Skip to main content
Top
Published in: Heart Failure Reviews 2/2024

Open Access 18-01-2024 | Cardiomyopathy

Molecular mechanisms and emerging therapies in wild-type transthyretin amyloid cardiomyopathy

Authors: Danni Wu, Wei Chen

Published in: Heart Failure Reviews | Issue 2/2024

Login to get access

Abstract

Wild-type transthyretin amyloid cardiomyopathy (ATTRwt-CM) is an underrecognized cause of heart failure due to misfolded wild-type transthyretin (TTRwt) myocardial deposition. The development of wild-type TTR amyloid fibrils is a complex pathological process linked to the deterioration of homeostatic mechanisms owing to aging, plausibly implicating multiple molecular mechanisms. The components of amyloid transthyretin often include serum amyloid P, proteoglycans, and clusterin, which may play essential roles in the localization and elimination of amyloid fibrils. Oxidative stress, impaired mitochondrial function, and perturbation of intracellular calcium dynamics induced by TTR contribute to cardiac impairment. Recently, tafamidis has been the only drug approved by the U.S. Food and Drug Administration (FDA) for the treatment of ATTRwt-CM. In addition, small interfering RNAs and antisense oligonucleotides for ATTR-CM are promising therapeutic approaches and are currently in phase III clinical trials. Newly emerging therapies, such as antibodies targeting amyloid, inhibitors of seed formation, and CRISPR‒Cas9 technology, are currently in the early stages of research. The development of novel therapies is based on progress in comprehending the molecular events behind amyloid cardiomyopathy. There is still a need to further advance innovative treatments, providing patients with access to alternative and effective therapies, especially for patients diagnosed at a late stage.
Literature
1.
go back to reference Porcari A, Fontana M, Gillmore JD (2022) Transthyretin cardiac amyloidosis. Cardiovasc Res Porcari A, Fontana M, Gillmore JD (2022) Transthyretin cardiac amyloidosis. Cardiovasc Res
2.
3.
go back to reference Dasari AKR, Hughes RM, Wi S, Hung I, Gan Z, Kelly JW et al (2019) Transthyretin aggregation pathway toward the formation of distinct cytotoxic oligomers. Sci Rep 9:33PubMedPubMedCentralCrossRefADS Dasari AKR, Hughes RM, Wi S, Hung I, Gan Z, Kelly JW et al (2019) Transthyretin aggregation pathway toward the formation of distinct cytotoxic oligomers. Sci Rep 9:33PubMedPubMedCentralCrossRefADS
4.
go back to reference Sawaya MR, Hughes MP, Rodriguez JA, Riek R, Eisenberg DS (2021) The expanding amyloid family: structure, stability, function, and pathogenesis. Cell 184:4857–4873PubMedPubMedCentralCrossRef Sawaya MR, Hughes MP, Rodriguez JA, Riek R, Eisenberg DS (2021) The expanding amyloid family: structure, stability, function, and pathogenesis. Cell 184:4857–4873PubMedPubMedCentralCrossRef
6.
go back to reference Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS (2019) Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 73:2872–2891PubMedPubMedCentralCrossRef Ruberg FL, Grogan M, Hanna M, Kelly JW, Maurer MS (2019) Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol 73:2872–2891PubMedPubMedCentralCrossRef
7.
go back to reference Cornwell GG, Murdoch WL, Kyle RA, Westermark P (1983) Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am J Med 75:618–623PubMedCrossRef Cornwell GG, Murdoch WL, Kyle RA, Westermark P (1983) Frequency and distribution of senile cardiovascular amyloid. A clinicopathologic correlation. Am J Med 75:618–623PubMedCrossRef
8.
go back to reference Tanskanen M, Peuralinna T, Polvikoski T, Notkola IL, Sulkava R, Hardy J et al (2008) Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med 40:232–239PubMedCrossRef Tanskanen M, Peuralinna T, Polvikoski T, Notkola IL, Sulkava R, Hardy J et al (2008) Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Ann Med 40:232–239PubMedCrossRef
9.
go back to reference Mohammed SF, Mirzoyev SA, Edwards WD, Dogan A, Grogan DR, Dunlay SM et al (2014) Left ventricular amyloid deposition in patients with Heart Failure and preserved ejection fraction. JACC Heart Fail 2:113–122PubMedPubMedCentralCrossRef Mohammed SF, Mirzoyev SA, Edwards WD, Dogan A, Grogan DR, Dunlay SM et al (2014) Left ventricular amyloid deposition in patients with Heart Failure and preserved ejection fraction. JACC Heart Fail 2:113–122PubMedPubMedCentralCrossRef
10.
go back to reference Gonzalez-Lopez E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral FJ, Cobo-Marcos M, Robles C et al (2015) Wild-type transthyretin amyloidosis as a cause of Heart Failure with preserved ejection fraction. Eur Heart J 36:2585–2594PubMedCrossRef Gonzalez-Lopez E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral FJ, Cobo-Marcos M, Robles C et al (2015) Wild-type transthyretin amyloidosis as a cause of Heart Failure with preserved ejection fraction. Eur Heart J 36:2585–2594PubMedCrossRef
11.
go back to reference Nitsche C, Scully PR, Patel KP, Kammerlander AA, Koschutnik M, Dona C et al (2021) Prevalence and outcomes of concomitant aortic stenosis and Cardiac Amyloidosis. J Am Coll Cardiol 77:128–139PubMedPubMedCentralCrossRef Nitsche C, Scully PR, Patel KP, Kammerlander AA, Koschutnik M, Dona C et al (2021) Prevalence and outcomes of concomitant aortic stenosis and Cardiac Amyloidosis. J Am Coll Cardiol 77:128–139PubMedPubMedCentralCrossRef
12.
go back to reference Cariou E, Bennani Smires Y, Victor G, Robin G, Ribes D, Pascal P et al (2017) Diagnostic score for the detection of cardiac amyloidosis in patients with left ventricular hypertrophy and impact on prognosis. Amyloid 24:101–109PubMedCrossRef Cariou E, Bennani Smires Y, Victor G, Robin G, Ribes D, Pascal P et al (2017) Diagnostic score for the detection of cardiac amyloidosis in patients with left ventricular hypertrophy and impact on prognosis. Amyloid 24:101–109PubMedCrossRef
13.
go back to reference Castano A, Narotsky DL, Hamid N, Khalique OK, Morgenstern R, DeLuca A et al (2017) Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J 38:2879–2887PubMedPubMedCentralCrossRef Castano A, Narotsky DL, Hamid N, Khalique OK, Morgenstern R, DeLuca A et al (2017) Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement. Eur Heart J 38:2879–2887PubMedPubMedCentralCrossRef
15.
go back to reference Buxbaum JN, Dispenzieri A, Eisenberg DS, Fandrich M, Merlini G, Saraiva MJM et al (2022) Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 1–7 Buxbaum JN, Dispenzieri A, Eisenberg DS, Fandrich M, Merlini G, Saraiva MJM et al (2022) Amyloid nomenclature 2022: update, novel proteins, and recommendations by the International Society of Amyloidosis (ISA) Nomenclature Committee. Amyloid 1–7
16.
17.
go back to reference Sekijima Y (1993) Hereditary Transthyretin Amyloidosis. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A (eds) GeneReviews(®). University of Washington, Seattle, Seattle (WA) Sekijima Y (1993) Hereditary Transthyretin Amyloidosis. In: Adam MP, Everman DB, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A (eds) GeneReviews(®). University of Washington, Seattle, Seattle (WA)
18.
go back to reference Rowczenio DM, Noor I, Gillmore JD, Lachmann HJ, Whelan C, Hawkins PN et al (2014) Online registry for mutations in hereditary amyloidosis including nomenclature recommendations. Hum Mutat 35:E2403–2412PubMedCrossRef Rowczenio DM, Noor I, Gillmore JD, Lachmann HJ, Whelan C, Hawkins PN et al (2014) Online registry for mutations in hereditary amyloidosis including nomenclature recommendations. Hum Mutat 35:E2403–2412PubMedCrossRef
19.
go back to reference Gonzalez-Duarte A, Ulloa-Aguirre A (2021) A brief journey through protein misfolding in Transthyretin Amyloidosis (ATTR Amyloidosis). Int J Mol Sci 22 Gonzalez-Duarte A, Ulloa-Aguirre A (2021) A brief journey through protein misfolding in Transthyretin Amyloidosis (ATTR Amyloidosis). Int J Mol Sci 22
20.
21.
go back to reference Hyung SJ, Deroo S, Robinson CV (2010) Retinol and retinol-binding protein stabilize transthyretin via formation of retinol transport complex. ACS Chem Biol 5:1137–1146PubMedCrossRef Hyung SJ, Deroo S, Robinson CV (2010) Retinol and retinol-binding protein stabilize transthyretin via formation of retinol transport complex. ACS Chem Biol 5:1137–1146PubMedCrossRef
23.
go back to reference Sekijima Y (2014) Recent progress in the understanding and treatment of transthyretin amyloidosis. J Clin Pharm Ther 39:225–233PubMedCrossRef Sekijima Y (2014) Recent progress in the understanding and treatment of transthyretin amyloidosis. J Clin Pharm Ther 39:225–233PubMedCrossRef
24.
go back to reference Johnson SM, Wiseman RL, Sekijima Y, Green NS, Adamski-Werner SL, Kelly JW (2005) Native state kinetic stabilization as a strategy to ameliorate protein misfolding Diseases: a focus on the transthyretin amyloidoses. Acc Chem Res 38:911–921PubMedCrossRef Johnson SM, Wiseman RL, Sekijima Y, Green NS, Adamski-Werner SL, Kelly JW (2005) Native state kinetic stabilization as a strategy to ameliorate protein misfolding Diseases: a focus on the transthyretin amyloidoses. Acc Chem Res 38:911–921PubMedCrossRef
25.
go back to reference Hammarström P, Wiseman RL, Powers ET, Kelly JW (2003) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299:713–716PubMedCrossRefADS Hammarström P, Wiseman RL, Powers ET, Kelly JW (2003) Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science 299:713–716PubMedCrossRefADS
27.
go back to reference Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. WIREs Comput Mol Sci 1:826–843CrossRef Barducci A, Bonomi M, Parrinello M (2011) Metadynamics. WIREs Comput Mol Sci 1:826–843CrossRef
28.
go back to reference Zhou S, Zou H, Wang Y, Lo GV, Yuan S (2022) Atomic mechanisms of transthyretin tetramer dissociation studied by molecular dynamics simulations. J Chem Inf Model 62:6667–6678PubMedCrossRef Zhou S, Zou H, Wang Y, Lo GV, Yuan S (2022) Atomic mechanisms of transthyretin tetramer dissociation studied by molecular dynamics simulations. J Chem Inf Model 62:6667–6678PubMedCrossRef
29.
go back to reference Zhao L, Buxbaum JN, Reixach N (2013) Age-related oxidative modifications of transthyretin modulate its amyloidogenicity. Biochemistry 52:1913–1926PubMedCrossRef Zhao L, Buxbaum JN, Reixach N (2013) Age-related oxidative modifications of transthyretin modulate its amyloidogenicity. Biochemistry 52:1913–1926PubMedCrossRef
30.
go back to reference Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919PubMedCrossRefADS Balch WE, Morimoto RI, Dillin A, Kelly JW (2008) Adapting proteostasis for disease intervention. Science 319:916–919PubMedCrossRefADS
31.
go back to reference Wieczorek E, Kedracka-Krok S, Bystranowska D, Ptak M, Wiak K, Wygralak Z et al (2021) Destabilisation of the structure of transthyretin is driven by Ca(2). Int J Biol Macromol 166:409–423PubMedCrossRef Wieczorek E, Kedracka-Krok S, Bystranowska D, Ptak M, Wiak K, Wygralak Z et al (2021) Destabilisation of the structure of transthyretin is driven by Ca(2). Int J Biol Macromol 166:409–423PubMedCrossRef
33.
go back to reference Tsytlonok M, Itzhaki LS (2013) The how’s and why’s of protein folding intermediates. Arch Biochem Biophys 531:14–23PubMedCrossRef Tsytlonok M, Itzhaki LS (2013) The how’s and why’s of protein folding intermediates. Arch Biochem Biophys 531:14–23PubMedCrossRef
34.
36.
go back to reference Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE (2018) A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 19:755–773PubMedCrossRef Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE (2018) A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 19:755–773PubMedCrossRef
37.
go back to reference Nanev CN (2020) Evaluation of the critical nucleus size without using interface free energy. J Cryst Growth 535 Nanev CN (2020) Evaluation of the critical nucleus size without using interface free energy. J Cryst Growth 535
39.
go back to reference Morfino P, Aimo A, Panichella G, Rapezzi C, Emdin M (2022) Amyloid seeding as a disease mechanism and treatment target in transthyretin cardiac amyloidosis. Heart Fail Rev 27:2187–2200PubMedPubMedCentralCrossRef Morfino P, Aimo A, Panichella G, Rapezzi C, Emdin M (2022) Amyloid seeding as a disease mechanism and treatment target in transthyretin cardiac amyloidosis. Heart Fail Rev 27:2187–2200PubMedPubMedCentralCrossRef
40.
go back to reference Tipping KW, Karamanos TK, Jakhria T, Iadanza MG, Goodchild SC, Tuma R et al (2015) pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proc Natl Acad Sci U S A 112:5691–5696PubMedPubMedCentralCrossRefADS Tipping KW, Karamanos TK, Jakhria T, Iadanza MG, Goodchild SC, Tuma R et al (2015) pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proc Natl Acad Sci U S A 112:5691–5696PubMedPubMedCentralCrossRefADS
41.
go back to reference Inoue S, Kuroiwa M, Saraiva MJ, Guimarães A, Kisilevsky R (1998) Ultrastructure of familial amyloid polyneuropathy amyloid fibrils: examination with high-resolution electron microscopy. J Struct Biol 124:1–12PubMedCrossRef Inoue S, Kuroiwa M, Saraiva MJ, Guimarães A, Kisilevsky R (1998) Ultrastructure of familial amyloid polyneuropathy amyloid fibrils: examination with high-resolution electron microscopy. J Struct Biol 124:1–12PubMedCrossRef
42.
go back to reference Greene MJ, Sam F, Soo Hoo PT, Patel RS, Seldin DC, Connors LH (2011) Evidence for a functional role of the molecular chaperone clusterin in amyloidotic cardiomyopathy. Am J Pathol 178:61–68PubMedPubMedCentralCrossRef Greene MJ, Sam F, Soo Hoo PT, Patel RS, Seldin DC, Connors LH (2011) Evidence for a functional role of the molecular chaperone clusterin in amyloidotic cardiomyopathy. Am J Pathol 178:61–68PubMedPubMedCentralCrossRef
43.
go back to reference Pepys MB, Booth DR, Hutchinson KL, Gallimore JR, Collins PM, Hoheneste E (1997) Amyloid P component. A critical review. Amyloid 4:274–295CrossRef Pepys MB, Booth DR, Hutchinson KL, Gallimore JR, Collins PM, Hoheneste E (1997) Amyloid P component. A critical review. Amyloid 4:274–295CrossRef
44.
go back to reference Tennent GA, Lovat LB, Pepys MB (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci U S A 92:4299–4303PubMedPubMedCentralCrossRefADS Tennent GA, Lovat LB, Pepys MB (1995) Serum amyloid P component prevents proteolysis of the amyloid fibrils of Alzheimer disease and systemic amyloidosis. Proc Natl Acad Sci U S A 92:4299–4303PubMedPubMedCentralCrossRefADS
45.
go back to reference Botto M, Hawkins PN, Bickerstaff MC, Herbert J, Bygrave AE, McBride A et al (1997) Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat Med 3:855–859PubMedCrossRef Botto M, Hawkins PN, Bickerstaff MC, Herbert J, Bygrave AE, McBride A et al (1997) Amyloid deposition is delayed in mice with targeted deletion of the serum amyloid P component gene. Nat Med 3:855–859PubMedCrossRef
46.
go back to reference Pepys MB, Herbert J, Hutchinson WL, Tennent GA, Lachmann HJ, Gallimore JR et al (2002) Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417:254–259PubMedCrossRefADS Pepys MB, Herbert J, Hutchinson WL, Tennent GA, Lachmann HJ, Gallimore JR et al (2002) Targeted pharmacological depletion of serum amyloid P component for treatment of human amyloidosis. Nature 417:254–259PubMedCrossRefADS
47.
go back to reference Inoue S, Grant D, Leblond CP (1989) Heparan sulfate proteoglycan is present in basement membrane as a double-tracked structure. J Histochem Cytochem 37:597–602PubMedCrossRef Inoue S, Grant D, Leblond CP (1989) Heparan sulfate proteoglycan is present in basement membrane as a double-tracked structure. J Histochem Cytochem 37:597–602PubMedCrossRef
48.
go back to reference Wyatt AR, Yerbury JJ, Dabbs RA, Wilson MR (2012) Roles of extracellular chaperones in amyloidosis. J Mol Biol 421:499–516PubMedCrossRef Wyatt AR, Yerbury JJ, Dabbs RA, Wilson MR (2012) Roles of extracellular chaperones in amyloidosis. J Mol Biol 421:499–516PubMedCrossRef
49.
go back to reference Richards DB, Cookson LM, Berges AC, Barton SV, Lane T, Ritter JM et al (2015) Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N Engl J Med 373:1106–1114PubMedCrossRef Richards DB, Cookson LM, Berges AC, Barton SV, Lane T, Ritter JM et al (2015) Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N Engl J Med 373:1106–1114PubMedCrossRef
50.
go back to reference Parry TL, Melehani JH, Ranek MJ, Willis MS (2015) Functional amyloid signaling via the inflammasome, necrosome, and signalosome: new therapeutic targets in heart failure. Front Cardiovasc Med 2:25PubMedPubMedCentralCrossRef Parry TL, Melehani JH, Ranek MJ, Willis MS (2015) Functional amyloid signaling via the inflammasome, necrosome, and signalosome: new therapeutic targets in heart failure. Front Cardiovasc Med 2:25PubMedPubMedCentralCrossRef
51.
go back to reference Dittloff KT, Iezzi A, Zhong JX, Mohindra P, Desai TA, Russell B (2021) Transthyretin amyloid fibrils alter primary fibroblast structure, function, and inflammatory gene expression. Am J Physiol Heart Circ Physiol 321:H149–H160PubMedPubMedCentralCrossRef Dittloff KT, Iezzi A, Zhong JX, Mohindra P, Desai TA, Russell B (2021) Transthyretin amyloid fibrils alter primary fibroblast structure, function, and inflammatory gene expression. Am J Physiol Heart Circ Physiol 321:H149–H160PubMedPubMedCentralCrossRef
52.
go back to reference Sartiani L, Bucciantini M, Spinelli V, Leri M, Natalello A, Nosi D et al (2016) Biochemical and Electrophysiological Modification of Amyloid Transthyretin on cardiomyocytes. Biophys J 111:2024–2038PubMedPubMedCentralCrossRef Sartiani L, Bucciantini M, Spinelli V, Leri M, Natalello A, Nosi D et al (2016) Biochemical and Electrophysiological Modification of Amyloid Transthyretin on cardiomyocytes. Biophys J 111:2024–2038PubMedPubMedCentralCrossRef
53.
54.
go back to reference Vugmeyster L, Au DF, Ostrovsky D, Kierl B, Fu R, Hu ZW et al (2019) Effect of post-translational modifications and mutations on amyloid-beta Fibrils Dynamics at N Terminus. Biophys J 117:1524–1535PubMedPubMedCentralCrossRef Vugmeyster L, Au DF, Ostrovsky D, Kierl B, Fu R, Hu ZW et al (2019) Effect of post-translational modifications and mutations on amyloid-beta Fibrils Dynamics at N Terminus. Biophys J 117:1524–1535PubMedPubMedCentralCrossRef
55.
go back to reference Henze A, Homann T, Serteser M, Can O, Sezgin O, Coskun A et al (2015) Post-translational modifications of transthyretin affect the triiodonine-binding potential. J Cell Mol Med 19:359–370PubMedCrossRef Henze A, Homann T, Serteser M, Can O, Sezgin O, Coskun A et al (2015) Post-translational modifications of transthyretin affect the triiodonine-binding potential. J Cell Mol Med 19:359–370PubMedCrossRef
56.
go back to reference Kingsbury JS, Laue TM, Klimtchuk ES, Theberge R, Costello CE, Connors LH (2008) The modulation of transthyretin tetramer stability by cysteine 10 adducts and the drug diflunisal. Direct analysis by fluorescence-detected analytical ultracentrifugation. J Biol Chem 283:11887–11896PubMedPubMedCentralCrossRef Kingsbury JS, Laue TM, Klimtchuk ES, Theberge R, Costello CE, Connors LH (2008) The modulation of transthyretin tetramer stability by cysteine 10 adducts and the drug diflunisal. Direct analysis by fluorescence-detected analytical ultracentrifugation. J Biol Chem 283:11887–11896PubMedPubMedCentralCrossRef
57.
go back to reference Altland K, Winter P (1999) Potential treatment of transthyretin-type amyloidoses by sulfite. Neurogenetics 2:183–188PubMedCrossRef Altland K, Winter P (1999) Potential treatment of transthyretin-type amyloidoses by sulfite. Neurogenetics 2:183–188PubMedCrossRef
58.
go back to reference Altland K, Winter P, Saraiva MJ, Suhr O (2004) Sulfite and base for the treatment of familial amyloidotic polyneuropathy: two additive approaches to stabilize the conformation of human amyloidogenic transthyretin. Neurogenetics 5:61–67PubMedCrossRef Altland K, Winter P, Saraiva MJ, Suhr O (2004) Sulfite and base for the treatment of familial amyloidotic polyneuropathy: two additive approaches to stabilize the conformation of human amyloidogenic transthyretin. Neurogenetics 5:61–67PubMedCrossRef
59.
go back to reference Gales L, Saraiva MJ, Damas AM (2007) Structural basis for the protective role of sulfite against transthyretin amyloid formation. Biochim Biophys Acta 1774:59–64PubMedCrossRef Gales L, Saraiva MJ, Damas AM (2007) Structural basis for the protective role of sulfite against transthyretin amyloid formation. Biochim Biophys Acta 1774:59–64PubMedCrossRef
60.
go back to reference Zhang Q, Kelly JW (2005) Cys-10 mixed disulfide modifications exacerbate transthyretin familial variant amyloidogenicity: a likely explanation for variable clinical expression of amyloidosis and the lack of pathology in C10S/V30M transgenic mice? Biochemistry 44:9079–9085PubMedCrossRef Zhang Q, Kelly JW (2005) Cys-10 mixed disulfide modifications exacerbate transthyretin familial variant amyloidogenicity: a likely explanation for variable clinical expression of amyloidosis and the lack of pathology in C10S/V30M transgenic mice? Biochemistry 44:9079–9085PubMedCrossRef
61.
go back to reference Zhang Q, Kelly JW (2003) Cys10 mixed disulfides make transthyretin more amyloidogenic under mildly acidic conditions. Biochemistry 42:8756–8761PubMedCrossRef Zhang Q, Kelly JW (2003) Cys10 mixed disulfides make transthyretin more amyloidogenic under mildly acidic conditions. Biochemistry 42:8756–8761PubMedCrossRef
62.
go back to reference Takaoka Y, Ohta M, Miyakawa K, Nakamura O, Suzuki M, Takahashi K et al (2004) Cysteine 10 is a key residue in amyloidogenesis of human transthyretin Val30Met. Am J Pathol 164:337–345PubMedPubMedCentralCrossRef Takaoka Y, Ohta M, Miyakawa K, Nakamura O, Suzuki M, Takahashi K et al (2004) Cysteine 10 is a key residue in amyloidogenesis of human transthyretin Val30Met. Am J Pathol 164:337–345PubMedPubMedCentralCrossRef
64.
go back to reference Scott BJ, Bradwell AR (1983) Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin Chem 29:629–633PubMedCrossRef Scott BJ, Bradwell AR (1983) Identification of the serum binding proteins for iron, zinc, cadmium, nickel, and calcium. Clin Chem 29:629–633PubMedCrossRef
65.
go back to reference Wilkinson-White LE, Easterbrook-Smith SB (2007) Characterization of the binding of Cu(II) and zn(II) to transthyretin: effects on amyloid formation. Biochemistry 46:9123–9132PubMedCrossRef Wilkinson-White LE, Easterbrook-Smith SB (2007) Characterization of the binding of Cu(II) and zn(II) to transthyretin: effects on amyloid formation. Biochemistry 46:9123–9132PubMedCrossRef
66.
67.
go back to reference Sekijima Y, Wiseman RL, Matteson J, Hammarstrom P, Miller SR, Sawkar AR et al (2005) The biological and chemical basis for tissue-selective amyloid disease. Cell 121:73–85PubMedCrossRef Sekijima Y, Wiseman RL, Matteson J, Hammarstrom P, Miller SR, Sawkar AR et al (2005) The biological and chemical basis for tissue-selective amyloid disease. Cell 121:73–85PubMedCrossRef
68.
go back to reference Sorgjerd K, Ghafouri B, Jonsson BH, Kelly JW, Blond SY, Hammarstrom P (2006) Retention of misfolded mutant transthyretin by the chaperone BiP/GRP78 mitigates amyloidogenesis. J Mol Biol 356:469–482PubMedCrossRef Sorgjerd K, Ghafouri B, Jonsson BH, Kelly JW, Blond SY, Hammarstrom P (2006) Retention of misfolded mutant transthyretin by the chaperone BiP/GRP78 mitigates amyloidogenesis. J Mol Biol 356:469–482PubMedCrossRef
69.
go back to reference Susuki S, Sato T, Miyata M, Momohara M, Suico MA, Shuto T et al (2009) The endoplasmic reticulum-associated degradation of transthyretin variants is negatively regulated by BiP in mammalian cells. J Biol Chem 284:8312–8321PubMedPubMedCentralCrossRef Susuki S, Sato T, Miyata M, Momohara M, Suico MA, Shuto T et al (2009) The endoplasmic reticulum-associated degradation of transthyretin variants is negatively regulated by BiP in mammalian cells. J Biol Chem 284:8312–8321PubMedPubMedCentralCrossRef
70.
go back to reference Mesgarzadeh JS, Romine IC, Smith-Cohen EM, Grandjean JMD, Kelly JW, Genereux JC et al (2022) ATF6 activation reduces amyloidogenic transthyretin secretion through increased interactions with endoplasmic reticulum proteostasis factors. Cells, p 11 Mesgarzadeh JS, Romine IC, Smith-Cohen EM, Grandjean JMD, Kelly JW, Genereux JC et al (2022) ATF6 activation reduces amyloidogenic transthyretin secretion through increased interactions with endoplasmic reticulum proteostasis factors. Cells, p 11
71.
go back to reference Buxbaum JN, Tagoe C, Gallo G, Walker JR, Kurian S, Salomon DR (2012) Why are some amyloidoses systemic? Does hepatic chaperoning at a distance prevent cardiac deposition in a transgenic model of human senile systemic (transthyretin) amyloidosis? FASEB J 26:2283–2293PubMedPubMedCentralCrossRef Buxbaum JN, Tagoe C, Gallo G, Walker JR, Kurian S, Salomon DR (2012) Why are some amyloidoses systemic? Does hepatic chaperoning at a distance prevent cardiac deposition in a transgenic model of human senile systemic (transthyretin) amyloidosis? FASEB J 26:2283–2293PubMedPubMedCentralCrossRef
72.
go back to reference Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR (2013) Extracellular chaperones and proteostasis. Annu Rev Biochem 82:295–322PubMedCrossRef Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR (2013) Extracellular chaperones and proteostasis. Annu Rev Biochem 82:295–322PubMedCrossRef
73.
go back to reference Dabbs RA, Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR (2013) Extracellular chaperones. Top Curr Chem 328:241–268PubMedCrossRef Dabbs RA, Wyatt AR, Yerbury JJ, Ecroyd H, Wilson MR (2013) Extracellular chaperones. Top Curr Chem 328:241–268PubMedCrossRef
74.
go back to reference da Costa G, Ribeiro-Silva C, Ribeiro R, Gilberto S, Gomes RA, Ferreira A et al (2015) Transthyretin amyloidosis: chaperone concentration changes and increased proteolysis in the pathway to disease. PLoS ONE 10:e0125392PubMedPubMedCentralCrossRef da Costa G, Ribeiro-Silva C, Ribeiro R, Gilberto S, Gomes RA, Ferreira A et al (2015) Transthyretin amyloidosis: chaperone concentration changes and increased proteolysis in the pathway to disease. PLoS ONE 10:e0125392PubMedPubMedCentralCrossRef
75.
go back to reference Sekijima Y (2015) Transthyretin (ATTR) amyloidosis: clinical spectrum, molecular pathogenesis and disease-modifying treatments. J Neurol Neurosurg Psychiatry 86:1036–1043PubMedCrossRef Sekijima Y (2015) Transthyretin (ATTR) amyloidosis: clinical spectrum, molecular pathogenesis and disease-modifying treatments. J Neurol Neurosurg Psychiatry 86:1036–1043PubMedCrossRef
76.
go back to reference Baures PW, Peterson SA, Kelly JW (1998) Discovering transthyretin amyloid fibril inhibitors by limited screening. Bioorg Med Chem 6:1389–1401PubMedCrossRef Baures PW, Peterson SA, Kelly JW (1998) Discovering transthyretin amyloid fibril inhibitors by limited screening. Bioorg Med Chem 6:1389–1401PubMedCrossRef
77.
go back to reference Adamski-Werner SL, Palaninathan SK, Sacchettini JC, Kelly JW (2004) Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis. J Med Chem 47:355–374PubMedCrossRef Adamski-Werner SL, Palaninathan SK, Sacchettini JC, Kelly JW (2004) Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis. J Med Chem 47:355–374PubMedCrossRef
78.
go back to reference Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M et al (2018) Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 379:1007–1016PubMedCrossRef Maurer MS, Schwartz JH, Gundapaneni B, Elliott PM, Merlini G, Waddington-Cruz M et al (2018) Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 379:1007–1016PubMedCrossRef
79.
go back to reference Rapezzi C, Elliott P, Damy T, Nativi-Nicolau J, Berk JL, Velazquez EJ et al (2021) Efficacy of Tafamidis in patients with Hereditary and wild-type transthyretin amyloid cardiomyopathy: further analyses from ATTR-ACT. JACC Heart Fail 9:115–123PubMedCrossRef Rapezzi C, Elliott P, Damy T, Nativi-Nicolau J, Berk JL, Velazquez EJ et al (2021) Efficacy of Tafamidis in patients with Hereditary and wild-type transthyretin amyloid cardiomyopathy: further analyses from ATTR-ACT. JACC Heart Fail 9:115–123PubMedCrossRef
80.
go back to reference Ferreira N, Cardoso I, Domingues MR, Vitorino R, Bastos M, Bai G et al (2009) Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett 583:3569–3576PubMedCrossRef Ferreira N, Cardoso I, Domingues MR, Vitorino R, Bastos M, Bai G et al (2009) Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett 583:3569–3576PubMedCrossRef
81.
go back to reference Ferreira N, Saraiva MJ, Almeida MR (2012) Epigallocatechin-3-gallate as a potential therapeutic drug for TTR-related amyloidosis: in vivo evidence from FAP mice models. PLoS ONE 7:e29933PubMedPubMedCentralCrossRefADS Ferreira N, Saraiva MJ, Almeida MR (2012) Epigallocatechin-3-gallate as a potential therapeutic drug for TTR-related amyloidosis: in vivo evidence from FAP mice models. PLoS ONE 7:e29933PubMedPubMedCentralCrossRefADS
82.
go back to reference Ferreira N, Santos SA, Domingues MR, Saraiva MJ, Almeida MR (2013) Dietary curcumin counteracts extracellular transthyretin deposition: insights on the mechanism of amyloid inhibition. Biochim Biophys Acta 1832:39–45PubMedCrossRef Ferreira N, Santos SA, Domingues MR, Saraiva MJ, Almeida MR (2013) Dietary curcumin counteracts extracellular transthyretin deposition: insights on the mechanism of amyloid inhibition. Biochim Biophys Acta 1832:39–45PubMedCrossRef
83.
go back to reference Ferreira N, Saraiva MJ, Almeida MR (2019) Uncovering the neuroprotective mechanisms of curcumin on transthyretin amyloidosis. Int J Mol Sci 20 Ferreira N, Saraiva MJ, Almeida MR (2019) Uncovering the neuroprotective mechanisms of curcumin on transthyretin amyloidosis. Int J Mol Sci 20
84.
go back to reference Palaninathan SK, Mohamedmohaideen NN, Snee WC, Kelly JW, Sacchettini JC (2008) Structural insight into pH-induced conformational changes within the native human transthyretin tetramer. J Mol Biol 382:1157–1167PubMedCrossRef Palaninathan SK, Mohamedmohaideen NN, Snee WC, Kelly JW, Sacchettini JC (2008) Structural insight into pH-induced conformational changes within the native human transthyretin tetramer. J Mol Biol 382:1157–1167PubMedCrossRef
85.
go back to reference Sekijima Y, Dendle MA, Kelly JW (2009) Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 13:236–249CrossRef Sekijima Y, Dendle MA, Kelly JW (2009) Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid 13:236–249CrossRef
86.
go back to reference Berk JL, Suhr OB, Obici L, Sekijima Y, Zeldenrust SR, Yamashita T et al (2013) Repurposing diflunisal for familial amyloid polyneuropathy. JAMA 310 Berk JL, Suhr OB, Obici L, Sekijima Y, Zeldenrust SR, Yamashita T et al (2013) Repurposing diflunisal for familial amyloid polyneuropathy. JAMA 310
87.
go back to reference Lohrmann G, Pipilas A, Mussinelli R, Gopal DM, Berk JL, Connors LH et al (2020) Stabilization of cardiac function with diflunisal in transthyretin (ATTR) cardiac amyloidosis. J Card Fail 26:753–759PubMedCrossRef Lohrmann G, Pipilas A, Mussinelli R, Gopal DM, Berk JL, Connors LH et al (2020) Stabilization of cardiac function with diflunisal in transthyretin (ATTR) cardiac amyloidosis. J Card Fail 26:753–759PubMedCrossRef
88.
go back to reference Judge DP, Heitner SB, Falk RH, Maurer MS, Shah SJ, Witteles RM et al (2019) Transthyretin stabilization by AG10 in symptomatic transthyretin amyloid cardiomyopathy. J Am Coll Cardiol 74:285–295PubMedCrossRef Judge DP, Heitner SB, Falk RH, Maurer MS, Shah SJ, Witteles RM et al (2019) Transthyretin stabilization by AG10 in symptomatic transthyretin amyloid cardiomyopathy. J Am Coll Cardiol 74:285–295PubMedCrossRef
90.
go back to reference Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV et al (2018) Patisiran, an RNAi therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med 379:11–21PubMedCrossRef Adams D, Gonzalez-Duarte A, O’Riordan WD, Yang CC, Ueda M, Kristen AV et al (2018) Patisiran, an RNAi therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med 379:11–21PubMedCrossRef
93.
go back to reference Adams D, Tournev IL, Taylor MS, Coelho T, Planté-Bordeneuve V, Berk JL et al (2023) Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid 30:1–9PubMedCrossRef Adams D, Tournev IL, Taylor MS, Coelho T, Planté-Bordeneuve V, Berk JL et al (2023) Efficacy and safety of vutrisiran for patients with hereditary transthyretin-mediated amyloidosis with polyneuropathy: a randomized clinical trial. Amyloid 30:1–9PubMedCrossRef
94.
go back to reference Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK et al (2018) Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med 379:22–31PubMedCrossRef Benson MD, Waddington-Cruz M, Berk JL, Polydefkis M, Dyck PJ, Wang AK et al (2018) Inotersen Treatment for Patients with Hereditary Transthyretin Amyloidosis. N Engl J Med 379:22–31PubMedCrossRef
95.
go back to reference Tanowitz M, Hettrick L, Revenko A, Kinberger GA, Prakash TP, Seth PP (2017) Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Res 45:12388–12400PubMedPubMedCentralCrossRef Tanowitz M, Hettrick L, Revenko A, Kinberger GA, Prakash TP, Seth PP (2017) Asialoglycoprotein receptor 1 mediates productive uptake of N-acetylgalactosamine-conjugated and unconjugated phosphorothioate antisense oligonucleotides into liver hepatocytes. Nucleic Acids Res 45:12388–12400PubMedPubMedCentralCrossRef
96.
go back to reference Coelho T, Ando Y, Benson MD, Berk JL, Waddington-Cruz M, Dyck PJ et al (2021) Design and rationale of the global phase 3 NEURO-TTRansform study of antisense oligonucleotide AKCEA-TTR-L(rx) (ION-682884-CS3) in Hereditary transthyretin-mediated amyloid polyneuropathy. Neurol Ther 10:375–389PubMedPubMedCentralCrossRef Coelho T, Ando Y, Benson MD, Berk JL, Waddington-Cruz M, Dyck PJ et al (2021) Design and rationale of the global phase 3 NEURO-TTRansform study of antisense oligonucleotide AKCEA-TTR-L(rx) (ION-682884-CS3) in Hereditary transthyretin-mediated amyloid polyneuropathy. Neurol Ther 10:375–389PubMedPubMedCentralCrossRef
98.
go back to reference Michalon A, Hagenbuch A, Huy C, Varela E, Combaluzier B, Damy T et al (2021) A human antibody selective for transthyretin amyloid removes cardiac amyloid through phagocytic immune cells. Nat Commun 12:3142PubMedPubMedCentralCrossRefADS Michalon A, Hagenbuch A, Huy C, Varela E, Combaluzier B, Damy T et al (2021) A human antibody selective for transthyretin amyloid removes cardiac amyloid through phagocytic immune cells. Nat Commun 12:3142PubMedPubMedCentralCrossRefADS
99.
go back to reference Garcia-Pavia P, Aus dem Siepen F, Donal E, Lairez O, van der Meer P, Kristen AV et al (2023) Phase 1 trial of antibody NI006 for depletion of Cardiac Transthyretin amyloid. N Engl J Med Garcia-Pavia P, Aus dem Siepen F, Donal E, Lairez O, van der Meer P, Kristen AV et al (2023) Phase 1 trial of antibody NI006 for depletion of Cardiac Transthyretin amyloid. N Engl J Med
100.
go back to reference George J, Rappaport M, Shimoni S, Goland S, Voldarsky I, Fabricant Y et al (2020) A novel monoclonal antibody targeting aggregated transthyretin facilitates its removal and functional recovery in an experimental model. Eur Heart J 41:1260–1270PubMedCrossRef George J, Rappaport M, Shimoni S, Goland S, Voldarsky I, Fabricant Y et al (2020) A novel monoclonal antibody targeting aggregated transthyretin facilitates its removal and functional recovery in an experimental model. Eur Heart J 41:1260–1270PubMedCrossRef
102.
go back to reference Zhang KW, Stockerl-Goldstein KE, Lenihan DJ (2019) Emerging therapeutics for the treatment of light chain and transthyretin amyloidosis. JACC Basic Transl Sci 4:438–448PubMedPubMedCentralCrossRef Zhang KW, Stockerl-Goldstein KE, Lenihan DJ (2019) Emerging therapeutics for the treatment of light chain and transthyretin amyloidosis. JACC Basic Transl Sci 4:438–448PubMedPubMedCentralCrossRef
103.
go back to reference Saelices L, Nguyen BA, Chung K, Wang Y, Ortega A, Lee JH et al (2019) A pair of peptides inhibits seeding of the hormone transporter transthyretin into amyloid fibrils. J Biol Chem 294:6130–6141PubMedPubMedCentralCrossRef Saelices L, Nguyen BA, Chung K, Wang Y, Ortega A, Lee JH et al (2019) A pair of peptides inhibits seeding of the hormone transporter transthyretin into amyloid fibrils. J Biol Chem 294:6130–6141PubMedPubMedCentralCrossRef
104.
go back to reference Saelices L, Pokrzywa M, Pawelek K, Eisenberg DS (2018) Assessment of the effects of transthyretin peptide inhibitors in drosophila models of neuropathic ATTR. Neurobiol Dis 120:118–125PubMedPubMedCentralCrossRef Saelices L, Pokrzywa M, Pawelek K, Eisenberg DS (2018) Assessment of the effects of transthyretin peptide inhibitors in drosophila models of neuropathic ATTR. Neurobiol Dis 120:118–125PubMedPubMedCentralCrossRef
105.
go back to reference Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J et al (2018) A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep 22:2227–2235PubMedCrossRef Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR, van Heteren J et al (2018) A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep 22:2227–2235PubMedCrossRef
106.
go back to reference Ackermann EJ, Guo S, Benson MD, Booten S, Freier S, Hughes SG et al (2016) Suppressing transthyretin production in mice, monkeys and humans using 2nd-Generation antisense oligonucleotides. Amyloid 23:148–157PubMedCrossRef Ackermann EJ, Guo S, Benson MD, Booten S, Freier S, Hughes SG et al (2016) Suppressing transthyretin production in mice, monkeys and humans using 2nd-Generation antisense oligonucleotides. Amyloid 23:148–157PubMedCrossRef
Metadata
Title
Molecular mechanisms and emerging therapies in wild-type transthyretin amyloid cardiomyopathy
Authors
Danni Wu
Wei Chen
Publication date
18-01-2024
Publisher
Springer US
Published in
Heart Failure Reviews / Issue 2/2024
Print ISSN: 1382-4147
Electronic ISSN: 1573-7322
DOI
https://doi.org/10.1007/s10741-023-10380-9

Other articles of this Issue 2/2024

Heart Failure Reviews 2/2024 Go to the issue