor receptor associated with tumor necrosis factor receptor-associated periodic syndrome is altered antigenically and is retained within patients’ leukocytes. Arthritis Rheum 56(8):2765–2773PubMed
18.
go back to reference Todd I et al (2004) Mutant forms of tumour necrosis factor receptor I that occur in TNF-receptor-associated periodic syndrome retain signalling functions but show abnormal behaviour. Immunology 113(1):65–79PubMedCentralPubMed Todd I et al (2004) Mutant forms of tumour necrosis factor receptor I that occur in TNF-receptor-associated periodic syndrome retain signalling functions but show abnormal behaviour. Immunology 113(1):65–79PubMedCentralPubMed
19.
go back to reference Rebelo SL et al (2006) Modeling of tumor necrosis factor receptor superfamily 1A mutants associated with tumor necrosis factor receptor-associated periodic syndrome indicates misfolding consistent with abnormal function. Arthritis Rheum 54(8):2674–2687PubMed Rebelo SL et al (2006) Modeling of tumor necrosis factor receptor superfamily 1A mutants associated with tumor necrosis factor receptor-associated periodic syndrome indicates misfolding consistent with abnormal function. Arthritis Rheum 54(8):2674–2687PubMed
20.
go back to reference Lobito AA et al (2006) Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 108(4):1320–1327PubMedCentralPubMed Lobito AA et al (2006) Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 108(4):1320–1327PubMedCentralPubMed
21.
go back to reference Yousaf N et al (2005) Tumor necrosis factor receptor I from patients with tumor necrosis factor receptor-associated periodic syndrome interacts with wild-type tumor necrosis factor receptor I and induces ligand-independent NF-kappaB activation. Arthritis Rheum 52(9):2906–2916PubMed Yousaf N et al (2005) Tumor necrosis factor receptor I from patients with tumor necrosis factor receptor-associated periodic syndrome interacts with wild-type tumor necrosis factor receptor I and induces ligand-independent NF-kappaB activation. Arthritis Rheum 52(9):2906–2916PubMed
22.
go back to reference Nedjai B et al (2008) Abnormal tumor necrosis factor receptor I cell surface expression and NF-kappaB activation in tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 58(1):273–283PubMed Nedjai B et al (2008) Abnormal tumor necrosis factor receptor I cell surface expression and NF-kappaB activation in tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 58(1):273–283PubMed
23.
go back to reference Dickie LJ et al (2012) Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. Ann Rheum Dis 71(12):2035–2043PubMed Dickie LJ et al (2012) Involvement of X-box binding protein 1 and reactive oxygen species pathways in the pathogenesis of tumour necrosis factor receptor-associated periodic syndrome. Ann Rheum Dis 71(12):2035–2043PubMed
24.
go back to reference Martinon F et al (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11(5):411–418PubMedCentralPubMed Martinon F et al (2010) TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages. Nat Immunol 11(5):411–418PubMedCentralPubMed
25.
go back to reference Bulua AC et al (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208(3):519–533PubMedCentralPubMed Bulua AC et al (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208(3):519–533PubMedCentralPubMed
26.
go back to reference Churchman SM et al (2008) A novel TNFRSF1A splice mutation associated with increased nuclear factor kappaB (NF-kappaB) transcription factor activation in patients with tumour necrosis factor receptor associated periodic syndrome (TRAPS). Ann Rheum Dis 67(11):1589–1595PubMed Churchman SM et al (2008) A novel TNFRSF1A splice mutation associated with increased nuclear factor kappaB (NF-kappaB) transcription factor activation in patients with tumour necrosis factor receptor associated periodic syndrome (TRAPS). Ann Rheum Dis 67(11):1589–1595PubMed
27.
go back to reference Gattorno M et al (2008) Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 58(5):1516–1520PubMed Gattorno M et al (2008) Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 58(5):1516–1520PubMed
28.
go back to reference Bachetti T et al (2013) Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann Rheum Dis 72(6):1044–1052PubMed Bachetti T et al (2013) Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann Rheum Dis 72(6):1044–1052PubMed
29.
go back to reference Bachetti T, Ceccherini I (2014) Tumor necrosis factor receptor-associated periodic syndrome as a model linking autophagy and inflammation in protein aggregation disease. J Mol Med 92(6):582–594 Bachetti T, Ceccherini I (2014) Tumor necrosis factor receptor-associated periodic syndrome as a model linking autophagy and inflammation in protein aggregation disease. J Mol Med 92(6):582–594
30.
31.
go back to reference van der Burgh R et al (2014) Defects in mitochondrial clearance predispose human monocytes to interleukin-1beta hypersecretion. J Biol Chem 289(8):5000–5012PubMedCentralPubMed van der Burgh R et al (2014) Defects in mitochondrial clearance predispose human monocytes to interleukin-1beta hypersecretion. J Biol Chem 289(8):5000–5012PubMedCentralPubMed
32.
go back to reference Agarwal AK et al (2010) PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet 87(6):866–872PubMedCentralPubMed Agarwal AK et al (2010) PSMB8 encoding the beta5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome. Am J Hum Genet 87(6):866–872PubMedCentralPubMed
33.
go back to reference Arima K et al (2011) Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci 108(21852578):14914–14919PubMedCentralPubMed Arima K et al (2011) Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci 108(21852578):14914–14919PubMedCentralPubMed
34.
go back to reference Kitamura A et al (2011) A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest 121(10):4150–4160PubMedCentralPubMed Kitamura A et al (2011) A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest 121(10):4150–4160PubMedCentralPubMed
35.
go back to reference Liu Y et al (2012) Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 64(3):895–907PubMedCentralPubMed Liu Y et al (2012) Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum 64(3):895–907PubMedCentralPubMed
36.
go back to reference Seifert U et al (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142(4):613–624PubMed Seifert U et al (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142(4):613–624PubMed
37.
go back to reference Strowig T et al (2012) Inflammasomes in health and disease. Nature 481(7381):278–286PubMed Strowig T et al (2012) Inflammasomes in health and disease. Nature 481(7381):278–286PubMed
38.
go back to reference Duncan JA et al (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A 104(19):8041–8046PubMedCentralPubMed Duncan JA et al (2007) Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A 104(19):8041–8046PubMedCentralPubMed
39.
go back to reference Lu M et al (2014) Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol Aging 35(2):421–430PubMed Lu M et al (2014) Uncoupling protein 2 deficiency aggravates astrocytic endoplasmic reticulum stress and nod-like receptor protein 3 inflammasome activation. Neurobiol Aging 35(2):421–430PubMed
40.
go back to reference Chae JJ et al (2011) Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity 34(5):755–768PubMedCentralPubMed Chae JJ et al (2011) Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity 34(5):755–768PubMedCentralPubMed
41.
go back to reference Aksentijevich I et al (2007) The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum 56(4):1273–1285PubMedCentralPubMed Aksentijevich I et al (2007) The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Arthritis Rheum 56(4):1273–1285PubMedCentralPubMed
42.
go back to reference Hoffman HM, Wanderer AA, Broide DH (2001) Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J Allergy Clin Immunol 108(4):615–620PubMedCentralPubMed Hoffman HM, Wanderer AA, Broide DH (2001) Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J Allergy Clin Immunol 108(4):615–620PubMedCentralPubMed
43.
go back to reference Dode C et al (2002) New mutations of CIAS1 that are responsible for Muckle-Wells syndrome and familial cold urticaria: a novel mutation underlies both syndromes. Am J Hum Genet 70(6):1498–1506PubMedCentralPubMed Dode C et al (2002) New mutations of CIAS1 that are responsible for Muckle-Wells syndrome and familial cold urticaria: a novel mutation underlies both syndromes. Am J Hum Genet 70(6):1498–1506PubMedCentralPubMed
44.
go back to reference Agostini L et al (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20(3):319–325PubMed Agostini L et al (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20(3):319–325PubMed
45.
go back to reference Aksentijevich I et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46(12):3340–3348PubMed Aksentijevich I et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46(12):3340–3348PubMed
46.
go back to reference Feldmann J et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71(1):198–203PubMedCentralPubMed Feldmann J et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71(1):198–203PubMedCentralPubMed
47.
go back to reference Harris J et al (2011) Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem 286(11):9587–9597PubMedCentralPubMed Harris J et al (2011) Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem 286(11):9587–9597PubMedCentralPubMed
48.
go back to reference Nakahira K et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230PubMedCentralPubMed Nakahira K et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230PubMedCentralPubMed
49.
go back to reference Shi CS et al (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13(3):255–263PubMedCentralPubMed Shi CS et al (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13(3):255–263PubMedCentralPubMed
50.
go back to reference Goldbach-Mansky R et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355(6):581–592PubMedCentralPubMed Goldbach-Mansky R et al (2006) Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 355(6):581–592PubMedCentralPubMed
51.
go back to reference Hawkins PN, Lachmann HJ, McDermott MF (2003) Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med 348(25):2583–2584PubMed Hawkins PN, Lachmann HJ, McDermott MF (2003) Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med 348(25):2583–2584PubMed
52.
go back to reference Canna SW et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46(10):1140–1146PubMedCentralPubMed Canna SW et al (2014) An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet 46(10):1140–1146PubMedCentralPubMed
53.
go back to reference Romberg N et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46(10):1135–1139PubMedCentralPubMed Romberg N et al (2014) Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet 46(10):1135–1139PubMedCentralPubMed
54.
go back to reference Mear JP et al (1999) Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 163(12):6665–6670PubMed Mear JP et al (1999) Misfolding of HLA-B27 as a result of its B pocket suggests a novel mechanism for its role in susceptibility to spondyloarthropathies. J Immunol 163(12):6665–6670PubMed
55.
go back to reference Dangoria NS et al (2002) HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 277(26):23459–23468PubMed Dangoria NS et al (2002) HLA-B27 misfolding is associated with aberrant intermolecular disulfide bond formation (dimerization) in the endoplasmic reticulum. J Biol Chem 277(26):23459–23468PubMed
56.
go back to reference Turner MJ et al (2007) HLA–B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum 56(1):215–223PubMed Turner MJ et al (2007) HLA–B27 up-regulation causes accumulation of misfolded heavy chains and correlates with the magnitude of the unfolded protein response in transgenic rats: implications for the pathogenesis of spondylarthritis-like disease. Arthritis Rheum 56(1):215–223PubMed
57.
go back to reference Turner MJ et al (2005) HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol 175(4):2438–2448PubMed Turner MJ et al (2005) HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol 175(4):2438–2448PubMed
58.
go back to reference Ciccia F et al (2014) Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann Rheum Dis 73(8):1566–1574PubMed Ciccia F et al (2014) Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann Rheum Dis 73(8):1566–1574PubMed
59.
go back to reference DeLay ML et al (2009) HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum 60(9):2633–2643PubMedCentralPubMed DeLay ML et al (2009) HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum 60(9):2633–2643PubMedCentralPubMed
60.
go back to reference Neerinckx B, Carter S, Lories RJ (2014) No evidence for a critical role of the unfolded protein response in synovium and blood of patients with ankylosing spondylitis. Ann Rheum Dis 73(3):629–630PubMed Neerinckx B, Carter S, Lories RJ (2014) No evidence for a critical role of the unfolded protein response in synovium and blood of patients with ankylosing spondylitis. Ann Rheum Dis 73(3):629–630PubMed
61.
go back to reference Sherlock JP et al (2012) IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4−CD8− entheseal resident T cells. Nat Med 18(7):1069–1076PubMed Sherlock JP et al (2012) IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4−CD8− entheseal resident T cells. Nat Med 18(7):1069–1076PubMed
62.
go back to reference Rioux JD et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn’s disease and implicates autophagy in disease pathogenesis. Nat Genet 39(5):596–604PubMedCentralPubMed Rioux JD et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn’s disease and implicates autophagy in disease pathogenesis. Nat Genet 39(5):596–604PubMedCentralPubMed
63.
go back to reference Saitoh T et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1[bgr] production. Nature 456(7219):264–268PubMed Saitoh T et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1[bgr] production. Nature 456(7219):264–268PubMed
64.
go back to reference Cadwell K et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263PubMedCentralPubMed Cadwell K et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456(7219):259–263PubMedCentralPubMed
65.
go back to reference Kaser A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756PubMedCentralPubMed Kaser A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756PubMedCentralPubMed
66.
go back to reference Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425(6957):516–521PubMed Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425(6957):516–521PubMed
67.
go back to reference Scott P et al (2006) Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol 177(9):6370–6378PubMed Scott P et al (2006) Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol 177(9):6370–6378PubMed
68.
go back to reference Martinon F et al (2006) Gout-associated uric acid crystals activated the NALP3 inflammasome. Nature 440(9):237PubMed Martinon F et al (2006) Gout-associated uric acid crystals activated the NALP3 inflammasome. Nature 440(9):237PubMed
69.
go back to reference Di Giovine FS et al (1987) Interleukin 1 (IL 1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal-induced IL 1. J Immunol 138(10):3213–3218PubMed Di Giovine FS et al (1987) Interleukin 1 (IL 1) as a mediator of crystal arthritis. Stimulation of T cell and synovial fibroblast mitogenesis by urate crystal-induced IL 1. J Immunol 138(10):3213–3218PubMed
70.
go back to reference di Giovine FS et al (1991) Urate crystals stimulate production of tumor necrosis factor alpha from human blood monocytes and synovial cells. Cytokine mRNA and protein kinetics, and cellular distribution. J Clin Invest 87(4):1375–1381PubMedCentralPubMed di Giovine FS et al (1991) Urate crystals stimulate production of tumor necrosis factor alpha from human blood monocytes and synovial cells. Cytokine mRNA and protein kinetics, and cellular distribution. J Clin Invest 87(4):1375–1381PubMedCentralPubMed
71.
go back to reference Choe JY et al (2014) Enhanced p62 expression through impaired proteasomal degradation is involved in caspase-1 activation in monosodium urate crystal-induced interleukin-1b expression. Rheumatology (Oxford) 53(6):1043–1053 Choe JY et al (2014) Enhanced p62 expression through impaired proteasomal degradation is involved in caspase-1 activation in monosodium urate crystal-induced interleukin-1b expression. Rheumatology (Oxford) 53(6):1043–1053
72.
go back to reference Allaeys I, Marceau F, Poubelle PE (2013) NLRP3 promotes autophagy of urate crystals phagocytized by human osteoblasts. Arthritis Res Ther 15(6):R176PubMedCentralPubMed Allaeys I, Marceau F, Poubelle PE (2013) NLRP3 promotes autophagy of urate crystals phagocytized by human osteoblasts. Arthritis Res Ther 15(6):R176PubMedCentralPubMed
73.
go back to reference Mitroulis I et al (2011) Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout. PLoS One 6(12), e29318PubMedCentralPubMed Mitroulis I et al (2011) Neutrophil extracellular trap formation is associated with IL-1beta and autophagy-related signaling in gout. PLoS One 6(12), e29318PubMedCentralPubMed
74.
go back to reference Savic S et al (2014) TLR dependent XBP-1 activation induces an autocrine loop in rheumatoid arthritis synoviocytes(). J Autoimmun 50(100):59–66PubMedCentralPubMed Savic S et al (2014) TLR dependent XBP-1 activation induces an autocrine loop in rheumatoid arthritis synoviocytes(). J Autoimmun 50(100):59–66PubMedCentralPubMed
75.
go back to reference Qiu Q et al (2013) Toll-like receptor-mediated IRE1alpha activation as a therapeutic target for inflammatory arthritis. EMBO J 32(18):2477–2490PubMedCentralPubMed Qiu Q et al (2013) Toll-like receptor-mediated IRE1alpha activation as a therapeutic target for inflammatory arthritis. EMBO J 32(18):2477–2490PubMedCentralPubMed
76.
go back to reference Shi B et al (2012) SNAPIN: an endogenous toll-like receptor ligand in rheumatoid arthritis. Ann Rheum Dis 71(8):1411–1417PubMed Shi B et al (2012) SNAPIN: an endogenous toll-like receptor ligand in rheumatoid arthritis. Ann Rheum Dis 71(8):1411–1417PubMed
77.
go back to reference Hirosumi J et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420(6913):333–336PubMed Hirosumi J et al (2002) A central role for JNK in obesity and insulin resistance. Nature 420(6913):333–336PubMed
78.
go back to reference Ozcan U et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461PubMed Ozcan U et al (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306(5695):457–461PubMed
79.
go back to reference Ozcan U et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140PubMed Ozcan U et al (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140PubMed
80.
go back to reference Samuel VT, Shulman GI (2012) Integrating mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871PubMedCentralPubMed Samuel VT, Shulman GI (2012) Integrating mechanisms for insulin resistance: common threads and missing links. Cell 148(5):852–871PubMedCentralPubMed
81.
go back to reference Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch - Eur J Physiol 455(3):479–492 Wang B, Wood IS, Trayhurn P (2007) Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch - Eur J Physiol 455(3):479–492
82.
go back to reference Boden G et al (2008) Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57(9):2438–2444PubMedCentralPubMed Boden G et al (2008) Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57(9):2438–2444PubMedCentralPubMed
83.
go back to reference Sharma NK et al (2008) Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab 93(11):4532–4541PubMedCentralPubMed Sharma NK et al (2008) Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab 93(11):4532–4541PubMedCentralPubMed
84.
go back to reference Gregor MF et al (2009) Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58(3):693–700PubMedCentralPubMed Gregor MF et al (2009) Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58(3):693–700PubMedCentralPubMed
85.
go back to reference Brook CG, Lloyd JK, Wolf OH (1972) Relation between age of onset of obesity and size and number of adipose cells. Br Med J 2(5804):25–27PubMedCentralPubMed Brook CG, Lloyd JK, Wolf OH (1972) Relation between age of onset of obesity and size and number of adipose cells. Br Med J 2(5804):25–27PubMedCentralPubMed
86.
go back to reference Koumenis C et al (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22(21):7405–7416PubMedCentralPubMed Koumenis C et al (2002) Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol 22(21):7405–7416PubMedCentralPubMed
87.
go back to reference Hosogai N et al (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56(4):901–911PubMed Hosogai N et al (2007) Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 56(4):901–911PubMed
88.
go back to reference Uysal KT et al (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-[alpha] function. Nature 389(6651):610–614PubMed Uysal KT et al (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-[alpha] function. Nature 389(6651):610–614PubMed
89.
go back to reference Serrano-Marco L et al (2012) TNF-a inhibits PPAR beta/delta activity and SIRT1 expression through NF-kB in human adipocytes. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1821(9):1177–1185 Serrano-Marco L et al (2012) TNF-a inhibits PPAR beta/delta activity and SIRT1 expression through NF-kB in human adipocytes. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids 1821(9):1177–1185
90.
go back to reference Salvado L et al (2014) PPARbeta/delta prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia 57(10):2126–2135PubMed Salvado L et al (2014) PPARbeta/delta prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia 57(10):2126–2135PubMed
91.
go back to reference Yoshizaki T et al (2009) SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 29(5):1363–1374PubMedCentralPubMed Yoshizaki T et al (2009) SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 29(5):1363–1374PubMedCentralPubMed
92.
go back to reference Yoshizaki T et al (2010) SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 298(3):E419–E428PubMedCentralPubMed Yoshizaki T et al (2010) SIRT1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 298(3):E419–E428PubMedCentralPubMed
93.
go back to reference Masters SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11(10):897–904PubMedCentralPubMed Masters SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol 11(10):897–904PubMedCentralPubMed
94.
go back to reference Matveyenko AV, Butler PC (2006) Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J 47(3):225–233PubMed Matveyenko AV, Butler PC (2006) Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J 47(3):225–233PubMed
95.
go back to reference Ehses JA et al (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci U S A 106(33):13998–14003PubMedCentralPubMed Ehses JA et al (2009) IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci U S A 106(33):13998–14003PubMedCentralPubMed
96.
go back to reference Larsen CM et al (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32(9):1663–1668PubMedCentralPubMed Larsen CM et al (2009) Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 32(9):1663–1668PubMedCentralPubMed
97.
go back to reference Polymeropoulos MH et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047PubMed Polymeropoulos MH et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047PubMed
98.
go back to reference Chartier-Harlin MC et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169PubMed Chartier-Harlin MC et al (2004) Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169PubMed
99.
go back to reference Singleton AB et al (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841PubMed Singleton AB et al (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841PubMed
100.
go back to reference McNaught KS et al (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56(1):149–162PubMed McNaught KS et al (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56(1):149–162PubMed
101.
go back to reference McNaught KS et al (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179(1):38–46PubMed McNaught KS et al (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179(1):38–46PubMed
102.
go back to reference Snyder H et al (2003) Aggregated and monomeric alpha-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J Biol Chem 278(14):11753–11759PubMed Snyder H et al (2003) Aggregated and monomeric alpha-synuclein bind to the S6′ proteasomal protein and inhibit proteasomal function. J Biol Chem 278(14):11753–11759PubMed
103.
go back to reference Webb JL et al (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278(27):25009–25013PubMed Webb JL et al (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278(27):25009–25013PubMed
104.
go back to reference Pintado C et al (2012) Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation 9(1):87PubMedCentralPubMed Pintado C et al (2012) Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation 9(1):87PubMedCentralPubMed
105.
go back to reference Spillantini MG et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840PubMed Spillantini MG et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840PubMed
106.
go back to reference Spillantini MG et al (1998) Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 95(11):6469–6473PubMedCentralPubMed Spillantini MG et al (1998) Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci U S A 95(11):6469–6473PubMedCentralPubMed
107.
go back to reference Chung KK et al (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7(10):1144–1150PubMed Chung KK et al (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 7(10):1144–1150PubMed
108.
go back to reference Gorbatyuk MS et al (2012) Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther 20(7):1327–1337PubMedCentralPubMed Gorbatyuk MS et al (2012) Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther 20(7):1327–1337PubMedCentralPubMed
109.
go back to reference Komatsu M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884PubMed Komatsu M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884PubMed
110.
go back to reference Hara T et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889PubMed Hara T et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889PubMed
111.
go back to reference Martinez-Vicente M et al (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118(2):777–788PubMedCentralPubMed Martinez-Vicente M et al (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118(2):777–788PubMedCentralPubMed
112.
go back to reference Cuervo AM et al (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295PubMed Cuervo AM et al (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305(5688):1292–1295PubMed
113.
go back to reference Winslow AR et al (2010) Alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190(6):1023–1037PubMedCentralPubMed Winslow AR et al (2010) Alpha-Synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190(6):1023–1037PubMedCentralPubMed
114.
go back to reference Narendra D et al (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803PubMedCentralPubMed Narendra D et al (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803PubMedCentralPubMed
115.
go back to reference Yu J et al (2014) Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A 111(43):15514–15519PubMedCentralPubMed Yu J et al (2014) Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A 111(43):15514–15519PubMedCentralPubMed
116.
go back to reference McGeer PL et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291PubMed McGeer PL et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291PubMed
117.
go back to reference Gao HM et al (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28(30):7687–7698PubMedCentralPubMed Gao HM et al (2008) Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 28(30):7687–7698PubMedCentralPubMed
118.
go back to reference Mogi M et al (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180(2):147–150PubMed Mogi M et al (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180(2):147–150PubMed
119.
go back to reference Mogi M et al (1994) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165(1-2):208–210PubMed Mogi M et al (1994) Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 165(1-2):208–210PubMed
120.
go back to reference Gao HM et al (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81(6):1285–1297PubMed Gao HM et al (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81(6):1285–1297PubMed
121.
go back to reference Qin L et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462PubMedCentralPubMed Qin L et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462PubMedCentralPubMed
122.
go back to reference Pan W, Kastin AJ (2002) TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice. Exp Neurol 174(2):193–200PubMed Pan W, Kastin AJ (2002) TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice. Exp Neurol 174(2):193–200PubMed
123.
go back to reference Hetier E et al (1991) Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells. Exp Brain Res 86(2):407–413PubMed Hetier E et al (1991) Modulation of interleukin-1 and tumor necrosis factor expression by beta-adrenergic agonists in mouse ameboid microglial cells. Exp Brain Res 86(2):407–413PubMed
124.
go back to reference Pott Godoy MC et al (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131(Pt 7):1880–1894PubMed Pott Godoy MC et al (2008) Central and systemic IL-1 exacerbates neurodegeneration and motor symptoms in a model of Parkinson’s disease. Brain 131(Pt 7):1880–1894PubMed
125.
go back to reference Ferrari CC et al (2006) Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis 24(1):183–193PubMed Ferrari CC et al (2006) Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis 24(1):183–193PubMed
126.
go back to reference Meyer-Luehmann M et al (2008) Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451(7179):720–724PubMedCentralPubMed Meyer-Luehmann M et al (2008) Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451(7179):720–724PubMedCentralPubMed
127.
go back to reference Hoozemans JJ et al (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 110(2):165–172PubMed Hoozemans JJ et al (2005) The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol 110(2):165–172PubMed
128.
go back to reference Hoozemans JJ et al (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174(4):1241–1251PubMedCentralPubMed Hoozemans JJ et al (2009) The unfolded protein response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am J Pathol 174(4):1241–1251PubMedCentralPubMed
129.
go back to reference Chang RC et al (2002) Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) is associated with neuronal degeneration in Alzheimer’s disease. Neuroreport 13(18):2429–2432PubMed Chang RC et al (2002) Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) is associated with neuronal degeneration in Alzheimer’s disease. Neuroreport 13(18):2429–2432PubMed
130.
go back to reference Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-[beta]. Nat Immunol 9(8):857–865PubMedCentralPubMed Halle A et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-[beta]. Nat Immunol 9(8):857–865PubMedCentralPubMed
131.
go back to reference Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):67–72 Ittner LM, Götz J (2011) Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nat Rev Neurosci 12(2):67–72
132.
go back to reference Masters SL, O’Neill LAJ (2011) Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol Med 17(5):276–282PubMed Masters SL, O’Neill LAJ (2011) Disease-associated amyloid and misfolded protein aggregates activate the inflammasome. Trends Mol Med 17(5):276–282PubMed
133.
go back to reference Simard AR et al (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502PubMed Simard AR et al (2006) Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 49(4):489–502PubMed
134.
go back to reference Itagaki S et al (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24(3):173–182PubMed Itagaki S et al (1989) Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease. J Neuroimmunol 24(3):173–182PubMed
135.
go back to reference Blum-Degen D et al (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202(1-2):17–20PubMed Blum-Degen D et al (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202(1-2):17–20PubMed
136.
go back to reference Pickford F et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6):2190–2199PubMedCentralPubMed Pickford F et al (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118(6):2190–2199PubMedCentralPubMed
137.
go back to reference Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358(24):2606–2617PubMed Jager RD, Mieler WF, Miller JW (2008) Age-related macular degeneration. N Engl J Med 358(24):2606–2617PubMed
138.
go back to reference Gao H, Hollyfield JG (1992) Aging of the human retina: differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33(1):1–17PubMed Gao H, Hollyfield JG (1992) Aging of the human retina: differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33(1):1–17PubMed
139.
go back to reference Friedman DS et al (1999) Racial differences in the prevalence of age-related macular degeneration. Ophthalmology 106(6):1049–1055PubMed Friedman DS et al (1999) Racial differences in the prevalence of age-related macular degeneration. Ophthalmology 106(6):1049–1055PubMed
140.
go back to reference Vingerling JR et al (1995) The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102(2):205–210PubMed Vingerling JR et al (1995) The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology 102(2):205–210PubMed
141.
go back to reference The Eye Diseases Prevalence Research, G (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572 The Eye Diseases Prevalence Research, G (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572
142.
go back to reference Anderson DH et al (2004) Characterization of β amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78(2):243–256PubMed Anderson DH et al (2004) Characterization of β amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 78(2):243–256PubMed
143.
go back to reference Ethen CM et al (2007) Transformation of the proteasome with age-related macular degeneration. FEBS Lett 581(5):885–890PubMedCentralPubMed Ethen CM et al (2007) Transformation of the proteasome with age-related macular degeneration. FEBS Lett 581(5):885–890PubMedCentralPubMed
144.
go back to reference Johnson LV et al (2001) Complement activation and inflammatory processes in drusen formation and age related macular degeneration. Exp Eye Res 73(6):887–896PubMed Johnson LV et al (2001) Complement activation and inflammatory processes in drusen formation and age related macular degeneration. Exp Eye Res 73(6):887–896PubMed
145.
go back to reference Kang M-J, Ryoo HD (2009) Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Proc Natl Acad Sci 106(40):17043–17048PubMedCentralPubMed Kang M-J, Ryoo HD (2009) Suppression of retinal degeneration in Drosophila by stimulation of ER-associated degradation. Proc Natl Acad Sci 106(40):17043–17048PubMedCentralPubMed
146.
go back to reference Kroeger H et al (2012) Induction of endoplasmic reticulum stress genes, BiP and Chop, in genetic and environmental models of retinal degeneration. Invest Ophthalmol Vis Sci 53(12):7590–7599PubMedCentralPubMed Kroeger H et al (2012) Induction of endoplasmic reticulum stress genes, BiP and Chop, in genetic and environmental models of retinal degeneration. Invest Ophthalmol Vis Sci 53(12):7590–7599PubMedCentralPubMed
148.
go back to reference Ramos de Carvalho JE et al (2013) Complement factor C3a alters proteasome function in human RPE cells and in an animal model of age-related RPE degeneration. Invest Ophthalmol Vis Sci 54(10):6489–6501PubMed Ramos de Carvalho JE et al (2013) Complement factor C3a alters proteasome function in human RPE cells and in an animal model of age-related RPE degeneration. Invest Ophthalmol Vis Sci 54(10):6489–6501PubMed
149.
151.
go back to reference Yang L-p et al (2008) Endoplasmic reticulum stress is activated in light-induced retinal degeneration. J Neurosci Res 86(4):910–919PubMed Yang L-p et al (2008) Endoplasmic reticulum stress is activated in light-induced retinal degeneration. J Neurosci Res 86(4):910–919PubMed
152.
go back to reference Zhang X et al (2008) The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells. Invest Ophthalmol Vis Sci 49(8):3622–3630PubMedCentralPubMed Zhang X et al (2008) The proteasome: a target of oxidative damage in cultured human retina pigment epithelial cells. Invest Ophthalmol Vis Sci 49(8):3622–3630PubMedCentralPubMed
153.
go back to reference Ryhänen T et al (2009) Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J Cell Mol Med 13(9b):3616–3631PubMed Ryhänen T et al (2009) Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells. J Cell Mol Med 13(9b):3616–3631PubMed
154.
go back to reference Zhong Y et al (2012) X-Box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium. PLoS One 7(6), e38616PubMedCentralPubMed Zhong Y et al (2012) X-Box binding protein 1 is essential for the anti-oxidant defense and cell survival in the retinal pigment epithelium. PLoS One 7(6), e38616PubMedCentralPubMed
155.
go back to reference Crabb JW et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci 99(23):14682–14687PubMedCentralPubMed Crabb JW et al (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci 99(23):14682–14687PubMedCentralPubMed
156.
go back to reference Doyle SL et al (2012) NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med 18(5):791–798PubMedCentralPubMed Doyle SL et al (2012) NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat Med 18(5):791–798PubMedCentralPubMed
157.
go back to reference Wang ZV et al (2014) Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156(6):1179–1192PubMedCentralPubMed Wang ZV et al (2014) Spliced X-box binding protein 1 couples the unfolded protein response to hexosamine biosynthetic pathway. Cell 156(6):1179–1192PubMedCentralPubMed
158.
go back to reference Chouchani ET et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435PubMedCentralPubMed Chouchani ET et al (2014) Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515(7527):431–435PubMedCentralPubMed
159.
go back to reference Mimura N et al (2012) Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood 119(24):5772–5781PubMedCentralPubMed Mimura N et al (2012) Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood 119(24):5772–5781PubMedCentralPubMed
160.
go back to reference Coll RC et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255PubMed Coll RC et al (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255PubMed
161.
go back to reference Youm Y-H et al (2015) The ketone metabolite [beta]-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21:263–269PubMed Youm Y-H et al (2015) The ketone metabolite [beta]-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21:263–269PubMed
Metadata
Title
Protein misfolding and dysregulated protein homeostasis in autoinflammatory diseases and beyond
Authors
Amma F. Agyemang
Stephanie R. Harrison
Richard M. Siegel
Michael F. McDermott
Publication date
01-07-2015
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 4/2015
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-015-0496-2

Other articles of this Issue 4/2015

Seminars in Immunopathology 4/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.