Skip to main content
Top
Published in: Allergy, Asthma & Clinical Immunology 1/2022

Open Access 01-12-2022 | Bronchial Asthma | Research

Identification of candidate aberrant differentially methylated/expressed genes in asthma

Authors: Zongling Wang, Lizhi Wang, Lina Dai, Yanan Wang, Erhong Li, Shuyuan An, Fengliang Wang, Dan Liu, Wen Pan

Published in: Allergy, Asthma & Clinical Immunology | Issue 1/2022

Login to get access

Abstract

Background

Asthma is an important non-communicable disease worldwide. DNA methylation is associated with the occurrence and development of asthma. We are aimed at assuring differential expressed genes (DEGs) modified by aberrantly methylated genes (DMGs) and pathways related to asthma by integrating bioinformatics analysis.

Methods

One mRNA dataset (GSE64913) and one gene methylation dataset (GSE137716) were selected from the Gene Expression Omnibus (GEO) database. Functional enrichment analysis was performed using GeneCodies 4.0 database. All gene expression matrices were analyzed by Gene set enrichment analysis (GSEA) software. STRING was applied to construct a protein-protein interaction (PPI) network to find the hub genes. Then, electronic validation was performed to verify the hub genes, followed by the evaluation of diagnostic value. Eventually, quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to detect the expression of hub genes.

Results

In total, 14 hypomethylated/high-expression genes and 10 hypermethylated/low-expression genes were obtained in asthma. Among them, 10 hub genes were identified in the PPI network. Functional analysis demonstrated that the differentially methylated/expressed genes were primarily associated with the lung development, cytosol and protein binding. Notably, HLA-DOA was enriched in asthma. FKBP5, WNT5A, TM4SF1, PDK4, EPAS1 and GMPR had potential diagnostic value for asthma.

Conclusion

The project explored the pathogenesis of asthma, which may provide a research basis for the prediction and the drug development of asthma.
Literature
1.
go back to reference Li Q, Li HX, Wang MF. Bioinformatics analysis of gene expression profile of upper airway in asthmatic patients. J Hubei Univ Med. 2020;39(02):118–23. Li Q, Li HX, Wang MF. Bioinformatics analysis of gene expression profile of upper airway in asthmatic patients. J Hubei Univ Med. 2020;39(02):118–23.
2.
go back to reference Mims JW. Asthma: definitions and pathophysiology. Int forum allergy rhinology. 2015;5(Suppl 1):2–6.CrossRef Mims JW. Asthma: definitions and pathophysiology. Int forum allergy rhinology. 2015;5(Suppl 1):2–6.CrossRef
3.
go back to reference Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pead. 2019;7:246.CrossRef Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pead. 2019;7:246.CrossRef
4.
go back to reference Eder W, Ege MJ, vM E. The asthma epidemic. N Engl J Med. 2006;23(21):2226–35.CrossRef Eder W, Ege MJ, vM E. The asthma epidemic. N Engl J Med. 2006;23(21):2226–35.CrossRef
5.
go back to reference BA H, XP Y, DK H, JT PZYZ, et al. Identification of candidate aberrantly methylated and differentially expressed genes in esophageal squamous cell carcinoma. Sci Rep. 2020;16(1):9735. BA H, XP Y, DK H, JT PZYZ, et al. Identification of candidate aberrantly methylated and differentially expressed genes in esophageal squamous cell carcinoma. Sci Rep. 2020;16(1):9735.
6.
go back to reference Li-ping W, Sha L, Yan S, Chong B. DNA methylation and asthma: recent progress. Acad J Sec Mil Med Univ. 2017;38(2):220. Li-ping W, Sha L, Yan S, Chong B. DNA methylation and asthma: recent progress. Acad J Sec Mil Med Univ. 2017;38(2):220.
7.
8.
go back to reference Karmaus W, Ziyab AH, Everson T, Holloway JW. Epigenetic mechanisms and models in the origins of asthma. Curr Opin Allergy Clin Immunol. 2013;13(1):63–9.CrossRef Karmaus W, Ziyab AH, Everson T, Holloway JW. Epigenetic mechanisms and models in the origins of asthma. Curr Opin Allergy Clin Immunol. 2013;13(1):63–9.CrossRef
9.
go back to reference Zhang MY, Ren W, Chen SS, Zhang Q, Li CX, Wan JX, et al. Exploring and bioinformatics analysis of differentially expressed genes in bronchial asthma. Zhonghua yi xue za zhi. 2021;101(46):3809–13. Zhang MY, Ren W, Chen SS, Zhang Q, Li CX, Wan JX, et al. Exploring and bioinformatics analysis of differentially expressed genes in bronchial asthma. Zhonghua yi xue za zhi. 2021;101(46):3809–13.
10.
go back to reference Mullassery D, Smith NP. Lung development. Semin Pediatr Surg. 2015;24(4):152–5.CrossRef Mullassery D, Smith NP. Lung development. Semin Pediatr Surg. 2015;24(4):152–5.CrossRef
11.
go back to reference Herriges M, Morrisey EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014;141(3):502–13.CrossRef Herriges M, Morrisey EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014;141(3):502–13.CrossRef
12.
go back to reference Moon SM, Gu H, Ryu HJ, Kim JJ, Kim HT, Han BG, et al. Identification of four novel HLA-DOA alleles, DOA*010106, DOA*0102, DOA*0103, and DOA*0104 N, by sequence-based typing*. Tissue Antigens. 2005;66(3):242–5.CrossRef Moon SM, Gu H, Ryu HJ, Kim JJ, Kim HT, Han BG, et al. Identification of four novel HLA-DOA alleles, DOA*010106, DOA*0102, DOA*0103, and DOA*0104 N, by sequence-based typing*. Tissue Antigens. 2005;66(3):242–5.CrossRef
13.
go back to reference Yucesoy B, Johnson VJ, Lummus ZL, Kashon ML, Rao M, Bannerman-Thompson H, et al. Genetic variants in the major histocompatibility complex class I and class II genes are associated with diisocyanate-induced asthma. J Occup Environ Med. 2014;56(4):382–7.CrossRef Yucesoy B, Johnson VJ, Lummus ZL, Kashon ML, Rao M, Bannerman-Thompson H, et al. Genetic variants in the major histocompatibility complex class I and class II genes are associated with diisocyanate-induced asthma. J Occup Environ Med. 2014;56(4):382–7.CrossRef
14.
go back to reference Naruse TK, Kawata H, Anzai T, Takashige N, Kagiya M, Nose Y, et al. Limited polymorphism in the HLA-DOA gene. Tissue Antigens. 1999;53(4 Pt 1):359–65.CrossRef Naruse TK, Kawata H, Anzai T, Takashige N, Kagiya M, Nose Y, et al. Limited polymorphism in the HLA-DOA gene. Tissue Antigens. 1999;53(4 Pt 1):359–65.CrossRef
15.
go back to reference Xiaobin C, Lisheng W, Jiaxi L, Zhengguang C. Progress in the application of Metabolomics in Children’s bronchial Asthma Research. Jilin J Chin Med. 2020;40 5. Xiaobin C, Lisheng W, Jiaxi L, Zhengguang C. Progress in the application of Metabolomics in Children’s bronchial Asthma Research. Jilin J Chin Med. 2020;40 5.
16.
go back to reference Sf A, Ha A, Jh Y, Hf G. The association of FKBP5 polymorphism with asthma susceptibility in asthmatic patients. J Basic Clin Physiol Pharm. 2021;32(4):479–84.CrossRef Sf A, Ha A, Jh Y, Hf G. The association of FKBP5 polymorphism with asthma susceptibility in asthmatic patients. J Basic Clin Physiol Pharm. 2021;32(4):479–84.CrossRef
17.
go back to reference Xiaojun G, Shuling WANG, al KLe. Metabolomics Research on TCM syndrome of Childhood Asthma. Chin Archives Traditional Chin Med. 2017;35(1):36–40. Xiaojun G, Shuling WANG, al KLe. Metabolomics Research on TCM syndrome of Childhood Asthma. Chin Archives Traditional Chin Med. 2017;35(1):36–40.
18.
go back to reference Asem MS, Buechler S, Wates RB, Miller DL, Stack MS. Wnt5a Signaling in Cancer. Cancers. 2016;8(9):79.CrossRef Asem MS, Buechler S, Wates RB, Miller DL, Stack MS. Wnt5a Signaling in Cancer. Cancers. 2016;8(9):79.CrossRef
19.
go back to reference Lin CY, Chin CH, Wu HH, Chen SH, Ho CW, Ko MT. Hubba: hub objects analyzer–a framework of interactome hubs identification for network biology. Nucleic Acids Res. 2008;36:438–43.CrossRef Lin CY, Chin CH, Wu HH, Chen SH, Ho CW, Ko MT. Hubba: hub objects analyzer–a framework of interactome hubs identification for network biology. Nucleic Acids Res. 2008;36:438–43.CrossRef
20.
go back to reference Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–2.CrossRef Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–2.CrossRef
21.
go back to reference Chin CS, Samanta MP. Global snapshot of a protein interaction network-a percolation based approach. Bioinformatics. 2003;19(18):2413–9.CrossRef Chin CS, Samanta MP. Global snapshot of a protein interaction network-a percolation based approach. Bioinformatics. 2003;19(18):2413–9.CrossRef
22.
go back to reference Sabidussi G. The centrality index of a graph. Psychometrika. 1966;31(4):581–603.CrossRef Sabidussi G. The centrality index of a graph. Psychometrika. 1966;31(4):581–603.CrossRef
23.
go back to reference Guan Q, Tian Y, Zhang Z, Zhang L, Zhao P, Li J. Identification of potential key genes in the Pathogenesis of Chronic Obstructive Pulmonary Disease through Bioinformatics Analysis. Front Genet. 2021;12:754569.CrossRef Guan Q, Tian Y, Zhang Z, Zhang L, Zhao P, Li J. Identification of potential key genes in the Pathogenesis of Chronic Obstructive Pulmonary Disease through Bioinformatics Analysis. Front Genet. 2021;12:754569.CrossRef
24.
go back to reference Zhou S, Lu H, Xiong M. Identifying Immune Cell infiltration and effective diagnostic biomarkers in rheumatoid arthritis by Bioinformatics Analysis. Front Immunol. 2021;12:726747.CrossRef Zhou S, Lu H, Xiong M. Identifying Immune Cell infiltration and effective diagnostic biomarkers in rheumatoid arthritis by Bioinformatics Analysis. Front Immunol. 2021;12:726747.CrossRef
25.
go back to reference Ma WQ, Sun XJ, Zhu Y, Liu NF. PDK4 promotes vascular calcification by interfering with autophagic activity and metabolic reprogramming. Cell Death Dis. 2020;11(11):991.CrossRef Ma WQ, Sun XJ, Zhu Y, Liu NF. PDK4 promotes vascular calcification by interfering with autophagic activity and metabolic reprogramming. Cell Death Dis. 2020;11(11):991.CrossRef
26.
go back to reference Jeong JY, Jeoung NH, Park KG, Lee IK. Transcriptional regulation of pyruvate dehydrogenase kinase. Diabetes metab J. 2012;36(5):328–35.CrossRef Jeong JY, Jeoung NH, Park KG, Lee IK. Transcriptional regulation of pyruvate dehydrogenase kinase. Diabetes metab J. 2012;36(5):328–35.CrossRef
27.
go back to reference Lee SJ, Jeong JY, Oh CJ, Park S, Kim JY, Kim HJ, et al. Pyruvate dehydrogenase kinase 4 promotes vascular calcification via SMAD1/5/8 phosphorylation. Sci Rep. 2015;5:16577.CrossRef Lee SJ, Jeong JY, Oh CJ, Park S, Kim JY, Kim HJ, et al. Pyruvate dehydrogenase kinase 4 promotes vascular calcification via SMAD1/5/8 phosphorylation. Sci Rep. 2015;5:16577.CrossRef
28.
go back to reference Thoudam T, Ha CM, Leem J, Chanda D, Park JS, Kim HJ, et al. PDK4 augments ER-Mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes. 2019;68(3):571–86.CrossRef Thoudam T, Ha CM, Leem J, Chanda D, Park JS, Kim HJ, et al. PDK4 augments ER-Mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes. 2019;68(3):571–86.CrossRef
29.
go back to reference Marchi S, Patergnani S, Pinton P. The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim Biophys Acta. 2014;1837(4):461–9.CrossRef Marchi S, Patergnani S, Pinton P. The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim Biophys Acta. 2014;1837(4):461–9.CrossRef
30.
go back to reference Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, et al. Autophagosomes form at ER-mitochondria contact sites. Nature. 2013;495(7441):389–93.CrossRef Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, et al. Autophagosomes form at ER-mitochondria contact sites. Nature. 2013;495(7441):389–93.CrossRef
31.
go back to reference Mostafa MM, Rider CF, Shah S, Traves SL, Gordon PMK, Miller-Larsson A, et al. Glucocorticoid-driven transcriptomes in human airway epithelial cells: commonalities, differences and functional insight from cell lines and primary cells. BMC Med Genomics. 2019;12(1):29.CrossRef Mostafa MM, Rider CF, Shah S, Traves SL, Gordon PMK, Miller-Larsson A, et al. Glucocorticoid-driven transcriptomes in human airway epithelial cells: commonalities, differences and functional insight from cell lines and primary cells. BMC Med Genomics. 2019;12(1):29.CrossRef
32.
go back to reference Gao Z, Yu F, Jia H, Ye Z, Yao S. FK506-binding protein 5 promotes the progression of papillary thyroid carcinoma. J Int Med Res. 2021;49(4):3000605211008325.CrossRef Gao Z, Yu F, Jia H, Ye Z, Yao S. FK506-binding protein 5 promotes the progression of papillary thyroid carcinoma. J Int Med Res. 2021;49(4):3000605211008325.CrossRef
33.
go back to reference Baughman G, Wiederrecht GJ, Campbell NF, Martin MM, Bourgeois S. FKBP51, a novel T-cell-specific immunophilin capable of calcineurin inhibition. Mol Cell Biol. 1995;15(8):4395–402.CrossRef Baughman G, Wiederrecht GJ, Campbell NF, Martin MM, Bourgeois S. FKBP51, a novel T-cell-specific immunophilin capable of calcineurin inhibition. Mol Cell Biol. 1995;15(8):4395–402.CrossRef
34.
go back to reference Gallo LI, Lagadari M, Piwien-Pilipuk G, Galigniana MD. The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress. J Biol Chem. 2011;286(34):30152–60.CrossRef Gallo LI, Lagadari M, Piwien-Pilipuk G, Galigniana MD. The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress. J Biol Chem. 2011;286(34):30152–60.CrossRef
35.
go back to reference Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating akt. Cancer Cell. 2009;16(3):259–66.CrossRef Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating akt. Cancer Cell. 2009;16(3):259–66.CrossRef
36.
go back to reference Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, et al. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J Allergy Clin Immunol. 2015;136(4):874–84.CrossRef Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, et al. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J Allergy Clin Immunol. 2015;136(4):874–84.CrossRef
37.
go back to reference U N, Konishi SB, Kondo A, Konopka M, Matsuzaki G. H, et al. Zbtb16 regulates social cognitive behaviors and neocortical development. Transl Psychiatry. 2021;11(1):242.CrossRef U N, Konishi SB, Kondo A, Konopka M, Matsuzaki G. H, et al. Zbtb16 regulates social cognitive behaviors and neocortical development. Transl Psychiatry. 2021;11(1):242.CrossRef
38.
go back to reference Suliman BA, Xu D, Williams BR. The promyelocytic leukemia zinc finger protein: two decades of molecular oncology. Front Oncol. 2012;2:74.CrossRef Suliman BA, Xu D, Williams BR. The promyelocytic leukemia zinc finger protein: two decades of molecular oncology. Front Oncol. 2012;2:74.CrossRef
39.
go back to reference Šeda O, Šedová L, Včelák J, Vaňková M, Liška F, Bendlová B. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res. 2017;66(Suppl 3):357-s65. Šeda O, Šedová L, Včelák J, Vaňková M, Liška F, Bendlová B. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res. 2017;66(Suppl 3):357-s65.
40.
go back to reference Leigh R, Mostafa MM, King EM, Rider CF, Shah S, Dumonceaux C, et al. An inhaled dose of budesonide induces genes involved in transcription and signaling in the human airways: enhancement of anti- and proinflammatory effector genes. Pharmacol Res Perspect. 2016;4(4):e00243.CrossRef Leigh R, Mostafa MM, King EM, Rider CF, Shah S, Dumonceaux C, et al. An inhaled dose of budesonide induces genes involved in transcription and signaling in the human airways: enhancement of anti- and proinflammatory effector genes. Pharmacol Res Perspect. 2016;4(4):e00243.CrossRef
41.
go back to reference Koopmans T, Hesse L, Nawijn MC, Kumawat K, Menzen MH, Bos ST, Smits R, Bakker ER, Van Den Berge M, Koppelman GH, Guryev V. Smooth-muscle-derived WNT5A augments allergen-induced airway remodelling and Th2 type inflammation. Sci Rep. 2020;10(1):6754.CrossRef Koopmans T, Hesse L, Nawijn MC, Kumawat K, Menzen MH, Bos ST, Smits R, Bakker ER, Van Den Berge M, Koppelman GH, Guryev V. Smooth-muscle-derived WNT5A augments allergen-induced airway remodelling and Th2 type inflammation. Sci Rep. 2020;10(1):6754.CrossRef
42.
go back to reference Smolich BD, McMahon JA, McMahon AP, Papkoff J. Wnt family proteins are secreted and associated with the cell surface. Mol Biol Cell. 1993;4(12):1267–75.CrossRef Smolich BD, McMahon JA, McMahon AP, Papkoff J. Wnt family proteins are secreted and associated with the cell surface. Mol Biol Cell. 1993;4(12):1267–75.CrossRef
43.
go back to reference Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423(6938):448–52.CrossRef Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423(6938):448–52.CrossRef
44.
go back to reference Wend P, Holland JD, Ziebold U, Birchmeier W. Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol. 2010;21(8):855–63.CrossRef Wend P, Holland JD, Ziebold U, Birchmeier W. Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol. 2010;21(8):855–63.CrossRef
45.
go back to reference van Amerongen R, Nusse R. Towards an integrated view of wnt signaling in development. Development. 2009;136(19):3205–14.CrossRef van Amerongen R, Nusse R. Towards an integrated view of wnt signaling in development. Development. 2009;136(19):3205–14.CrossRef
46.
go back to reference Kumawat K, Menzen MH, Bos IS, Baarsma HA, Borger P, Roth M, et al. Noncanonical WNT-5A signaling regulates TGF-β-induced extracellular matrix production by airway smooth muscle cells. FASEB J Off Publ Federation Am Soc Exp Biol. 2013;27(4):1631–43.CrossRef Kumawat K, Menzen MH, Bos IS, Baarsma HA, Borger P, Roth M, et al. Noncanonical WNT-5A signaling regulates TGF-β-induced extracellular matrix production by airway smooth muscle cells. FASEB J Off Publ Federation Am Soc Exp Biol. 2013;27(4):1631–43.CrossRef
47.
go back to reference Koopmans T, Kumawat K, Halayko AJ, Gosens R. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction. Sci Rep. 2016;6:30676.CrossRef Koopmans T, Kumawat K, Halayko AJ, Gosens R. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction. Sci Rep. 2016;6:30676.CrossRef
48.
go back to reference Choy DF, Modrek B, Abbas AR, Kummerfeld S, Clark HF, Wu LC, et al. Gene expression patterns of Th2 inflammation and intercellular communication in asthmatic airways. J Immunol . 2011;186(3):1861–9.CrossRef Choy DF, Modrek B, Abbas AR, Kummerfeld S, Clark HF, Wu LC, et al. Gene expression patterns of Th2 inflammation and intercellular communication in asthmatic airways. J Immunol . 2011;186(3):1861–9.CrossRef
49.
go back to reference Wu J, Fang J, Yang Z, Chen F, Liu J, Wang Y. Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation. J Clin Neurosci Off J Neurosurgical Soc Australasia. 2012;19(10):1428–32. Wu J, Fang J, Yang Z, Chen F, Liu J, Wang Y. Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation. J Clin Neurosci Off J Neurosurgical Soc Australasia. 2012;19(10):1428–32.
50.
go back to reference Wang SH, Xu F, Dang HX, Yang L. Genetic variations in the wnt signaling pathway affect lung function in asthma patients. Genet Mol Res: GMR. 2013;12(2):1829–33.CrossRef Wang SH, Xu F, Dang HX, Yang L. Genetic variations in the wnt signaling pathway affect lung function in asthma patients. Genet Mol Res: GMR. 2013;12(2):1829–33.CrossRef
Metadata
Title
Identification of candidate aberrant differentially methylated/expressed genes in asthma
Authors
Zongling Wang
Lizhi Wang
Lina Dai
Yanan Wang
Erhong Li
Shuyuan An
Fengliang Wang
Dan Liu
Wen Pan
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Allergy, Asthma & Clinical Immunology / Issue 1/2022
Electronic ISSN: 1710-1492
DOI
https://doi.org/10.1186/s13223-022-00744-5

Other articles of this Issue 1/2022

Allergy, Asthma & Clinical Immunology 1/2022 Go to the issue