Skip to main content
Top
Published in: Journal of Medical Systems 5/2019

01-05-2019 | Glioma | Image & Signal Processing

Glioma Tumor Grade Identification Using Artificial Intelligent Techniques

Authors: Ahammed Muneer K. V., V. R. Rajendran, Paul Joseph K.

Published in: Journal of Medical Systems | Issue 5/2019

Login to get access

Abstract

Computer aided diagnosis using artificial intelligent techniques made tremendous improvement in medical applications especially for easy detection of tumor area, tumor type and grades. This paper presents automatic glioma tumor grade identification from magnetic resonant images using Wndchrm tool based classifier (Weighted Neighbour Distance using Compound Heirarchy of Algorithms Representing Morphology) and VGG-19 deep convolutional neural network (DNN). For experimentation, DICOM images are collected from reputed government hospital and the proposed intelligent system categorized the tumor into four grades such as low grade glioma, oligodendroglioma, anaplastic glioma and glioblastoma multiform. After preprocessing, features are extracted, optimized and then classified using Windchrm tool where the most significant features are selected on the basis of Fisher score. In the case of DNN classifier, data augmentation is also performed before applying the images into the deep learning network. The performance of the classifiers are analysed with various measures such as accuracy, precision, sensitivity, specificity and F1-score. The results showed reasonably good performance with a maximum classification accuracy of 92.86% for the Wndchrm classifier and 98.25% for VGG-19 DNN classifier. The results are also compared with similar recent works and the proposed system is found to have better performance.
Appendix
Available only for authorised users
Literature
1.
go back to reference Louis, D. N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P., and Ellison, D. W., World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131:803–820, 2016.CrossRef Louis, D. N., Perry, A., Reifenberger, G., Von Deimling, A., Figarella-Branger, D., Cavenee, W. K., Ohgaki, H., Wiestler, O. D., Kleihues, P., and Ellison, D. W., World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131:803–820, 2016.CrossRef
2.
go back to reference El-Dahshan, E. A., Hosny, T., and Salem, A. B. M., Hybrid intelligent technique for MRI brain images classification. Digit. Signal Process. 20:433–441, 2010.CrossRef El-Dahshan, E. A., Hosny, T., and Salem, A. B. M., Hybrid intelligent technique for MRI brain images classification. Digit. Signal Process. 20:433–441, 2010.CrossRef
3.
go back to reference Javed, U., Riaz, M. M., Ghafoor, A., et al., MRI brain classification using texture features, fuzzy weighting and support vector machine. Prog. Electromagn. Res. B 53:73–88, 2013.CrossRef Javed, U., Riaz, M. M., Ghafoor, A., et al., MRI brain classification using texture features, fuzzy weighting and support vector machine. Prog. Electromagn. Res. B 53:73–88, 2013.CrossRef
4.
go back to reference Nazir, M., and Wahid, F., A simple and intelligent approach for brain MRI classification. J. Intell. Fuzzy Syst. 28:1127–1135, 2015. Nazir, M., and Wahid, F., A simple and intelligent approach for brain MRI classification. J. Intell. Fuzzy Syst. 28:1127–1135, 2015.
5.
go back to reference Subashini, M., Sahoo, S. K., and Sunil, V., A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques. Expert Syst. Appl. 43:186–196, 2016.CrossRef Subashini, M., Sahoo, S. K., and Sunil, V., A non-invasive methodology for the grade identification of astrocytoma using image processing and artificial intelligence techniques. Expert Syst. Appl. 43:186–196, 2016.CrossRef
6.
go back to reference Mohan, G., and Subashini, M. M., MRI based medical image analysis: Survey on brain tumor grade classification. Biomed. Signal Process. Control 39:139–161, 2018.CrossRef Mohan, G., and Subashini, M. M., MRI based medical image analysis: Survey on brain tumor grade classification. Biomed. Signal Process. Control 39:139–161, 2018.CrossRef
7.
go back to reference Maximov, I. I., Tonoyan, A. S., and Pronin, I. N., Differentiation of glioma malignancy grade using diffusion MRI. Phys. Med. 40:24–32, 2017.CrossRef Maximov, I. I., Tonoyan, A. S., and Pronin, I. N., Differentiation of glioma malignancy grade using diffusion MRI. Phys. Med. 40:24–32, 2017.CrossRef
8.
go back to reference Hsieha, K. L.-C., Chena, C.-Y., and Lod, C.-M., Quantitative glioma grading using transformed gray-scale invariant textures of MRI. Comput. Biol. Med. 83:102–108, 2017.CrossRef Hsieha, K. L.-C., Chena, C.-Y., and Lod, C.-M., Quantitative glioma grading using transformed gray-scale invariant textures of MRI. Comput. Biol. Med. 83:102–108, 2017.CrossRef
9.
go back to reference Shamir, L., Orlov, N., and Eckley, D. M., Wndchrm—an open source utility for biological image analysis. Source Code Biol. Med. 3:1–13, 2008.CrossRef Shamir, L., Orlov, N., and Eckley, D. M., Wndchrm—an open source utility for biological image analysis. Source Code Biol. Med. 3:1–13, 2008.CrossRef
10.
go back to reference Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D. M., and Goldberg, I. G., WNDCHARM: multi-purpose image classification using compound image transforms. Pattern Recognit. Lett. 29:1684–1693, 2008.CrossRef Orlov, N., Shamir, L., Macura, T., Johnston, J., Eckley, D. M., and Goldberg, I. G., WNDCHARM: multi-purpose image classification using compound image transforms. Pattern Recognit. Lett. 29:1684–1693, 2008.CrossRef
11.
go back to reference Shajee Mohan, B. S., and Shanthini, K. S.: Performance analysis of classifiers with feature selection and optimization in CBIR system for biological images. In: Proceedings of the 2nd International Conference on Intelligent Systems and Image Processing, pp. 216–222, 2014. Shajee Mohan, B. S., and Shanthini, K. S.: Performance analysis of classifiers with feature selection and optimization in CBIR system for biological images. In: Proceedings of the 2nd International Conference on Intelligent Systems and Image Processing, pp. 216–222, 2014.
12.
go back to reference Madhukumar, S., and Santhiyakumari, N., Evaluation of k-means and fuzzy-c-means segmentation on MR images of brain. Egypt. J. Radiol. Nucl. Med. 46:475–479, 2015.CrossRef Madhukumar, S., and Santhiyakumari, N., Evaluation of k-means and fuzzy-c-means segmentation on MR images of brain. Egypt. J. Radiol. Nucl. Med. 46:475–479, 2015.CrossRef
13.
go back to reference Ahammed Muneer, K. V., and Paul Joseph, K., Performance analysis of combined k-means and fuzzy-c-means segmentation of MR brain images. Lect. Notes Comput. Vis. Biomech. 28:830–836, 2018.CrossRef Ahammed Muneer, K. V., and Paul Joseph, K., Performance analysis of combined k-means and fuzzy-c-means segmentation of MR brain images. Lect. Notes Comput. Vis. Biomech. 28:830–836, 2018.CrossRef
14.
go back to reference Mohsen, H., and El-Dahshan, E.-S. A., Classification using deep learning neural networks for brain tumors. Future Comput. Inf. J. 5:1–4, 2017. Mohsen, H., and El-Dahshan, E.-S. A., Classification using deep learning neural networks for brain tumors. Future Comput. Inf. J. 5:1–4, 2017.
15.
go back to reference Sharmaa, H., and Zerbeb, N., Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Comput. Med. Imaging Graph. 61:2–13, 2017.CrossRef Sharmaa, H., and Zerbeb, N., Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology. Comput. Med. Imaging Graph. 61:2–13, 2017.CrossRef
16.
go back to reference Gao, X. W., Hui, R., and Tian, Z., Classification of CT brain images based on deep learning networks. Comput. Methods Programs Biomed. 138:49–56, 2017.CrossRef Gao, X. W., Hui, R., and Tian, Z., Classification of CT brain images based on deep learning networks. Comput. Methods Programs Biomed. 138:49–56, 2017.CrossRef
17.
go back to reference Vivanti, R., Joskowicz, L., Lev-Cohain, N., Ephrat, A., and Sosna, J., Patient-specific and global convolutional neural network for robust automatic liver tumor delineation in follow-up CT studies. Med. Biol. Eng. Comput. 56:1699–1713, 2018.CrossRef Vivanti, R., Joskowicz, L., Lev-Cohain, N., Ephrat, A., and Sosna, J., Patient-specific and global convolutional neural network for robust automatic liver tumor delineation in follow-up CT studies. Med. Biol. Eng. Comput. 56:1699–1713, 2018.CrossRef
18.
go back to reference Najafabadi, M. M., and Villanustre, F., Deep learning applications and challenges in big data analytics. J. Big Data 2:1–21, 2015.CrossRef Najafabadi, M. M., and Villanustre, F., Deep learning applications and challenges in big data analytics. J. Big Data 2:1–21, 2015.CrossRef
19.
go back to reference Gibson, E., Li, W., et al., NiftyNet: a deep-learning platform for medical imaging. Comput Methods Programs Biomed. 158:113–122, 2018.CrossRef Gibson, E., Li, W., et al., NiftyNet: a deep-learning platform for medical imaging. Comput Methods Programs Biomed. 158:113–122, 2018.CrossRef
20.
go back to reference Talo, M., Baloglu, U. B., Yildirim, O., and Acharya, U. R., Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 54:176–188, 2019.CrossRef Talo, M., Baloglu, U. B., Yildirim, O., and Acharya, U. R., Application of deep transfer learning for automated brain abnormality classification using MR images. Cogn. Syst. Res. 54:176–188, 2019.CrossRef
21.
go back to reference Gudigar, A., Raghavendra, U., San, T. R., Ciaccio, E. J., and Acharya, U. R., Application of multiresolution analysis for automated detection of brain abnormality using MR images: a comparative study. Future Gener. Comput. Syst. 90:359–367, 2019.CrossRef Gudigar, A., Raghavendra, U., San, T. R., Ciaccio, E. J., and Acharya, U. R., Application of multiresolution analysis for automated detection of brain abnormality using MR images: a comparative study. Future Gener. Comput. Syst. 90:359–367, 2019.CrossRef
22.
go back to reference Khawaldeh, S., Pervaiz, U., et al., Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. J. Appl. Sci. 8:1–17, 2017.CrossRef Khawaldeh, S., Pervaiz, U., et al., Noninvasive grading of glioma tumor using magnetic resonance imaging with convolutional neural networks. J. Appl. Sci. 8:1–17, 2017.CrossRef
23.
go back to reference Chato, L., and Latifi, S.: Machine learning and deep learning techniques to predict overall survival of brain tumor patients using MRI images. In: IEEE 17th International Conference on Bioinformatics and Bioengineering, pp. 9–14, 2017. Chato, L., and Latifi, S.: Machine learning and deep learning techniques to predict overall survival of brain tumor patients using MRI images. In: IEEE 17th International Conference on Bioinformatics and Bioengineering, pp. 9–14, 2017.
24.
go back to reference Gladis Pushpa Rathi, V. P., and Palani, S., Brain tumor detection and classification using deep learning classifier on MRI images. J. App. Sci. Eng. Technol. 10:77–187, 2015. Gladis Pushpa Rathi, V. P., and Palani, S., Brain tumor detection and classification using deep learning classifier on MRI images. J. App. Sci. Eng. Technol. 10:77–187, 2015.
25.
go back to reference Ye, C. Z., Yang, J., Geng, D. Y., Zhon, Y., and Chen, N. Y., Fuzzy rules to predict degree of malignancy in brain glioma. Med. Biol. Eng. Comput. 40:145–152, 2002.CrossRef Ye, C. Z., Yang, J., Geng, D. Y., Zhon, Y., and Chen, N. Y., Fuzzy rules to predict degree of malignancy in brain glioma. Med. Biol. Eng. Comput. 40:145–152, 2002.CrossRef
27.
go back to reference Raghavendra, U., Fujita, H., Bhandary, S. V., Gudigar, A., Tan, J. H., and Acharya, U. R., Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf. Sci. 441:41–49, 2018.CrossRef Raghavendra, U., Fujita, H., Bhandary, S. V., Gudigar, A., Tan, J. H., and Acharya, U. R., Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf. Sci. 441:41–49, 2018.CrossRef
28.
go back to reference Tan, J. H., Bhandary, S. V., Sivaprasad, S., Hagiwara, Y., Bagchi, A., Raghavendra, U., Rao, A. K., Raju, B., Shetty, N. S., Gertych, A., Chua, K. C., and Acharya, U. R., Age-related Macular Degeneration detection using deep convolutional neural network. Future Gener. Comput. Syst. 87:127–135, 2018.CrossRef Tan, J. H., Bhandary, S. V., Sivaprasad, S., Hagiwara, Y., Bagchi, A., Raghavendra, U., Rao, A. K., Raju, B., Shetty, N. S., Gertych, A., Chua, K. C., and Acharya, U. R., Age-related Macular Degeneration detection using deep convolutional neural network. Future Gener. Comput. Syst. 87:127–135, 2018.CrossRef
29.
go back to reference Raghavendra, U., Bhat, N. S., Gudigar, A., and Acharya, U. R., Automated system for the detection of thoracolumbar fractures using a CNN architecture. Future Gener. Comput. Syst. 85:184–189, 2018.CrossRef Raghavendra, U., Bhat, N. S., Gudigar, A., and Acharya, U. R., Automated system for the detection of thoracolumbar fractures using a CNN architecture. Future Gener. Comput. Syst. 85:184–189, 2018.CrossRef
30.
go back to reference Tana, J. H., Acharyaa, U. R., Bhandaryd, S. V., Chuaa, K. C., and Sivaprasad, S., Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J. Comput. Sci-neth 20:70–79, 2017. Tana, J. H., Acharyaa, U. R., Bhandaryd, S. V., Chuaa, K. C., and Sivaprasad, S., Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network. J. Comput. Sci-neth 20:70–79, 2017.
31.
go back to reference Tan, J. H., Fujita, H., Sivaprasad, S., Bhandary, S. V., Rao, A. K., Chua, K. C., and Acharya, U. R., Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf. Sci. 420:66–76, 2017.CrossRef Tan, J. H., Fujita, H., Sivaprasad, S., Bhandary, S. V., Rao, A. K., Chua, K. C., and Acharya, U. R., Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf. Sci. 420:66–76, 2017.CrossRef
Metadata
Title
Glioma Tumor Grade Identification Using Artificial Intelligent Techniques
Authors
Ahammed Muneer K. V.
V. R. Rajendran
Paul Joseph K.
Publication date
01-05-2019
Publisher
Springer US
Published in
Journal of Medical Systems / Issue 5/2019
Print ISSN: 0148-5598
Electronic ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-019-1228-2

Other articles of this Issue 5/2019

Journal of Medical Systems 5/2019 Go to the issue