Skip to main content
Top
Published in: Journal of Medical Systems 5/2019

01-05-2019 | Care | Mobile & Wireless Health

Low-Cost and Active Control of Radiation of Wearable Medical Health Device for Wireless Body Area Network

Author: Yong Jin

Published in: Journal of Medical Systems | Issue 5/2019

Login to get access

Abstract

Wearable devices, wireless networks and body area networks have become an effective way to solve the problem of human health monitoring and care. However, the radiation problems of wireless devices, the power supply problems of wearable devices and the deployment of body area networks have become obstacles to their wide application in the field of health care. In order to solve the above problems, this paper studies and designs a wearable health medical body area network which is convenient for human health monitoring and medical care, starting from low-cost deployment of wireless wearable devices and active control of wireless radiation. Firstly, in order to avoid replacing equipment batteries, improve the relay and data aggregation capabilities of wireless body area network, and reduce the communication and computing load of edge devices, a deployment scheme of wireless medical health wearable devices is designed based on the optimal segmentation algorithm of Steiner spanning tree. Then, in order to minimize the charging cost and maximize the global charging utility of single source and multiple points in a finite time slot, an approximate algorithm for the optimal charging sequence based on 01 knapsack problem, i.e., the access path of wireless wearable devices, is designed. Then, an active radiation control algorithm for wearable medical health body area network is proposed, which can actively control the transmission power and radiation status of these wireless devices. Finally, simulation results show that the proposed algorithm is better than battery-powered wireless body area network and wireless rechargeable body area network, 16% and 44% reduction of devices, 25%和13% reduction of energy consumption, 26% reduction of radiation, and 5.18 and 1.13 times improvement of signal quality.
Literature
1.
go back to reference Latré, B., Braem, B., Moerman, I. et al., A survey on wireless body area networks. Wirel. Netw 17(1):1–18, 2011.CrossRef Latré, B., Braem, B., Moerman, I. et al., A survey on wireless body area networks. Wirel. Netw 17(1):1–18, 2011.CrossRef
2.
go back to reference Jain, P. C., Wireless Body Area Network for Medical Healthcare. IETE Tech. Rev. 28(4):362–371, 2011.CrossRef Jain, P. C., Wireless Body Area Network for Medical Healthcare. IETE Tech. Rev. 28(4):362–371, 2011.CrossRef
3.
go back to reference Ben Elhadj, H., Chaari, L., and Kamoun, L., A Survey of Routing Protocols in Wireless Body Area Networks for Healthcare Applications. International Journal of E-Health and Medical Communications (IJEHMC) 3(2):1–18, 2012.CrossRef Ben Elhadj, H., Chaari, L., and Kamoun, L., A Survey of Routing Protocols in Wireless Body Area Networks for Healthcare Applications. International Journal of E-Health and Medical Communications (IJEHMC) 3(2):1–18, 2012.CrossRef
4.
go back to reference Rathee, D., Rangi, S., Chakarvarti, S. K. et al., Recent trends in Wireless Body Area Network (WBAN) research and cognition based adaptive WBAN architecture for healthcare. Heal. Technol. 4(3):239–244, 2014.CrossRef Rathee, D., Rangi, S., Chakarvarti, S. K. et al., Recent trends in Wireless Body Area Network (WBAN) research and cognition based adaptive WBAN architecture for healthcare. Heal. Technol. 4(3):239–244, 2014.CrossRef
5.
go back to reference Tahir, S., Bakhsh, S. T., Alghamdi, R. et al., Fog-Based Healthcare Architecture for Wearable Body Area Network. Journal of Medical Imaging & Health Informatics 7(6):1409–1418, 2017.CrossRef Tahir, S., Bakhsh, S. T., Alghamdi, R. et al., Fog-Based Healthcare Architecture for Wearable Body Area Network. Journal of Medical Imaging & Health Informatics 7(6):1409–1418, 2017.CrossRef
6.
go back to reference Varga, N., Piri, E., and Bokor, L., Network-assisted Smart Access Point Selection for Pervasive Real-time mHealth Applications. Procedia Computer Science 63:317–324, 2015.CrossRef Varga, N., Piri, E., and Bokor, L., Network-assisted Smart Access Point Selection for Pervasive Real-time mHealth Applications. Procedia Computer Science 63:317–324, 2015.CrossRef
7.
go back to reference Gao, G. P., Hu, B., Wang, S. F. et al., Wearable Circular Ring Slot Antenna With EBG Structure for Wireless Body Area Network. IEEE Antennas & Wireless Propagation Letters 17(3):434–437, 2018.CrossRef Gao, G. P., Hu, B., Wang, S. F. et al., Wearable Circular Ring Slot Antenna With EBG Structure for Wireless Body Area Network. IEEE Antennas & Wireless Propagation Letters 17(3):434–437, 2018.CrossRef
8.
go back to reference Gao, G., Hu, B., Tian, X. et al., Experimental study of a wearable aperture-coupled patch antenna for wireless body area network. Microw. Opt. Technol. Lett. 59(4):761–766, 2017.CrossRef Gao, G., Hu, B., Tian, X. et al., Experimental study of a wearable aperture-coupled patch antenna for wireless body area network. Microw. Opt. Technol. Lett. 59(4):761–766, 2017.CrossRef
9.
go back to reference Gil, I., and Fernándezgarcía, R., Wearable PIFA antenna implemented on jean substrate for wireless body area network. Journal of Electromagnetic Waves & Applications 31(11-12):1–11, 2017.CrossRef Gil, I., and Fernándezgarcía, R., Wearable PIFA antenna implemented on jean substrate for wireless body area network. Journal of Electromagnetic Waves & Applications 31(11-12):1–11, 2017.CrossRef
10.
go back to reference Sharma, J., Optimised design and development of a bio-medical healthcare device through quality function deployment (QFD). Int. J. Electron. Healthc. 7(1):68–87, 2012.CrossRef Sharma, J., Optimised design and development of a bio-medical healthcare device through quality function deployment (QFD). Int. J. Electron. Healthc. 7(1):68–87, 2012.CrossRef
11.
go back to reference Arakawa, T., Xie, R., Seshima, F. et al., Air bio-battery with a gas/liquid porous diaphragm cell for medical and health care devices. Biosens. Bioelectron. 103:171–175, 2018.CrossRef Arakawa, T., Xie, R., Seshima, F. et al., Air bio-battery with a gas/liquid porous diaphragm cell for medical and health care devices. Biosens. Bioelectron. 103:171–175, 2018.CrossRef
12.
go back to reference Marassi, V., Di, L. C., Smith, S. et al., Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. R. Soc. Open Sci. 5(1):171113, 2018.CrossRef Marassi, V., Di, L. C., Smith, S. et al., Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. R. Soc. Open Sci. 5(1):171113, 2018.CrossRef
13.
go back to reference Chaudhari, K., Ukil, A., Kumar, K. N. et al., Hybrid Optimization for Economic Deployment of ESS in PV-Integrated EV Charging Stations. IEEE Transactions on Industrial Informatics 14(1):106–116, 2018.CrossRef Chaudhari, K., Ukil, A., Kumar, K. N. et al., Hybrid Optimization for Economic Deployment of ESS in PV-Integrated EV Charging Stations. IEEE Transactions on Industrial Informatics 14(1):106–116, 2018.CrossRef
14.
go back to reference Pevec, D., Babic, J., Kayser, M. A. et al., A data-driven statistical approach for extending electric vehicle charging infrastructure. Int. J. Energy Res. 42(4):3102–3120, 2018.CrossRef Pevec, D., Babic, J., Kayser, M. A. et al., A data-driven statistical approach for extending electric vehicle charging infrastructure. Int. J. Energy Res. 42(4):3102–3120, 2018.CrossRef
15.
go back to reference Jandak, V., Svec, P., Jiricek, O. et al., Piezoelectric line moment actuator for active radiation control from light-weight structures. Mech. Syst. Signal Process. 96:260–272, 2017.CrossRef Jandak, V., Svec, P., Jiricek, O. et al., Piezoelectric line moment actuator for active radiation control from light-weight structures. Mech. Syst. Signal Process. 96:260–272, 2017.CrossRef
16.
go back to reference Malyshevsky, V. S., and Fomin, G. V., Electromagnetic Radiation in the Atmosphere Generated by Excess Negative Charge in a Nuclear-Electromagnetic Cascade. Russ. Phys. J. 59(9):1–6, 2017.CrossRef Malyshevsky, V. S., and Fomin, G. V., Electromagnetic Radiation in the Atmosphere Generated by Excess Negative Charge in a Nuclear-Electromagnetic Cascade. Russ. Phys. J. 59(9):1–6, 2017.CrossRef
17.
go back to reference Sambo, Y. A., Héliot, F., and Imran, M. A., A Survey and Tutorial of Electromagnetic Radiation and Reduction in Mobile Communication Systems. IEEE Communications Surveys & Tutorials 17(2):790–802, 2017.CrossRef Sambo, Y. A., Héliot, F., and Imran, M. A., A Survey and Tutorial of Electromagnetic Radiation and Reduction in Mobile Communication Systems. IEEE Communications Surveys & Tutorials 17(2):790–802, 2017.CrossRef
18.
go back to reference YU, S. et al., Case Analysis and Application of MATLAB Optimized Algorithms (Advanced Version). Beijing: Tsinghua University Press, 2015. YU, S. et al., Case Analysis and Application of MATLAB Optimized Algorithms (Advanced Version). Beijing: Tsinghua University Press, 2015.
Metadata
Title
Low-Cost and Active Control of Radiation of Wearable Medical Health Device for Wireless Body Area Network
Author
Yong Jin
Publication date
01-05-2019
Publisher
Springer US
Keyword
Care
Published in
Journal of Medical Systems / Issue 5/2019
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-019-1254-0

Other articles of this Issue 5/2019

Journal of Medical Systems 5/2019 Go to the issue