Skip to main content
Top
Published in: Inflammation 3/2017

01-06-2017 | ORIGINAL ARTICLE

TIPE2 Inhibits the Expression of Asthma-Related Inflammatory Factors in Hyperstretched Bronchial Epithelial Cells Through the Wnt/β-Catenin Pathway

Authors: Xinrong Sun, Lu Chen, Wen Yan

Published in: Inflammation | Issue 3/2017

Login to get access

Abstract

Childhood asthma, an airway inflammatory disease, is a serious threat to the child’s quality of life. Recently, TIPE2 expression was reported to be decreased in children with asthma. Therefore, additional studies focusing on TIPE2 might provide an approach for treating childhood asthma. In this study, we found that TIPE2 was poorly expressed in hyperstretched human bronchial epithelial cells (BEAS-2B). TIPE2 overexpression also significantly suppressed the stretch-induced secretion of asthma-related inflammatory factors (TNF-α, TSLP, MMP-9, and VEGF). In contrast, TIPE2 inhibition significantly promoted the secretion of TNF-α, TSLP, MMP-9, and VEGF. Furthermore, overexpression of TIPE2 remarkably inhibited the activation of Wnt/β-catenin in hyperstretched BEAS-2B cells, while siTIPE2 activated Wnt/β-catenin in hyperstretched BEAS-2B cells. Further analysis showed that the Wnt/β-catenin signal inhibitor Dkk-1 could further enhance the TIPE2-induced suppression of Wnt/β-catenin signaling, which also suppressed the siTIPE2-induced secretion of TNF-α, TSLP, MMP-9, and VEGF in hyperstretched BEAS-2B cells. Dkk-1 reversed the effects of siRNA-TIPE2 on Wnt/β-catenin signaling and inflammatory cytokines. In summary, we have exhibited that TIPE2 inhibited the expression of asthma-related inflammatory factors in hyperstretched BEAS-2B cells by suppressing the Wnt/β-catenin signaling pathway. TIPE2 may be involved in airway inflammation during asthma attack, and it may be used as a potential therapeutic target for bronchial epithelial inflammation in childhood asthma.
Literature
1.
go back to reference Mete, F., E. Ozkaya, S. Aras, V. Koksal, O. Etlik, and I. Baris. 2014. Association between gene polymorphisms in TIM1, TSLP, IL18R1 and childhood asthma in Turkish population. International Journal of Clinical and Experimental Medicine 7: 1071–1077.PubMedPubMedCentral Mete, F., E. Ozkaya, S. Aras, V. Koksal, O. Etlik, and I. Baris. 2014. Association between gene polymorphisms in TIM1, TSLP, IL18R1 and childhood asthma in Turkish population. International Journal of Clinical and Experimental Medicine 7: 1071–1077.PubMedPubMedCentral
2.
go back to reference Elias, J.A., C.G. Lee, T. Zheng, B. Ma, R.J. Homer, and Z. Zhu. 2003. New insights into the pathogenesis of asthma. Journal of Clinical Investigation 111: 291–297.CrossRefPubMedPubMedCentral Elias, J.A., C.G. Lee, T. Zheng, B. Ma, R.J. Homer, and Z. Zhu. 2003. New insights into the pathogenesis of asthma. Journal of Clinical Investigation 111: 291–297.CrossRefPubMedPubMedCentral
3.
go back to reference Haj-Salem, I., R. Fakhfakh, J.C. Berube, E. Jacques, S. Plante, M.J. Simard, Y. Bosse, and J. Chakir. 2015. MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFbetaR2 gene in severe asthma. Allergy 70: 212–219.CrossRefPubMed Haj-Salem, I., R. Fakhfakh, J.C. Berube, E. Jacques, S. Plante, M.J. Simard, Y. Bosse, and J. Chakir. 2015. MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFbetaR2 gene in severe asthma. Allergy 70: 212–219.CrossRefPubMed
4.
go back to reference Gras, D., P. Chanez, I. Vachier, A. Petit, and A. Bourdin. 2013. Bronchial epithelium as a target for innovative treatments in asthma. Pharmacology & Therapeutics 140: 290–305.CrossRef Gras, D., P. Chanez, I. Vachier, A. Petit, and A. Bourdin. 2013. Bronchial epithelium as a target for innovative treatments in asthma. Pharmacology & Therapeutics 140: 290–305.CrossRef
5.
go back to reference Devries, A., and D. Vercelli. 2013. Epigenetics of human asthma and allergy: promises to keep. Asian Pacific Journal of Allergy and Immunology 31: 183–189.PubMed Devries, A., and D. Vercelli. 2013. Epigenetics of human asthma and allergy: promises to keep. Asian Pacific Journal of Allergy and Immunology 31: 183–189.PubMed
6.
go back to reference Zhao, G., X. Lin, M. Zhou, and J. Zhao. 2013. Association between CC10 + 38A/G polymorphism and asthma risk: a meta-analysis. Pakistan Journal of Medical Sciences 29: 1439–1443.PubMedPubMedCentral Zhao, G., X. Lin, M. Zhou, and J. Zhao. 2013. Association between CC10 + 38A/G polymorphism and asthma risk: a meta-analysis. Pakistan Journal of Medical Sciences 29: 1439–1443.PubMedPubMedCentral
8.
go back to reference Sun, H., S. Gong, R.J. Carmody, A. Hilliard, L. Li, J. Sun, L. Kong, L. Xu, B. Hilliard, S. Hu, H. Shen, X. Yang, and Y.H. Chen. 2008. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell 133: 415–426.CrossRefPubMedPubMedCentral Sun, H., S. Gong, R.J. Carmody, A. Hilliard, L. Li, J. Sun, L. Kong, L. Xu, B. Hilliard, S. Hu, H. Shen, X. Yang, and Y.H. Chen. 2008. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis. Cell 133: 415–426.CrossRefPubMedPubMedCentral
9.
go back to reference Kong, L., K. Liu, Y.Z. Zhang, M. Jin, B.R. Wu, W.Z. Wang, W. Li, Y.M. Nan, and Y.H. Chen. 2013. Downregulation of TIPE2 mRNA expression in peripheral blood mononuclear cells from patients with chronic hepatitis C. Hepatology International 7: 844–849.CrossRefPubMed Kong, L., K. Liu, Y.Z. Zhang, M. Jin, B.R. Wu, W.Z. Wang, W. Li, Y.M. Nan, and Y.H. Chen. 2013. Downregulation of TIPE2 mRNA expression in peripheral blood mononuclear cells from patients with chronic hepatitis C. Hepatology International 7: 844–849.CrossRefPubMed
10.
go back to reference Ma, Y., X. Liu, Z. Wei, X. Wang, Z. Wang, W. Zhong, Y. Li, F. Zhu, C. Guo, and L. Zhang. 2013. The expression and significance of TIPE2 in peripheral blood mononuclear cells from asthmatic children. Scandinavian Journal of Immunology 78: 523–528.CrossRefPubMed Ma, Y., X. Liu, Z. Wei, X. Wang, Z. Wang, W. Zhong, Y. Li, F. Zhu, C. Guo, and L. Zhang. 2013. The expression and significance of TIPE2 in peripheral blood mononuclear cells from asthmatic children. Scandinavian Journal of Immunology 78: 523–528.CrossRefPubMed
11.
go back to reference Sun, H., G. Zhuang, L. Chai, Z. Wang, D. Johnson, Y. Ma, and Y.H. Chen. 2012. TIPE2 controls innate immunity to RNA by targeting the phosphatidylinositol 3-kinase-Rac pathway. Journal of Immunology 189: 2768–2773.CrossRef Sun, H., G. Zhuang, L. Chai, Z. Wang, D. Johnson, Y. Ma, and Y.H. Chen. 2012. TIPE2 controls innate immunity to RNA by targeting the phosphatidylinositol 3-kinase-Rac pathway. Journal of Immunology 189: 2768–2773.CrossRef
12.
go back to reference Zhang, G., C. Hao, Y. Lou, W. Xi, X. Wang, Y. Wang, Z. Qu, C. Guo, Y. Chen, Y. Zhang, and S. Liu. 2010. Tissue-specific expression of TIPE2 provides insights into its function. Molecular Immunology 47: 2435–2442.CrossRefPubMed Zhang, G., C. Hao, Y. Lou, W. Xi, X. Wang, Y. Wang, Z. Qu, C. Guo, Y. Chen, Y. Zhang, and S. Liu. 2010. Tissue-specific expression of TIPE2 provides insights into its function. Molecular Immunology 47: 2435–2442.CrossRefPubMed
13.
14.
go back to reference Baron, R., and M. Kneissel. 2013. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nature Medicine 19: 179–192.CrossRefPubMed Baron, R., and M. Kneissel. 2013. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nature Medicine 19: 179–192.CrossRefPubMed
15.
go back to reference Baarsma, H.A., M. Konigshoff, and R. Gosens. 2013. The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacology & Therapeutics 138: 66–83.CrossRef Baarsma, H.A., M. Konigshoff, and R. Gosens. 2013. The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacology & Therapeutics 138: 66–83.CrossRef
16.
17.
go back to reference Le, P.N., J.D. McDermott, and A. Jimeno. 2015. Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28. Pharmacology & Therapeutics 146: 1–11.CrossRef Le, P.N., J.D. McDermott, and A. Jimeno. 2015. Targeting the Wnt pathway in human cancers: therapeutic targeting with a focus on OMP-54F28. Pharmacology & Therapeutics 146: 1–11.CrossRef
18.
go back to reference George, S.J. 2008. Wnt pathway: a new role in regulation of inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology 28: 400–402.CrossRefPubMed George, S.J. 2008. Wnt pathway: a new role in regulation of inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology 28: 400–402.CrossRefPubMed
19.
go back to reference Tan, R.J., D. Zhou, L. Zhou, and Y. Liu. 2014. Wnt/beta-catenin signaling and kidney fibrosis. Kidney International Supplement 4: 84–90.CrossRef Tan, R.J., D. Zhou, L. Zhou, and Y. Liu. 2014. Wnt/beta-catenin signaling and kidney fibrosis. Kidney International Supplement 4: 84–90.CrossRef
20.
go back to reference Guo, L., T. Wang, Y. Wu, Z. Yuan, J. Dong, X. Li, J. An, Z. Liao, X. Zhang, D. Xu, and F.Q. Wen. 2016. WNT/beta-catenin signaling regulates cigarette smoke-induced airway inflammation via the PPARdelta/p38 pathway. Laboratory Investigation; A Journal of Technical Methods and Pathology 96: 218–229.CrossRefPubMed Guo, L., T. Wang, Y. Wu, Z. Yuan, J. Dong, X. Li, J. An, Z. Liao, X. Zhang, D. Xu, and F.Q. Wen. 2016. WNT/beta-catenin signaling regulates cigarette smoke-induced airway inflammation via the PPARdelta/p38 pathway. Laboratory Investigation; A Journal of Technical Methods and Pathology 96: 218–229.CrossRefPubMed
21.
go back to reference Kwak, H.J., D.W. Park, J.Y. Seo, J.Y. Moon, T.H. Kim, J.W. Sohn, D.H. Shin, H.J. Yoon, S.S. Park, and S.H. Kim. 2015. The Wnt/beta-catenin signaling pathway regulates the development of airway remodeling in patients with asthma. Experimental & Molecular Medicine 47: e198.CrossRef Kwak, H.J., D.W. Park, J.Y. Seo, J.Y. Moon, T.H. Kim, J.W. Sohn, D.H. Shin, H.J. Yoon, S.S. Park, and S.H. Kim. 2015. The Wnt/beta-catenin signaling pathway regulates the development of airway remodeling in patients with asthma. Experimental & Molecular Medicine 47: e198.CrossRef
22.
go back to reference Reuter, S., H. Martin, H. Beckert, M. Bros, E. Montermann, C. Belz, A. Heinz, S. Ohngemach, U. Sahin, M. Stassen, R. Buhl, L. Eshkind, and C. Taube. 2014. The Wnt/beta-catenin pathway attenuates experimental allergic airway disease. Journal of Immunology 193: 485–495.CrossRef Reuter, S., H. Martin, H. Beckert, M. Bros, E. Montermann, C. Belz, A. Heinz, S. Ohngemach, U. Sahin, M. Stassen, R. Buhl, L. Eshkind, and C. Taube. 2014. The Wnt/beta-catenin pathway attenuates experimental allergic airway disease. Journal of Immunology 193: 485–495.CrossRef
23.
go back to reference Bao, Z., S. Lim, W. Liao, Y. Lin, C. Thiemermann, B.P. Leung, and W.S. Wong. 2007. Glycogen synthase kinase-3beta inhibition attenuates asthma in mice. American Journal of Respiratory and Critical Care Medicine 176: 431–438.CrossRefPubMed Bao, Z., S. Lim, W. Liao, Y. Lin, C. Thiemermann, B.P. Leung, and W.S. Wong. 2007. Glycogen synthase kinase-3beta inhibition attenuates asthma in mice. American Journal of Respiratory and Critical Care Medicine 176: 431–438.CrossRefPubMed
24.
go back to reference Fredberg, J.J. 2000. Frozen objects: small airways, big breaths, and asthma. The Journal of Allergy and Clinical Immunology 106: 615–624.CrossRefPubMed Fredberg, J.J. 2000. Frozen objects: small airways, big breaths, and asthma. The Journal of Allergy and Clinical Immunology 106: 615–624.CrossRefPubMed
25.
go back to reference Wang, J., L. Liu, Y. Xia, and D. Wu. 2014. Silencing of poly(ADP-ribose) polymerase-1 suppresses hyperstretch-induced expression of inflammatory cytokines in vitro. Acta Biochimica et Biophysica Sinica Shanghai 46: 556–564.CrossRef Wang, J., L. Liu, Y. Xia, and D. Wu. 2014. Silencing of poly(ADP-ribose) polymerase-1 suppresses hyperstretch-induced expression of inflammatory cytokines in vitro. Acta Biochimica et Biophysica Sinica Shanghai 46: 556–564.CrossRef
26.
go back to reference Haseneen, N.A., G.G. Vaday, S. Zucker, and H.D. Foda. 2003. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN. American Journal of Physiology - Lung Cellular and Molecular Physiology 284: L541–L547.CrossRefPubMed Haseneen, N.A., G.G. Vaday, S. Zucker, and H.D. Foda. 2003. Mechanical stretch induces MMP-2 release and activation in lung endothelium: role of EMMPRIN. American Journal of Physiology - Lung Cellular and Molecular Physiology 284: L541–L547.CrossRefPubMed
27.
go back to reference Thomas, R.A., J.C. Norman, T.T. Huynh, B. Williams, S.J. Bolton, and A.J. Wardlaw. 2006. Mechanical stretch has contrasting effects on mediator release from bronchial epithelial cells, with a rho-kinase-dependent component to the mechanotransduction pathway. Respiratory Medicine 100: 1588–1597.CrossRefPubMed Thomas, R.A., J.C. Norman, T.T. Huynh, B. Williams, S.J. Bolton, and A.J. Wardlaw. 2006. Mechanical stretch has contrasting effects on mediator release from bronchial epithelial cells, with a rho-kinase-dependent component to the mechanotransduction pathway. Respiratory Medicine 100: 1588–1597.CrossRefPubMed
28.
go back to reference Spiegel, A., S. Shivtiel, A. Kalinkovich, A. Ludin, N. Netzer, P. Goichberg, Y. Azaria, I. Resnick, I. Hardan, H. Ben-Hur, A. Nagler, M. Rubinstein, and T. Lapidot. 2007. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nature Immunology 8: 1123–1131.CrossRefPubMed Spiegel, A., S. Shivtiel, A. Kalinkovich, A. Ludin, N. Netzer, P. Goichberg, Y. Azaria, I. Resnick, I. Hardan, H. Ben-Hur, A. Nagler, M. Rubinstein, and T. Lapidot. 2007. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nature Immunology 8: 1123–1131.CrossRefPubMed
29.
go back to reference Reuter, S., H. Beckert, and C. Taube. 2016. Take the Wnt out of the inflammatory sails: modulatory effects of Wnt in airway diseases. Laboratory Investigation; A Journal of Technical Methods and Pathology 96: 177–185.CrossRefPubMed Reuter, S., H. Beckert, and C. Taube. 2016. Take the Wnt out of the inflammatory sails: modulatory effects of Wnt in airway diseases. Laboratory Investigation; A Journal of Technical Methods and Pathology 96: 177–185.CrossRefPubMed
30.
go back to reference Chen, C.L., H. Li, X.H. Xing, H.S. Guan, J.H. Zhang, and J.W. Zhao. 2015. Effect of TRPV1 gene mutation on bronchial asthma in children before and after treatment. Allergy and Asthma Proceedings 36: e29–e36.CrossRefPubMed Chen, C.L., H. Li, X.H. Xing, H.S. Guan, J.H. Zhang, and J.W. Zhao. 2015. Effect of TRPV1 gene mutation on bronchial asthma in children before and after treatment. Allergy and Asthma Proceedings 36: e29–e36.CrossRefPubMed
31.
go back to reference Ho, C.Y., C.K. Wong, F.W. Ko, C.H. Chan, A.S. Ho, D.S. Hui, and C.W. Lam. 2002. Apoptosis and B-cell lymphoma-2 of peripheral blood T lymphocytes and soluble fas in patients with allergic asthma. Chest 122: 1751–1758.CrossRefPubMed Ho, C.Y., C.K. Wong, F.W. Ko, C.H. Chan, A.S. Ho, D.S. Hui, and C.W. Lam. 2002. Apoptosis and B-cell lymphoma-2 of peripheral blood T lymphocytes and soluble fas in patients with allergic asthma. Chest 122: 1751–1758.CrossRefPubMed
32.
go back to reference Liu, Z., X. Liu, L. Sang, H. Liu, and Q. Xu. 2015. Boswellic acid attenuates asthma phenotypes by downregulation of GATA3 via pSTAT6 inhibition in a murine model of asthma. International Journal of Clinical and Experimental Pathology 8: 236–243.PubMedPubMedCentral Liu, Z., X. Liu, L. Sang, H. Liu, and Q. Xu. 2015. Boswellic acid attenuates asthma phenotypes by downregulation of GATA3 via pSTAT6 inhibition in a murine model of asthma. International Journal of Clinical and Experimental Pathology 8: 236–243.PubMedPubMedCentral
33.
go back to reference Xiao, C., S.M. Puddicombe, S. Field, J. Haywood, V. Broughton-Head, I. Puxeddu, H.M. Haitchi, E. Vernon-Wilson, D. Sammut, N. Bedke, C. Cremin, J. Sones, R. Djukanovic, P.H. Howarth, J.E. Collins, S.T. Holgate, P. Monk, and D.E. Davies. 2011. Defective epithelial barrier function in asthma. The Journal of Allergy and Clinical Immunology 128(549–556): e541–e512. Xiao, C., S.M. Puddicombe, S. Field, J. Haywood, V. Broughton-Head, I. Puxeddu, H.M. Haitchi, E. Vernon-Wilson, D. Sammut, N. Bedke, C. Cremin, J. Sones, R. Djukanovic, P.H. Howarth, J.E. Collins, S.T. Holgate, P. Monk, and D.E. Davies. 2011. Defective epithelial barrier function in asthma. The Journal of Allergy and Clinical Immunology 128(549–556): e541–e512.
34.
go back to reference Georas, S.N., and F. Rezaee. 2014. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. The Journal of Allergy and Clinical Immunology 134: 509–520.CrossRefPubMedPubMedCentral Georas, S.N., and F. Rezaee. 2014. Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. The Journal of Allergy and Clinical Immunology 134: 509–520.CrossRefPubMedPubMedCentral
35.
go back to reference Penberthy, K.K., I.J. Juncadella, and K.S. Ravichandran. 2014. Apoptosis and engulfment by bronchial epithelial cells. Implications for allergic airway inflammation. Annals of the American Thoracic Society 11(Suppl 5): S259–S262.CrossRefPubMedPubMedCentral Penberthy, K.K., I.J. Juncadella, and K.S. Ravichandran. 2014. Apoptosis and engulfment by bronchial epithelial cells. Implications for allergic airway inflammation. Annals of the American Thoracic Society 11(Suppl 5): S259–S262.CrossRefPubMedPubMedCentral
36.
go back to reference Copland, I.B., and M. Post. 2007. Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells. Journal of Cellular Physiology 210: 133–143.CrossRefPubMed Copland, I.B., and M. Post. 2007. Stretch-activated signaling pathways responsible for early response gene expression in fetal lung epithelial cells. Journal of Cellular Physiology 210: 133–143.CrossRefPubMed
37.
go back to reference Uglietta, J.P., W.W. Woodruff, E.L. Effmann, and B.A. Carroll. 1989. Duplex Doppler ultrasound evaluation of calcified inferior vena cava thrombosis. Pediatric Radiology 19: 250–252.CrossRefPubMed Uglietta, J.P., W.W. Woodruff, E.L. Effmann, and B.A. Carroll. 1989. Duplex Doppler ultrasound evaluation of calcified inferior vena cava thrombosis. Pediatric Radiology 19: 250–252.CrossRefPubMed
38.
go back to reference Xi, W., Y. Hu, Y. Liu, J. Zhang, L. Wang, Y. Lou, Z. Qu, J. Cui, G. Zhang, X. Liang, C. Ma, C. Gao, Y. Chen, and S. Liu. 2011. Roles of TIPE2 in hepatitis B virus-induced hepatic inflammation in humans and mice. Molecular Immunology 48: 1203–1208.CrossRefPubMed Xi, W., Y. Hu, Y. Liu, J. Zhang, L. Wang, Y. Lou, Z. Qu, J. Cui, G. Zhang, X. Liang, C. Ma, C. Gao, Y. Chen, and S. Liu. 2011. Roles of TIPE2 in hepatitis B virus-induced hepatic inflammation in humans and mice. Molecular Immunology 48: 1203–1208.CrossRefPubMed
39.
go back to reference Popa, C., M.G. Netea, P.L. van Riel, J.W. van der Meer, and A.F. Stalenhoef. 2007. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. Journal of Lipid Research 48: 751–762.CrossRefPubMed Popa, C., M.G. Netea, P.L. van Riel, J.W. van der Meer, and A.F. Stalenhoef. 2007. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. Journal of Lipid Research 48: 751–762.CrossRefPubMed
40.
go back to reference Ying, S., B. O’Connor, J. Ratoff, Q. Meng, C. Fang, D. Cousins, G. Zhang, S. Gu, Z. Gao, B. Shamji, M.J. Edwards, T.H. Lee, and C.J. Corrigan. 2008. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. Journal of Immunology 181: 2790–2798.CrossRef Ying, S., B. O’Connor, J. Ratoff, Q. Meng, C. Fang, D. Cousins, G. Zhang, S. Gu, Z. Gao, B. Shamji, M.J. Edwards, T.H. Lee, and C.J. Corrigan. 2008. Expression and cellular provenance of thymic stromal lymphopoietin and chemokines in patients with severe asthma and chronic obstructive pulmonary disease. Journal of Immunology 181: 2790–2798.CrossRef
41.
go back to reference Biagini Myers, J.M., L.J. Martin, M.B. Kovacic, T.B. Mersha, H. He, V. Pilipenko, M.A. Lindsey, M.B. Ericksen, D.I. Bernstein, G.K. LeMasters, J.E. Lockey, and G.K. Khurana Hershey. 2014. Epistasis between serine protease inhibitor Kazal-type 5 (SPINK5) and thymic stromal lymphopoietin (TSLP) genes contributes to childhood asthma. The Journal of Allergy and Clinical Immunology 134(891–899): e893. Biagini Myers, J.M., L.J. Martin, M.B. Kovacic, T.B. Mersha, H. He, V. Pilipenko, M.A. Lindsey, M.B. Ericksen, D.I. Bernstein, G.K. LeMasters, J.E. Lockey, and G.K. Khurana Hershey. 2014. Epistasis between serine protease inhibitor Kazal-type 5 (SPINK5) and thymic stromal lymphopoietin (TSLP) genes contributes to childhood asthma. The Journal of Allergy and Clinical Immunology 134(891–899): e893.
42.
go back to reference Wang, I.J., L.S. Wu, G.A. Lockett, and W.J. Karmaus. 2016. TSLP polymorphisms, allergen exposures, and the risk of atopic disorders in children. Annals of Allergy, Asthma, and Immunology 116(139–145): e131. Wang, I.J., L.S. Wu, G.A. Lockett, and W.J. Karmaus. 2016. TSLP polymorphisms, allergen exposures, and the risk of atopic disorders in children. Annals of Allergy, Asthma, and Immunology 116(139–145): e131.
43.
go back to reference Han, Z., Junxu, and N. Zhong. 2003. Expression of matrix metalloproteinases MMP-9 within the airways in asthma. Respiratory Medicine 97: 563–567.CrossRefPubMed Han, Z., Junxu, and N. Zhong. 2003. Expression of matrix metalloproteinases MMP-9 within the airways in asthma. Respiratory Medicine 97: 563–567.CrossRefPubMed
44.
go back to reference Asai, K., H. Kanazawa, H. Kamoi, S. Shiraishi, K. Hirata, and J. Yoshikawa. 2003. Increased levels of vascular endothelial growth factor in induced sputum in asthmatic patients. Clinical and Experimental Allergy 33: 595–599.CrossRefPubMed Asai, K., H. Kanazawa, H. Kamoi, S. Shiraishi, K. Hirata, and J. Yoshikawa. 2003. Increased levels of vascular endothelial growth factor in induced sputum in asthmatic patients. Clinical and Experimental Allergy 33: 595–599.CrossRefPubMed
45.
go back to reference Neumann, J., K. Schaale, K. Farhat, T. Endermann, A.J. Ulmer, S. Ehlers, and N. Reiling. 2010. Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming Mycobacterium tuberculosis-infected macrophages. FASEB journal: Official Publication of the Federation of American Societies for Experimental Biology 24: 4599–4612.CrossRef Neumann, J., K. Schaale, K. Farhat, T. Endermann, A.J. Ulmer, S. Ehlers, and N. Reiling. 2010. Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming Mycobacterium tuberculosis-infected macrophages. FASEB journal: Official Publication of the Federation of American Societies for Experimental Biology 24: 4599–4612.CrossRef
46.
go back to reference Zhang, J., X. Wen, X.Y. Ren, Y.Q. Li, X.R. Tang, Y.Q. Wang, Q.M. He, X.J. Yang, Y. Sun, N. Liu, and J. Ma. 2016. YPEL3 suppresses epithelial-mesenchymal transition and metastasis of nasopharyngeal carcinoma cells through the Wnt/beta-catenin signaling pathway. Journal of Experimental & Clinical Cancer Research: CR 35: 109.CrossRefPubMedCentral Zhang, J., X. Wen, X.Y. Ren, Y.Q. Li, X.R. Tang, Y.Q. Wang, Q.M. He, X.J. Yang, Y. Sun, N. Liu, and J. Ma. 2016. YPEL3 suppresses epithelial-mesenchymal transition and metastasis of nasopharyngeal carcinoma cells through the Wnt/beta-catenin signaling pathway. Journal of Experimental & Clinical Cancer Research: CR 35: 109.CrossRefPubMedCentral
Metadata
Title
TIPE2 Inhibits the Expression of Asthma-Related Inflammatory Factors in Hyperstretched Bronchial Epithelial Cells Through the Wnt/β-Catenin Pathway
Authors
Xinrong Sun
Lu Chen
Wen Yan
Publication date
01-06-2017
Publisher
Springer US
Published in
Inflammation / Issue 3/2017
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0521-9

Other articles of this Issue 3/2017

Inflammation 3/2017 Go to the issue
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discuss last year's major advances in heart failure and cardiomyopathies.