Skip to main content
Top
Published in: Respiratory Research 1/2007

Open Access 01-12-2007 | Research

Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD

Authors: Gaetan Deslee, Sandra Dury, Jeanne M Perotin, Denise Al Alam, Fabien Vitry, Rachel Boxio, Sophie C Gangloff, Moncef Guenounou, François Lebargy, Abderrazzaq Belaaouaj

Published in: Respiratory Research | Issue 1/2007

Login to get access

Abstract

Background

Chronic obstructive pulmonary disease (COPD) is characterized by abnormal lung inflammation that exceeds the protective response. Various culture models using epithelial cell lines or primary cells have been used to investigate the contribution of bronchial epithelium in the exaggerated inflammation of COPD. However, these models do not mimic in vivo situations for several reasons (e.g, transformed epithelial cells, protease-mediated dissociation of primary cells, etc.). To circumvent these concerns, we developed a new epithelial cell culture model.

Methods

Using non transformed non dissociated bronchial epithelium obtained by bronchial brushings from COPD and non-COPD smokers, we developed a 3-dimensional culture model, bronchial epithelial spheroids (BES). BES were analyzed by videomicroscopy, light microscopy, immunofluorescence, and transmission electron microscopy. We also compared the inflammatory responses of COPD and non-COPD BES. In our study, we chose to stimulate BES with lipopolycaccharide (LPS) and measured the release of the pro-inflammatory mediators interleukin-8 (IL-8) and leukotriene B4 (LTB4) and the anti-inflammatory mediator prostaglandin E2 (PGE2).

Results

BES obtained from both COPD and non-COPD patients were characterized by a polarized bronchial epithelium with tight junctions and ciliary beating, composed of basal cells, secretory cells and ciliated cells. The ciliary beat frequency of ciliated cells was not significantly different between the two groups. Of interest, BES retained their characteristic features in culture up to 8 days. BES released the inflammatory mediators IL-8, PGE2 and LTB4 constitutively and following exposure to LPS. Interestingly, LPS induced a higher release of IL-8, but not PGE2 and LTB4 in COPD BES (p < 0.001) which correlated with lung function changes.

Conclusion

This study provides for the first time a compelling evidence that the BES model provides an unaltered bronchial surface epithelium. More importantly, BES represent an attractive culture model to investigate the mechanisms of injuring agents that mediate epithelial cell inflammation and its contribution to COPD pathogenesis.
Literature
1.
go back to reference Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS, GOLD Scientific Committee: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 2001, 163:1256–1276.CrossRefPubMed Pauwels RA, Buist AS, Calverley PM, Jenkins CR, Hurd SS, GOLD Scientific Committee: Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. NHLBI/WHO Global Initiative for Chronic Obstructive Lung Disease (GOLD) Workshop summary. Am J Respir Crit Care Med 2001, 163:1256–1276.CrossRefPubMed
2.
go back to reference Celli BR, MacNee W, ATS/ERS Task Force: Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 2004, 23:932–946.CrossRefPubMed Celli BR, MacNee W, ATS/ERS Task Force: Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 2004, 23:932–946.CrossRefPubMed
3.
go back to reference Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA: Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002, 57:847–852.CrossRefPubMedPubMedCentral Donaldson GC, Seemungal TA, Bhowmik A, Wedzicha JA: Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax 2002, 57:847–852.CrossRefPubMedPubMedCentral
4.
go back to reference Halpin DM, Miravittles M: Chronic obstructive pulmonary disease: the disease and its burden to society. Proc Am Thorac Soc 2006, 3:619–623.CrossRefPubMed Halpin DM, Miravittles M: Chronic obstructive pulmonary disease: the disease and its burden to society. Proc Am Thorac Soc 2006, 3:619–623.CrossRefPubMed
5.
go back to reference Saetta M, Turato G, Maestrelli P, Mapp CE, Fabbri LM: Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001, 163:1304–1309.CrossRefPubMed Saetta M, Turato G, Maestrelli P, Mapp CE, Fabbri LM: Cellular and structural bases of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001, 163:1304–1309.CrossRefPubMed
6.
go back to reference Shapiro SD, Ingenito EP: The pathogenesis of chronic obstructive pulmonary disease. Advances in the past 100 years. Am J Respir Cell Mol Biol 2005, 32:367–372.CrossRefPubMed Shapiro SD, Ingenito EP: The pathogenesis of chronic obstructive pulmonary disease. Advances in the past 100 years. Am J Respir Cell Mol Biol 2005, 32:367–372.CrossRefPubMed
7.
go back to reference Hogg JC: Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 2004, 364:709–721.CrossRefPubMed Hogg JC: Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet 2004, 364:709–721.CrossRefPubMed
8.
go back to reference MacNee W: Pathogenesis of obstructive pulmonary disease. Proc Am Thor Soc 2005, 2:258–266.CrossRef MacNee W: Pathogenesis of obstructive pulmonary disease. Proc Am Thor Soc 2005, 2:258–266.CrossRef
9.
go back to reference Rusznak C, Mills PR, Devalia JL, Sapsford RJ, Davies RJ, Lozewicz S: Effect of cigarette smoke on the permeability and IL-1 beta and sICAM-1 release from cultured human bronchial epithelial cells of never-smokers, smokers, and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2000, 23:530–536.CrossRefPubMed Rusznak C, Mills PR, Devalia JL, Sapsford RJ, Davies RJ, Lozewicz S: Effect of cigarette smoke on the permeability and IL-1 beta and sICAM-1 release from cultured human bronchial epithelial cells of never-smokers, smokers, and patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2000, 23:530–536.CrossRefPubMed
10.
go back to reference Cromwell O, Hamid Q, Corrigan CJ, Barkans J, Meng Q, Collins PD, Kay AB: Expression and generation of interleukin-8, IL-6 and granulocyte-macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1 beta and tumor necrosis factor-alpha. Immunology 1992, 77:330–337.PubMedPubMedCentral Cromwell O, Hamid Q, Corrigan CJ, Barkans J, Meng Q, Collins PD, Kay AB: Expression and generation of interleukin-8, IL-6 and granulocyte-macrophage colony-stimulating factor by bronchial epithelial cells and enhancement by IL-1 beta and tumor necrosis factor-alpha. Immunology 1992, 77:330–337.PubMedPubMedCentral
11.
go back to reference Patel IS, Roberts NJ, Lloyd-Owen SJ, Sapsford RJ, Wedzicha JA: Airway epithelial inflammatory responses and clinical parameters in COPD. Eur Respir J 2003, 22:94–99.CrossRefPubMed Patel IS, Roberts NJ, Lloyd-Owen SJ, Sapsford RJ, Wedzicha JA: Airway epithelial inflammatory responses and clinical parameters in COPD. Eur Respir J 2003, 22:94–99.CrossRefPubMed
12.
go back to reference Schulz C, Kratzel K, Wolf K, Schroll S, Kohler M, Pfeifer M: Activation of bronchial epithelial cells in smokers without airway obstruction and patients with COPD. Chest 2004, 125:1706–1713.CrossRefPubMed Schulz C, Kratzel K, Wolf K, Schroll S, Kohler M, Pfeifer M: Activation of bronchial epithelial cells in smokers without airway obstruction and patients with COPD. Chest 2004, 125:1706–1713.CrossRefPubMed
13.
go back to reference Profita M, Chiappara G, Mirabella F, Di Giorgi R, Chimenti L, Costanzo G, Riccobono L, Bellia V, Bousquet J, Vignola AM: Effect of cilomilast (Ariflo) on TNF-alpha, IL-8 and GM-CSF release by airway cells of patients with COPD. Thorax 2003, 58:573–579.CrossRefPubMedPubMedCentral Profita M, Chiappara G, Mirabella F, Di Giorgi R, Chimenti L, Costanzo G, Riccobono L, Bellia V, Bousquet J, Vignola AM: Effect of cilomilast (Ariflo) on TNF-alpha, IL-8 and GM-CSF release by airway cells of patients with COPD. Thorax 2003, 58:573–579.CrossRefPubMedPubMedCentral
14.
go back to reference Denning GM, Wollenweber LA, Railsback MA, Cox CD, Stoll LL, Britigan BE: Pseudomonas pyocianin increases interleukin-8 expression by human airway epithelial cells. Infect Immun 1998, 66:5777–5784.PubMedPubMedCentral Denning GM, Wollenweber LA, Railsback MA, Cox CD, Stoll LL, Britigan BE: Pseudomonas pyocianin increases interleukin-8 expression by human airway epithelial cells. Infect Immun 1998, 66:5777–5784.PubMedPubMedCentral
15.
go back to reference Khair OA, Devalia JL, Abdelaziz MM, Sapsford RJ, Tarraf H, Davies RJ: Effect of Haemophilus influenzae endotoxin on the synthesis of IL-6, IL-8, TNF-alpha and expression of ICAM-1 in cultured human bronchial epithelial cells. Eur Respir J 1994, 7:2109–2116.CrossRefPubMed Khair OA, Devalia JL, Abdelaziz MM, Sapsford RJ, Tarraf H, Davies RJ: Effect of Haemophilus influenzae endotoxin on the synthesis of IL-6, IL-8, TNF-alpha and expression of ICAM-1 in cultured human bronchial epithelial cells. Eur Respir J 1994, 7:2109–2116.CrossRefPubMed
16.
go back to reference Palmberg L, Larsson BM, Malmberg P, Larsson K: Induction of IL-8 production in human alveolar macrophages and human bronchial epithelial cells in vitro by swine dust. Thorax 1998, 53:260–264.CrossRefPubMedPubMedCentral Palmberg L, Larsson BM, Malmberg P, Larsson K: Induction of IL-8 production in human alveolar macrophages and human bronchial epithelial cells in vitro by swine dust. Thorax 1998, 53:260–264.CrossRefPubMedPubMedCentral
17.
go back to reference Maestrelli P, Saetta M, Mapp CE, Fabbri LM: Remodelling in response to infection and injury. Airway inflammation and hypersecretion of mucus in smoking subjects with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001, 164:S76–80.CrossRefPubMed Maestrelli P, Saetta M, Mapp CE, Fabbri LM: Remodelling in response to infection and injury. Airway inflammation and hypersecretion of mucus in smoking subjects with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2001, 164:S76–80.CrossRefPubMed
18.
go back to reference Castillon N, Hinnrasky J, Zahm JM, Kaplan H, Bonnet N, Corlieu P, Klossek JM, Taouil K, Avril-Deplanque A, Peault B, Puchelle E: Polarized expresion of cystic fibrosis transmembrane conductance regulator and associated epithelial proteins during the regeneration of human airway surface epithelium in three-dimensional culture. Lab Invest 2002, 82:989–98.CrossRefPubMed Castillon N, Hinnrasky J, Zahm JM, Kaplan H, Bonnet N, Corlieu P, Klossek JM, Taouil K, Avril-Deplanque A, Peault B, Puchelle E: Polarized expresion of cystic fibrosis transmembrane conductance regulator and associated epithelial proteins during the regeneration of human airway surface epithelium in three-dimensional culture. Lab Invest 2002, 82:989–98.CrossRefPubMed
19.
go back to reference Carterson AJ, Höner zu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR, Buchanan KL, Nickerson CA, Schurr MJ: A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Inf Immun 2005, 73:1129–1140.CrossRef Carterson AJ, Höner zu Bentrup K, Ott CM, Clarke MS, Pierson DL, Vanderburg CR, Buchanan KL, Nickerson CA, Schurr MJ: A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis. Inf Immun 2005, 73:1129–1140.CrossRef
20.
go back to reference Jorissen M, Van der Schueren B, Van den Berghe H, Cassiman JJ: The preservation and regeneration of cilia on human nasal epithelial cells cultured in vitro. Arch Otorhinolaryngol 1989, 246:308–314.CrossRefPubMed Jorissen M, Van der Schueren B, Van den Berghe H, Cassiman JJ: The preservation and regeneration of cilia on human nasal epithelial cells cultured in vitro. Arch Otorhinolaryngol 1989, 246:308–314.CrossRefPubMed
21.
go back to reference Castillon N, Avril-Deplanque A, Coraux C, Delenda C, Peault B, Danos O, Puchelle E: Regeneration of a well-differentiated human airway surface epithelium by spheroid and lentivirus vector-transduced airway cells. J Gene Med 2004, 6:846–856.CrossRefPubMed Castillon N, Avril-Deplanque A, Coraux C, Delenda C, Peault B, Danos O, Puchelle E: Regeneration of a well-differentiated human airway surface epithelium by spheroid and lentivirus vector-transduced airway cells. J Gene Med 2004, 6:846–856.CrossRefPubMed
22.
go back to reference Laoukili J, Perret E, Willems T, Minty A, Parthoens E, Houcine O, Coste A, Joressen M, Marano F, Caput D, Tournier F: IL-13 alters mucociliary differentiation and ciliary beating of human respiratory cells. J Clin Invest 2001, 108:1817–1824.CrossRefPubMedPubMedCentral Laoukili J, Perret E, Willems T, Minty A, Parthoens E, Houcine O, Coste A, Joressen M, Marano F, Caput D, Tournier F: IL-13 alters mucociliary differentiation and ciliary beating of human respiratory cells. J Clin Invest 2001, 108:1817–1824.CrossRefPubMedPubMedCentral
23.
go back to reference Pedersen PS, Frederiksen O, Holstein-Rathlou NH, Larsen PL, Qvortrup K: Ion transport in epithelial spheroids derived from human airway cells. Am J Physiol 1999, 276:L75-L80.PubMed Pedersen PS, Frederiksen O, Holstein-Rathlou NH, Larsen PL, Qvortrup K: Ion transport in epithelial spheroids derived from human airway cells. Am J Physiol 1999, 276:L75-L80.PubMed
24.
go back to reference Bridges MA, Walker DC, Harris RA, Wilson BR, Davidson AG: Cultured human nasal epithelial multicellular spheroids: polar cyst-like model tissues. Biochem Cell Biol 1991, 69:102–108.CrossRefPubMed Bridges MA, Walker DC, Harris RA, Wilson BR, Davidson AG: Cultured human nasal epithelial multicellular spheroids: polar cyst-like model tissues. Biochem Cell Biol 1991, 69:102–108.CrossRefPubMed
25.
go back to reference Fabbri LM, Hurd SS, GOLD Scientific Committee: Global strategy for the diagnosis, management and prevention of COPD: 2003 update. Eur Respir J 2003, 22:1–2.CrossRefPubMed Fabbri LM, Hurd SS, GOLD Scientific Committee: Global strategy for the diagnosis, management and prevention of COPD: 2003 update. Eur Respir J 2003, 22:1–2.CrossRefPubMed
26.
go back to reference Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, Pinto Plata V, Cabral HJ: The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 2004, 350:1005–1012.CrossRefPubMed Celli BR, Cote CG, Marin JM, Casanova C, Montes de Oca M, Mendez RA, Pinto Plata V, Cabral HJ: The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med 2004, 350:1005–1012.CrossRefPubMed
27.
go back to reference Chevillard M, Hinnrasky J, Zahm JM, Plotowski MC, Puchelle E: Proliferation, differentiation and ciliary beating of human respiratory ciliated cells in primary culture. Cell Tissue Res 1991, 264:49–55.CrossRefPubMed Chevillard M, Hinnrasky J, Zahm JM, Plotowski MC, Puchelle E: Proliferation, differentiation and ciliary beating of human respiratory ciliated cells in primary culture. Cell Tissue Res 1991, 264:49–55.CrossRefPubMed
28.
go back to reference Evans SM, Blyth DI, Wong T, Sanjar S, West MR: Decreased distribution of lung epithelial junction proteins after intratracheal antigen or lipopolysaccharide challenge: correlation with neutrophil influx and levels of BALF sE-cadherin. Am J Respir Cell Mol Biol 2002, 27:446–454.CrossRefPubMed Evans SM, Blyth DI, Wong T, Sanjar S, West MR: Decreased distribution of lung epithelial junction proteins after intratracheal antigen or lipopolysaccharide challenge: correlation with neutrophil influx and levels of BALF sE-cadherin. Am J Respir Cell Mol Biol 2002, 27:446–454.CrossRefPubMed
29.
go back to reference Kobayashi N, Dezawa M, Nagata H, Yuasa S, Konno A: Immunohistochemichal study of E-cadherin and ZO-1 in allergic nasal epithelium of the guinea pig. Int Arch Allergy Immunol 1998, 116:196–205.CrossRefPubMed Kobayashi N, Dezawa M, Nagata H, Yuasa S, Konno A: Immunohistochemichal study of E-cadherin and ZO-1 in allergic nasal epithelium of the guinea pig. Int Arch Allergy Immunol 1998, 116:196–205.CrossRefPubMed
30.
go back to reference Jang YJ, Kim HG, Koo TW, Chung PS: Localization of ZO-1 and E-cadherin in the nasal polyp epithelium. Eur Arch Otorhinolaryngol 2002, 259:465–469.PubMed Jang YJ, Kim HG, Koo TW, Chung PS: Localization of ZO-1 and E-cadherin in the nasal polyp epithelium. Eur Arch Otorhinolaryngol 2002, 259:465–469.PubMed
31.
go back to reference Devalia JL, Sapsford RJ, Wells CW, Richman P, Davies RJ: Culture and comparison of human bronchial and nasal epithelial cells in vitro. Respir Med 1990, 84:303–312.CrossRefPubMed Devalia JL, Sapsford RJ, Wells CW, Richman P, Davies RJ: Culture and comparison of human bronchial and nasal epithelial cells in vitro. Respir Med 1990, 84:303–312.CrossRefPubMed
32.
go back to reference Woolhouse IS, Bayley DL, Stockley RA: Sputum chemotactic activity in chronic obstructive pulmonary disease: effect of alpha(1)-antitrypsin deficiency and the role of leukotriene B(4) and interleukin 8. Thorax 2002, 57:709–714.CrossRefPubMedPubMedCentral Woolhouse IS, Bayley DL, Stockley RA: Sputum chemotactic activity in chronic obstructive pulmonary disease: effect of alpha(1)-antitrypsin deficiency and the role of leukotriene B(4) and interleukin 8. Thorax 2002, 57:709–714.CrossRefPubMedPubMedCentral
33.
go back to reference Beeh KM, Kornmann O, Buhl R, Culpitt SV, Giembycz MA, Barnes PJ: Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest 2003, 123:1240–1247.CrossRefPubMed Beeh KM, Kornmann O, Buhl R, Culpitt SV, Giembycz MA, Barnes PJ: Neutrophil chemotactic activity of sputum from patients with COPD: role of interleukin 8 and leukotriene B4. Chest 2003, 123:1240–1247.CrossRefPubMed
34.
go back to reference Trudeau J, Hu H, Chibana K, Chu HW, Westcott JY, Wenzel SE: Selective downregulation of prostaglandin E2-related pathways by the Th2 cytokine IL-13. J Allergy Clin Immunol 2006, 117:1446–1454.CrossRefPubMed Trudeau J, Hu H, Chibana K, Chu HW, Westcott JY, Wenzel SE: Selective downregulation of prostaglandin E2-related pathways by the Th2 cytokine IL-13. J Allergy Clin Immunol 2006, 117:1446–1454.CrossRefPubMed
35.
36.
go back to reference Dentener MA, Louis R, Cloots RH, Henket M, Wouters EF: Differences in local versus systemic TNFalpha production in COPD: inhibitory effect of hyaluronan on LPS induced blood cell TNFalpha release. Thorax 2006, 61:478–484.CrossRefPubMedPubMedCentral Dentener MA, Louis R, Cloots RH, Henket M, Wouters EF: Differences in local versus systemic TNFalpha production in COPD: inhibitory effect of hyaluronan on LPS induced blood cell TNFalpha release. Thorax 2006, 61:478–484.CrossRefPubMedPubMedCentral
37.
go back to reference Chaudhuri N, Dower SK, Whyte MK, Sabroe I: Toll-like receptors and chronic lung disease. Clin Sci (London) 2005, 109:125–133.CrossRef Chaudhuri N, Dower SK, Whyte MK, Sabroe I: Toll-like receptors and chronic lung disease. Clin Sci (London) 2005, 109:125–133.CrossRef
38.
go back to reference Sabroe I, Whyte MK, Wilson AG, Dower SK, Hubbard R, Hall I: Toll-like receptor (TLR) 4 polymorphisms and COPD. Thorax 2004, 59:81.PubMedPubMedCentral Sabroe I, Whyte MK, Wilson AG, Dower SK, Hubbard R, Hall I: Toll-like receptor (TLR) 4 polymorphisms and COPD. Thorax 2004, 59:81.PubMedPubMedCentral
39.
go back to reference Berclaz PY, Carey B, Fillipi MD, Wernke-Dollries K, Geraci N, Cush S, Richardson T, Kitzmiller J, O'Connor M, Hermoyian C, Korfhagen T, Whitsett JA, Trapnell BC: GM-CSF regulates a PU.1-dependent transcriptional program determining the pulmonary response to LPS. Am J Respir Cell Mol Biol 2007, 36:114–121.CrossRefPubMed Berclaz PY, Carey B, Fillipi MD, Wernke-Dollries K, Geraci N, Cush S, Richardson T, Kitzmiller J, O'Connor M, Hermoyian C, Korfhagen T, Whitsett JA, Trapnell BC: GM-CSF regulates a PU.1-dependent transcriptional program determining the pulmonary response to LPS. Am J Respir Cell Mol Biol 2007, 36:114–121.CrossRefPubMed
41.
go back to reference Carpagnano GE, Kharitonov SA, Foschino-Barbaro MP, Resta O, Gramiccioni E, Barnes PJ: Increased inflammatory markers in the exhaled breath condensate of cigarette smokers. Eur Respir J 2003, 21:589–593.CrossRefPubMed Carpagnano GE, Kharitonov SA, Foschino-Barbaro MP, Resta O, Gramiccioni E, Barnes PJ: Increased inflammatory markers in the exhaled breath condensate of cigarette smokers. Eur Respir J 2003, 21:589–593.CrossRefPubMed
42.
go back to reference Kostikas K, Gaga M, Papatheodorou G, Karamanis T, Orphanidou D, Loukides S: Leukotriene B4 in exhaled breath condensate and sputum supernatant in patients with COPD and asthma. Chest 2005, 127:1553–1559.CrossRefPubMed Kostikas K, Gaga M, Papatheodorou G, Karamanis T, Orphanidou D, Loukides S: Leukotriene B4 in exhaled breath condensate and sputum supernatant in patients with COPD and asthma. Chest 2005, 127:1553–1559.CrossRefPubMed
43.
go back to reference Biernacki WA, Kharitonov SA, Barnes PJ: Increased leukotriene B4 and 8-isoprostane in exhaled breath condensate of patients with exacerbations of COPD. Thorax 2003, 58:294–298.CrossRefPubMedPubMedCentral Biernacki WA, Kharitonov SA, Barnes PJ: Increased leukotriene B4 and 8-isoprostane in exhaled breath condensate of patients with exacerbations of COPD. Thorax 2003, 58:294–298.CrossRefPubMedPubMedCentral
44.
go back to reference Klockmann MT, Jahn HU, Hippenstiel S, Kramer HJ, Suttorp N: Interaction of human neutrophils with airway epithelial cells: reduction of leukotriene B4 generation by epithelial cell derived prostaglandin E2. J Cell Physiol 1998, 175:268–275.CrossRefPubMed Klockmann MT, Jahn HU, Hippenstiel S, Kramer HJ, Suttorp N: Interaction of human neutrophils with airway epithelial cells: reduction of leukotriene B4 generation by epithelial cell derived prostaglandin E2. J Cell Physiol 1998, 175:268–275.CrossRefPubMed
45.
go back to reference Santus P, Sola A, Carlucci P, Fumagalli F, Di Gennaro A, Mondoni M, Carnini C, Centanni S, Sala A: Lipid peroxidation and 5-lipoxygenase activity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005, 171:838–843.CrossRefPubMed Santus P, Sola A, Carlucci P, Fumagalli F, Di Gennaro A, Mondoni M, Carnini C, Centanni S, Sala A: Lipid peroxidation and 5-lipoxygenase activity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2005, 171:838–843.CrossRefPubMed
46.
go back to reference Hasday JD, Bascom R, Costa JJ, Fitzgerald T, Dubin W: Bacterial endotoxin is an active component of cigarette smoke. Chest 1999, 115:829–835.CrossRefPubMed Hasday JD, Bascom R, Costa JJ, Fitzgerald T, Dubin W: Bacterial endotoxin is an active component of cigarette smoke. Chest 1999, 115:829–835.CrossRefPubMed
47.
go back to reference Michel O, Nagy AM, Schroeven M, Duchateau J, Neve J, Fondu P, Sergysels R: Dose-response relationship to inhaled endotoxin in normal subjects. Am J Respir Crit Care Med 1997, 156:1157–1164.CrossRefPubMed Michel O, Nagy AM, Schroeven M, Duchateau J, Neve J, Fondu P, Sergysels R: Dose-response relationship to inhaled endotoxin in normal subjects. Am J Respir Crit Care Med 1997, 156:1157–1164.CrossRefPubMed
48.
go back to reference Sandstrom T, Bjermer L, Rylander R: Lipopolysaccharide (LPS) inhalation in healthy subjects increases neutrophils, lymphocytes and fibronectin levels in bronchoalveolar lavage fluid. Eur Respir J 1992, 5:992–996.PubMed Sandstrom T, Bjermer L, Rylander R: Lipopolysaccharide (LPS) inhalation in healthy subjects increases neutrophils, lymphocytes and fibronectin levels in bronchoalveolar lavage fluid. Eur Respir J 1992, 5:992–996.PubMed
49.
go back to reference Roos-Engstrand E, Wallin A, Bucht A, Pourazar J, Sandstrom T, Blomberg A: Increased expression of p38 MAPK in human bronchial epithelium after lipopolysaccharide exposure. Eur Respir J 2005, 25:797–803.CrossRefPubMed Roos-Engstrand E, Wallin A, Bucht A, Pourazar J, Sandstrom T, Blomberg A: Increased expression of p38 MAPK in human bronchial epithelium after lipopolysaccharide exposure. Eur Respir J 2005, 25:797–803.CrossRefPubMed
50.
go back to reference Schwartz DA, Donham KJ, Olenchock SA, Popendorf WJ, Van Fossen DS, Burmeister LF, Merchant JA: Determinants of longitudinal changes in spirometric function among swine confinement operators and farmers. Am J Respir Crit Care Med 1995, 151:47–53.CrossRefPubMed Schwartz DA, Donham KJ, Olenchock SA, Popendorf WJ, Van Fossen DS, Burmeister LF, Merchant JA: Determinants of longitudinal changes in spirometric function among swine confinement operators and farmers. Am J Respir Crit Care Med 1995, 151:47–53.CrossRefPubMed
51.
go back to reference Vernooy JH, Dentener MA, Van Suylen RJ, Buurman WA, Wouters EF: Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am J Respir Cell Mol Biol 2002, 26:152–159.CrossRefPubMed Vernooy JH, Dentener MA, Van Suylen RJ, Buurman WA, Wouters EF: Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am J Respir Cell Mol Biol 2002, 26:152–159.CrossRefPubMed
Metadata
Title
Bronchial epithelial spheroids: an alternative culture model to investigate epithelium inflammation-mediated COPD
Authors
Gaetan Deslee
Sandra Dury
Jeanne M Perotin
Denise Al Alam
Fabien Vitry
Rachel Boxio
Sophie C Gangloff
Moncef Guenounou
François Lebargy
Abderrazzaq Belaaouaj
Publication date
01-12-2007
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2007
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-8-86

Other articles of this Issue 1/2007

Respiratory Research 1/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.