Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2019

Open Access 01-12-2019 | Cardiomyopathy | Research article

Usefulness of apical area index to predict left ventricular thrombus in patients with systolic dysfunction: a novel index from cardiac magnetic resonance

Authors: Yodying Kaolawanich, Thananya Boonyasirinant

Published in: BMC Cardiovascular Disorders | Issue 1/2019

Login to get access

Abstract

Background

LV systolic dysfunction presents an elevated risk of thromboembolism. Previous studies demonstrated low left ventricular ejection fraction (LVEF), ischemic cardiomyopathy and increased myocardial scarring as independent risk factors for LV thrombus formation. Structural changes that alter the size and shape of LV apex may have a significant role in predicting LV thrombus, but there is no definite evidence exists in this entity.

Methods

A case-control cardiac magnetic resonance (CMR) study of 150 patients with LV systolic dysfunction (LVEF < 40%; 30 patients with LV thrombus and 120 patients without thrombus) was performed. Factors associated with thrombus including sphericity index and ‘new’ apical area index (ratio of apical area to entire LV area from a cine four-chamber view) were evaluated.

Results

Average age was 63.48 ± 12.82 years and mean LVEF was 29.22 ± 8.53%. Patients with LV thrombus had significantly higher apical area index than those without thrombus (46.5 ± 3.27 vs. 42.71 ± 3.02, p <  0.001) while sphericity index in both groups was not different (1.63 ± 0.27 vs. 1.67 ± 0.19, p = 0.57). Univariate analysis revealed that male gender, prior myocardial infarction, presence of apical aneurysm, ischemic-typed scar, apical scar and apical area index were associated with thrombus. Further, multivariate analysis showed only apical area index and apical scar as independent predictors for thrombus formation.

Conclusion

Apical area index from CMR is a new index to predict LV thrombus in patients with LV systolic dysfunction and may have a future role in early anticoagulant therapy.
Literature
1.
go back to reference Gottdiener JS, Massie B, Ammons SB, Egher C, Petillo F, Krol WF, et al. Prevalence of left ventricular thrombus in dilated cardiomyopathy: The WATCH trial. J Am Coll Cardiol. 2003;41(6):202a.CrossRef Gottdiener JS, Massie B, Ammons SB, Egher C, Petillo F, Krol WF, et al. Prevalence of left ventricular thrombus in dilated cardiomyopathy: The WATCH trial. J Am Coll Cardiol. 2003;41(6):202a.CrossRef
2.
go back to reference Sharma ND, McCullough PA, Philbin EF, Weaver WD. Left ventricular thrombus and subsequent thromboembolism in patients with severe systolic dysfunction. Chest. 2000;117(2):314–20.CrossRef Sharma ND, McCullough PA, Philbin EF, Weaver WD. Left ventricular thrombus and subsequent thromboembolism in patients with severe systolic dysfunction. Chest. 2000;117(2):314–20.CrossRef
3.
go back to reference Grothues F, Smith GC, Moon JCC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29–34.CrossRef Grothues F, Smith GC, Moon JCC, Bellenger NG, Collins P, Klein HU, et al. Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol. 2002;90(1):29–34.CrossRef
4.
go back to reference Srichai MB, Junor C, Rodriguez LL, Stillman AE, Grimm RA, Lieber ML, et al. Clinical, imaging, and pathological characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathological validation. Am Heart J. 2006;152(1):75–84.CrossRef Srichai MB, Junor C, Rodriguez LL, Stillman AE, Grimm RA, Lieber ML, et al. Clinical, imaging, and pathological characteristics of left ventricular thrombus: a comparison of contrast-enhanced magnetic resonance imaging, transthoracic echocardiography, and transesophageal echocardiography with surgical or pathological validation. Am Heart J. 2006;152(1):75–84.CrossRef
5.
go back to reference Weinsaft JW, Kim HW, Shah DJ, Klem I, Crowley AL, Brosnan R, et al. Detection of left ventricular thrombus by delayed-enhancement cardiovascular magnetic resonance - prevalence and markers in patients with systolic dysfunction. J Am Coll Cardiol. 2008;52(2):148–57.CrossRef Weinsaft JW, Kim HW, Shah DJ, Klem I, Crowley AL, Brosnan R, et al. Detection of left ventricular thrombus by delayed-enhancement cardiovascular magnetic resonance - prevalence and markers in patients with systolic dysfunction. J Am Coll Cardiol. 2008;52(2):148–57.CrossRef
6.
go back to reference Cambronero-Cortinas E, Bonanad C, Monmeneu JV, Lopez-Lereu MP, Gavara J, de Dios E, et al. Incidence, outcomes, and predictors of ventricular Thrombus after Reperfused ST-segment-elevation myocardial infarction by using sequential cardiac MR imaging. Radiology. 2017;284(2):372–80.CrossRef Cambronero-Cortinas E, Bonanad C, Monmeneu JV, Lopez-Lereu MP, Gavara J, de Dios E, et al. Incidence, outcomes, and predictors of ventricular Thrombus after Reperfused ST-segment-elevation myocardial infarction by using sequential cardiac MR imaging. Radiology. 2017;284(2):372–80.CrossRef
7.
go back to reference Di Donato M, Dabic P, Castelvecchio S, Santambrogio C, Brankovic J, Collarini L, et al. Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and 'new' conicity index comparisons. Eur J Cardio-Thorac. 2006;29:S225–S30.CrossRef Di Donato M, Dabic P, Castelvecchio S, Santambrogio C, Brankovic J, Collarini L, et al. Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and 'new' conicity index comparisons. Eur J Cardio-Thorac. 2006;29:S225–S30.CrossRef
8.
go back to reference Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart - a statement for healthcare professionals from the cardiac imaging Committee of the Council on clinical cardiology of the American Heart Association. Circulation. 2002;105(4):539–42.CrossRef Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart - a statement for healthcare professionals from the cardiac imaging Committee of the Council on clinical cardiology of the American Heart Association. Circulation. 2002;105(4):539–42.CrossRef
9.
go back to reference Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003;361(9355):374–9.CrossRef Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet. 2003;361(9355):374–9.CrossRef
10.
go back to reference Shah DJ, Judd RM, Kim RJ. Myocardial viability. In: Edelman RR, Hesselink JR, Zlatkin MB, et al., editors. Clinical Magnetic Resonance Imaging. 3rd ed. New York, NY: Elsevier; 2006. Shah DJ, Judd RM, Kim RJ. Myocardial viability. In: Edelman RR, Hesselink JR, Zlatkin MB, et al., editors. Clinical Magnetic Resonance Imaging. 3rd ed. New York, NY: Elsevier; 2006.
11.
go back to reference Tischler MD, Ashikaga T, LeWinter MM. Relation between left ventricular shape and Doppler filling parameters in patients with left ventricular dysfunction secondary to coronary artery disease. Am J Cardiol. 1995;76:553–6.CrossRef Tischler MD, Ashikaga T, LeWinter MM. Relation between left ventricular shape and Doppler filling parameters in patients with left ventricular dysfunction secondary to coronary artery disease. Am J Cardiol. 1995;76:553–6.CrossRef
12.
go back to reference Tischler MD, Niggel J, Borowski DT, LeWinter MM. Relation between left ventricular shape and exercise capacity in patients with left ventricular dysfunction. J Am Coll Cardiol. 1993;22:751–7.CrossRef Tischler MD, Niggel J, Borowski DT, LeWinter MM. Relation between left ventricular shape and exercise capacity in patients with left ventricular dysfunction. J Am Coll Cardiol. 1993;22:751–7.CrossRef
13.
go back to reference Weinsaft JW, Kim J, Medicherla CB, et al. Echocardiographic algorithm for post-myocardial infarction lv thrombus: a gatekeeper for thrombus evaluation by delayed enhancement CMR. JACC Cardiovasc imaging. 2016; 9(5):505-515.Asinger RW, Mikell FL, Elsperger J, et al. incidence of left-ventricular thrombosis after acute transmural myocardial infarction. Serial evaluation by two-dimensional echocardiography. N Engl J Med. 1981;305:297–302.CrossRef Weinsaft JW, Kim J, Medicherla CB, et al. Echocardiographic algorithm for post-myocardial infarction lv thrombus: a gatekeeper for thrombus evaluation by delayed enhancement CMR. JACC Cardiovasc imaging. 2016; 9(5):505-515.Asinger RW, Mikell FL, Elsperger J, et al. incidence of left-ventricular thrombosis after acute transmural myocardial infarction. Serial evaluation by two-dimensional echocardiography. N Engl J Med. 1981;305:297–302.CrossRef
14.
go back to reference Chiarella F, Santoro E, Domenicucci S, et al. Predischarge two-dimensional echocardiographic evaluation of left ventricular thrombosis after acute myocardial infarction in the GISSI-3 study. Am J Cardiol. 1998;81:822–7.CrossRef Chiarella F, Santoro E, Domenicucci S, et al. Predischarge two-dimensional echocardiographic evaluation of left ventricular thrombosis after acute myocardial infarction in the GISSI-3 study. Am J Cardiol. 1998;81:822–7.CrossRef
15.
go back to reference Solheim S, Seljeflot I, Lunde K, Bjornerheim R, Aakhus S, Forfang K, et al. Frequency of left ventricular Thrombus in patients with Anterior Wall acute myocardial infarction treated with percutaneous coronary intervention and dual antiplatelet therapy. Am J Cardiol. 2010;106(9):1197–200.CrossRef Solheim S, Seljeflot I, Lunde K, Bjornerheim R, Aakhus S, Forfang K, et al. Frequency of left ventricular Thrombus in patients with Anterior Wall acute myocardial infarction treated with percutaneous coronary intervention and dual antiplatelet therapy. Am J Cardiol. 2010;106(9):1197–200.CrossRef
16.
go back to reference Mollet NR, Dymarkowski S, Volders W, Wathiong J, Herbots L, Rademakers FE, et al. Visualization of ventricular thrombi with contrast-enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation. 2002;106(23):2873–6.CrossRef Mollet NR, Dymarkowski S, Volders W, Wathiong J, Herbots L, Rademakers FE, et al. Visualization of ventricular thrombi with contrast-enhanced magnetic resonance imaging in patients with ischemic heart disease. Circulation. 2002;106(23):2873–6.CrossRef
17.
go back to reference Weinsaft JW, Kim HW, Crowley AL, Klem I, Shenoy C, Van Assche L, et al. LV thrombus detection by routine echocardiography: insights into performance characteristics using delayed enhancement CMR. JACC Cardiovasc Imaging. 2011;4(7):702–12.CrossRef Weinsaft JW, Kim HW, Crowley AL, Klem I, Shenoy C, Van Assche L, et al. LV thrombus detection by routine echocardiography: insights into performance characteristics using delayed enhancement CMR. JACC Cardiovasc Imaging. 2011;4(7):702–12.CrossRef
18.
go back to reference Tumkosit M, Martin CG, Bayram E, Morgan TM, Lane KS, Rerkpattanapipat P, et al. Left ventricular spherical remodeling and apical myocardial relaxation: cardiovascular MR imaging measurement of myocardial segments. Radiology. 2007;244(2):411–8.CrossRef Tumkosit M, Martin CG, Bayram E, Morgan TM, Lane KS, Rerkpattanapipat P, et al. Left ventricular spherical remodeling and apical myocardial relaxation: cardiovascular MR imaging measurement of myocardial segments. Radiology. 2007;244(2):411–8.CrossRef
Metadata
Title
Usefulness of apical area index to predict left ventricular thrombus in patients with systolic dysfunction: a novel index from cardiac magnetic resonance
Authors
Yodying Kaolawanich
Thananya Boonyasirinant
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2019
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-018-0988-9

Other articles of this Issue 1/2019

BMC Cardiovascular Disorders 1/2019 Go to the issue