Skip to main content
Top
Published in: Virology Journal 1/2023

Open Access 01-12-2023 | Bronchial Asthma | Comment

Asthma and COVID-19: a controversial relationship

Authors: Carlos A. Dounce-Cuevas, Angélica Flores-Flores, Mariana S. Bazán, Victor Portales-Rivera, Araceli A. Morelos-Ulíbarri, Blanca Bazán-Perkins

Published in: Virology Journal | Issue 1/2023

Login to get access

Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection induces a spectrum of clinical manifestations that depend on the immune response of the patient, i.e., from an asymptomatic form to an inflammatory response with multiorgan deterioration. In some cases, severe cases of SARS-CoV-2 are characterized by an excessive, persistent release of inflammatory mediators known as a cytokine storm. This phenomenon arises from an ineffective T helper (Th)-1 response, which is unable to control the infection and leads to a reinforcement of innate immunity, causing tissue damage. The evolution of the disease produced by SARS-CoV2, known as COVID-19, has been of interest in several research fields. Asthma patients have been reported to present highly variable outcomes due to the heterogeneity of the disease. For example, the Th2 response in patients with allergic asthma is capable of decreasing Th1 activation in COVID-19, preventing the onset of a cytokine storm; additionally, IL-33 released by damaged epithelium in the context of COVID-19 potentiates either Th1 or T2-high responses, a process that contributes to poor outcomes. IL-13, a T2-high inflammatory cytokine, decreases the expression of angiotensin converting enzyme-2 (ACE2) receptor, hindering SARS-CoV-2 entry; finally, poor outcomes have been observed in COVID-19 patients with severe neutrophilic asthma. In other contexts, the COVID-19 lockdown has had interesting effects on asthma epidemiology. The incidence of asthma in the most populated states in Mexico, including Tamaulipas, which has the highest asthma incidence in the country, showed similar tendencies independent of how strict the lockdown measures were in each state. As described worldwide for various diseases, a decrease in asthma cases was observed during the COVID-19 lockdown. This decrease was associated with a drop in acute respiratory infection cases. The drop in cases of various diseases, such as diabetes, hypertension or depression, observed in 2020 was restored in 2022, but not for asthma and acute respiratory infections. There were slight increases in asthma cases when in-person classes resumed. In conclusion, although many factors were involved in asthma outcomes during the pandemic, it seems that acute respiratory infection is intimately linked to asthma cases. Social distancing during remote learning, particularly school lockdown, appears to be an important cause of the decrease in cases.
Literature
1.
go back to reference Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: virology, biology and novel laboratory diagnosis. J Gene Med. 2021;23(2):e3303.CrossRefPubMedPubMedCentral Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: virology, biology and novel laboratory diagnosis. J Gene Med. 2021;23(2):e3303.CrossRefPubMedPubMedCentral
2.
go back to reference Paterson C, Davis D, Roche M, Bissett B, Roberts C, Turner M, et al. What are the long-term holistic health consequences of COVID-19 among survivors? An umbrella systematic review. J Med Virol. 2022;94(12):5653–68.CrossRefPubMed Paterson C, Davis D, Roche M, Bissett B, Roberts C, Turner M, et al. What are the long-term holistic health consequences of COVID-19 among survivors? An umbrella systematic review. J Med Virol. 2022;94(12):5653–68.CrossRefPubMed
4.
go back to reference Dos Santos AAC, Rodrigues LE, Alecrim-Zeza AL, de Araújo FL, Trettel CDS, Gimenes GM, et al. Molecular and cellular mechanisms involved in tissue-specific metabolic modulation by SARS-CoV-2. Front Microbiol. 2022;13:1037467.CrossRefPubMedPubMedCentral Dos Santos AAC, Rodrigues LE, Alecrim-Zeza AL, de Araújo FL, Trettel CDS, Gimenes GM, et al. Molecular and cellular mechanisms involved in tissue-specific metabolic modulation by SARS-CoV-2. Front Microbiol. 2022;13:1037467.CrossRefPubMedPubMedCentral
6.
go back to reference Kaur J, Mogulla S, Khan R, Krishnamoorthy G, Garg S. Transient cold agglutinins in a patient with COVID-19. Cureus. 2021;13(1):e12751.PubMedPubMedCentral Kaur J, Mogulla S, Khan R, Krishnamoorthy G, Garg S. Transient cold agglutinins in a patient with COVID-19. Cureus. 2021;13(1):e12751.PubMedPubMedCentral
7.
go back to reference Zhang J, Wang X, Jia X, Li J, Hu K, Chen G, et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect. 2020;26(6):767–72.CrossRefPubMedPubMedCentral Zhang J, Wang X, Jia X, Li J, Hu K, Chen G, et al. Risk factors for disease severity, unimprovement, and mortality in COVID-19 patients in Wuhan, China. Clin Microbiol Infect. 2020;26(6):767–72.CrossRefPubMedPubMedCentral
9.
go back to reference Dhar SK, Damodar S, Gujar S, Das M. IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: results from meta-analysis and regression. Heliyon. 2021;7(2):e06155.CrossRefPubMedPubMedCentral Dhar SK, Damodar S, Gujar S, Das M. IL-6 and IL-10 as predictors of disease severity in COVID-19 patients: results from meta-analysis and regression. Heliyon. 2021;7(2):e06155.CrossRefPubMedPubMedCentral
10.
go back to reference Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40.CrossRefPubMed Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol. 2018;233(9):6425–40.CrossRefPubMed
11.
go back to reference Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, et al. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med. 2021:100995. Komlósi ZI, van de Veen W, Kovács N, Szűcs G, Sokolowska M, O'Mahony L, et al. Cellular and molecular mechanisms of allergic asthma. Mol Aspects Med. 2021:100995.
12.
go back to reference Misra DP, Agarwal V. Th17.1 lymphocytes: emerging players in the orchestra of immune-mediated inflammatory diseases. Clin Rheumatol. 2022;41(8):2297–308.CrossRefPubMed Misra DP, Agarwal V. Th17.1 lymphocytes: emerging players in the orchestra of immune-mediated inflammatory diseases. Clin Rheumatol. 2022;41(8):2297–308.CrossRefPubMed
13.
go back to reference Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy. 2022;77(11):3267–92.CrossRefPubMed Maggi E, Parronchi P, Azzarone BG, Moretta L. A pathogenic integrated view explaining the different endotypes of asthma and allergic disorders. Allergy. 2022;77(11):3267–92.CrossRefPubMed
14.
go back to reference Nepolo EP, Nkambule BB, Dludla PV, Ndevahoma F, Nyambuya TM. Association between the type of allergen and T-helper 2 mediated inflammation in allergic reactions: a systematic review and a meta-analysis. Allergol Immunopathol (Madr). 2022;50(1):37–50.CrossRefPubMed Nepolo EP, Nkambule BB, Dludla PV, Ndevahoma F, Nyambuya TM. Association between the type of allergen and T-helper 2 mediated inflammation in allergic reactions: a systematic review and a meta-analysis. Allergol Immunopathol (Madr). 2022;50(1):37–50.CrossRefPubMed
15.
go back to reference Reddel HK, Bacharier LB, Bateman ED, Brightling CE, Brusselle GG, Buhl R, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur Respir J. 2022;59(1):17–35.CrossRef Reddel HK, Bacharier LB, Bateman ED, Brightling CE, Brusselle GG, Buhl R, et al. Global Initiative for Asthma Strategy 2021: executive summary and rationale for key changes. Eur Respir J. 2022;59(1):17–35.CrossRef
16.
go back to reference Liu S, Cao Y, Du T, Zhi Y. Prevalence of comorbid asthma and related outcomes in COVID-19: a systematic review and meta-analysis. J Allergy Clin Immunol Pract. 2021;9(2):693–701.CrossRefPubMed Liu S, Cao Y, Du T, Zhi Y. Prevalence of comorbid asthma and related outcomes in COVID-19: a systematic review and meta-analysis. J Allergy Clin Immunol Pract. 2021;9(2):693–701.CrossRefPubMed
17.
go back to reference Terry PD, Heidel RE, Dhand R. Asthma in adult patients with COVID-19. Prevalence and risk of severe disease. Am J Respir Crit Care Med. 2021;203(7):893–905.CrossRefPubMedPubMedCentral Terry PD, Heidel RE, Dhand R. Asthma in adult patients with COVID-19. Prevalence and risk of severe disease. Am J Respir Crit Care Med. 2021;203(7):893–905.CrossRefPubMedPubMedCentral
18.
go back to reference Caminati M, Vultaggio A, Matucci A, Senna G, Almerigogna F, Bagnasco D, et al. Asthma in a large COVID-19 cohort: prevalence, features, and determinants of COVID-19 disease severity. Respir Med. 2021;176:106261.CrossRefPubMed Caminati M, Vultaggio A, Matucci A, Senna G, Almerigogna F, Bagnasco D, et al. Asthma in a large COVID-19 cohort: prevalence, features, and determinants of COVID-19 disease severity. Respir Med. 2021;176:106261.CrossRefPubMed
19.
go back to reference Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016-35.e19.CrossRefPubMedPubMedCentral Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016-35.e19.CrossRefPubMedPubMedCentral
20.
go back to reference Bafadhel M, Faner R, Taillé C, Russell REK, Welte T, Barnes PJ, et al. Inhaled corticosteroids for the treatment of COVID-19. Eur Respir Rev. 2022;31(166). Bafadhel M, Faner R, Taillé C, Russell REK, Welte T, Barnes PJ, et al. Inhaled corticosteroids for the treatment of COVID-19. Eur Respir Rev. 2022;31(166).
21.
go back to reference Peters MC, Sajuthi S, Deford P, Christenson S, Rios CL, Montgomery MT, et al. COVID-19-related genes in sputum cells in asthma. Relationship to demographic features and corticosteroids. Am J Respir Crit Care Med. 2020;202(1):83–90.CrossRefPubMedPubMedCentral Peters MC, Sajuthi S, Deford P, Christenson S, Rios CL, Montgomery MT, et al. COVID-19-related genes in sputum cells in asthma. Relationship to demographic features and corticosteroids. Am J Respir Crit Care Med. 2020;202(1):83–90.CrossRefPubMedPubMedCentral
22.
go back to reference Lovinsky-Desir S, Deshpande DR, De A, Murray L, Stingone JA, Chan A, et al. Asthma among hospitalized patients with COVID-19 and related outcomes. J Allergy Clin Immunol. 2020;146(5):1027-34.e4.CrossRefPubMedPubMedCentral Lovinsky-Desir S, Deshpande DR, De A, Murray L, Stingone JA, Chan A, et al. Asthma among hospitalized patients with COVID-19 and related outcomes. J Allergy Clin Immunol. 2020;146(5):1027-34.e4.CrossRefPubMedPubMedCentral
23.
go back to reference Jackson DJ, Busse WW, Bacharier LB, Kattan M, O’Connor GT, Wood RA, et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol. 2020;146(1):203-6.e3.CrossRefPubMedPubMedCentral Jackson DJ, Busse WW, Bacharier LB, Kattan M, O’Connor GT, Wood RA, et al. Association of respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor ACE2. J Allergy Clin Immunol. 2020;146(1):203-6.e3.CrossRefPubMedPubMedCentral
24.
go back to reference Levings MK, Schrader JW. IL-4 inhibits the production of TNF-alpha and IL-12 by STAT6-dependent and -independent mechanisms. J Immunol. 1999;162(9):5224–9.CrossRefPubMed Levings MK, Schrader JW. IL-4 inhibits the production of TNF-alpha and IL-12 by STAT6-dependent and -independent mechanisms. J Immunol. 1999;162(9):5224–9.CrossRefPubMed
25.
go back to reference Rial MJ, Valverde M, Del Pozo V, González-Barcala FJ, Martínez-Rivera C, Muñoz X, et al. Clinical characteristics in 545 patients with severe asthma on biological treatment during the COVID-19 outbreak. J Allergy Clin Immunol Pract. 2021;9(1):487-9.e1.CrossRefPubMed Rial MJ, Valverde M, Del Pozo V, González-Barcala FJ, Martínez-Rivera C, Muñoz X, et al. Clinical characteristics in 545 patients with severe asthma on biological treatment during the COVID-19 outbreak. J Allergy Clin Immunol Pract. 2021;9(1):487-9.e1.CrossRefPubMed
26.
go back to reference Hanon S, Brusselle G, Deschampheleire M, Louis R, Michils A, Peché R, et al. COVID-19 and biologics in severe asthma: data from the Belgian Severe Asthma Registry. Eur Respir J. 2020;56(6). Hanon S, Brusselle G, Deschampheleire M, Louis R, Michils A, Peché R, et al. COVID-19 and biologics in severe asthma: data from the Belgian Severe Asthma Registry. Eur Respir J. 2020;56(6).
27.
go back to reference Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol. 2008;20(8):1019–30.CrossRefPubMed Smithgall MD, Comeau MR, Yoon BR, Kaufman D, Armitage R, Smith DE. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int Immunol. 2008;20(8):1019–30.CrossRefPubMed
28.
go back to reference Furci F, Murdaca G, Allegra A, Gammeri L, Senna G, Gangemi S. IL-33 and the cytokine storm in COVID-19: from a potential immunological relationship towards precision medicine. Int J Mol Sci. 2022;23(23). Furci F, Murdaca G, Allegra A, Gammeri L, Senna G, Gangemi S. IL-33 and the cytokine storm in COVID-19: from a potential immunological relationship towards precision medicine. Int J Mol Sci. 2022;23(23).
29.
go back to reference Habernau Mena A, García-Moguel I, de la Torre V, Gaspar M, Mugica V, Alvarado Izquierdo MI, Jimenez Blanco MA, et al. COVID-19 course in allergic asthma patients: a Spanish cohort analysis. J Asthma Allergy. 2022;15:257–64.CrossRefPubMedPubMedCentral Habernau Mena A, García-Moguel I, de la Torre V, Gaspar M, Mugica V, Alvarado Izquierdo MI, Jimenez Blanco MA, et al. COVID-19 course in allergic asthma patients: a Spanish cohort analysis. J Asthma Allergy. 2022;15:257–64.CrossRefPubMedPubMedCentral
30.
go back to reference Agondi RC, Menechino N, Marinho AKBB, Kalil J, Giavina-Bianchi P. Worsening of asthma control after COVID-19. Front Med (Lausanne). 2022;9:882665.CrossRefPubMed Agondi RC, Menechino N, Marinho AKBB, Kalil J, Giavina-Bianchi P. Worsening of asthma control after COVID-19. Front Med (Lausanne). 2022;9:882665.CrossRefPubMed
31.
go back to reference Roncati L, Bergonzini G, Lusenti B, Nasillo V, Paolini A, Zanelli G, et al. High density of IgG4-secreting plasma cells in the fibrotic tissue from a surgically resected tracheal ring impaired by complex subglottic stenosis post-tracheostomy as immune expression of a T. Ann Hematol. 2021;100(10):2659–60.CrossRefPubMed Roncati L, Bergonzini G, Lusenti B, Nasillo V, Paolini A, Zanelli G, et al. High density of IgG4-secreting plasma cells in the fibrotic tissue from a surgically resected tracheal ring impaired by complex subglottic stenosis post-tracheostomy as immune expression of a T. Ann Hematol. 2021;100(10):2659–60.CrossRefPubMed
33.
go back to reference Kermani NZ, Song WJ, Badi Y, Versi A, Guo Y, Sun K, et al. Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma. Respir Res. 2021;22(1):10.CrossRefPubMedPubMedCentral Kermani NZ, Song WJ, Badi Y, Versi A, Guo Y, Sun K, et al. Sputum ACE2, TMPRSS2 and FURIN gene expression in severe neutrophilic asthma. Respir Res. 2021;22(1):10.CrossRefPubMedPubMedCentral
34.
go back to reference Wang QS, Edahiro R, Namkoong H, Hasegawa T, Shirai Y, Sonehara K, et al. The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force. Nat Commun. 2022;13(1):4830.CrossRefPubMedPubMedCentral Wang QS, Edahiro R, Namkoong H, Hasegawa T, Shirai Y, Sonehara K, et al. The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force. Nat Commun. 2022;13(1):4830.CrossRefPubMedPubMedCentral
35.
go back to reference Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M, Nascimento DC, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12). Veras FP, Pontelli MC, Silva CM, Toller-Kawahisa JE, de Lima M, Nascimento DC, et al. SARS-CoV-2-triggered neutrophil extracellular traps mediate COVID-19 pathology. J Exp Med. 2020;217(12).
36.
go back to reference Shah SA, Quint JK, Sheikh A. Impact of COVID-19 pandemic on asthma exacerbations: retrospective cohort study of over 500,000 patients in a national English primary care database. Lancet Reg Health Eur. 2022;19:100428.CrossRefPubMedPubMedCentral Shah SA, Quint JK, Sheikh A. Impact of COVID-19 pandemic on asthma exacerbations: retrospective cohort study of over 500,000 patients in a national English primary care database. Lancet Reg Health Eur. 2022;19:100428.CrossRefPubMedPubMedCentral
37.
go back to reference de Boer G, Braunstahl GJ, Hendriks R, Tramper-Stranders G. Asthma exacerbation prevalence during the COVID-19 lockdown in a moderate-severe asthma cohort. BMJ Open Respir Res. 2021;8(1). de Boer G, Braunstahl GJ, Hendriks R, Tramper-Stranders G. Asthma exacerbation prevalence during the COVID-19 lockdown in a moderate-severe asthma cohort. BMJ Open Respir Res. 2021;8(1).
39.
go back to reference Noh JW, Lee WR, Kim LH, Cheon J, Kwon YD, Yoo KB. Influence of COVID-19-related interventions on the number of inpatients with acute viral respiratory infections: using interrupted time series analysis. Int J Environ Res Public Health. 2023;20(4). Noh JW, Lee WR, Kim LH, Cheon J, Kwon YD, Yoo KB. Influence of COVID-19-related interventions on the number of inpatients with acute viral respiratory infections: using interrupted time series analysis. Int J Environ Res Public Health. 2023;20(4).
40.
go back to reference Tydeman F, Pfeffer PE, Vivaldi G, Holt H, Talaei M, Jolliffe D, et al. Rebound in asthma exacerbations following relaxation of COVID-19 restrictions: a longitudinal population-based study (COVIDENCE UK). Thorax. 2022. Tydeman F, Pfeffer PE, Vivaldi G, Holt H, Talaei M, Jolliffe D, et al. Rebound in asthma exacerbations following relaxation of COVID-19 restrictions: a longitudinal population-based study (COVIDENCE UK). Thorax. 2022.
41.
go back to reference Larson PS, Espira L, Glenn BE, Larson MC, Crowe CS, Jang S, et al. Long-term PM. Int J Environ Res Public Health. 2022;19(5). Larson PS, Espira L, Glenn BE, Larson MC, Crowe CS, Jang S, et al. Long-term PM. Int J Environ Res Public Health. 2022;19(5).
42.
go back to reference Jolliffe DA, Camargo CA, Sluyter JD, Aglipay M, Aloia JF, Ganmaa D, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276–92.CrossRefPubMed Jolliffe DA, Camargo CA, Sluyter JD, Aglipay M, Aloia JF, Ganmaa D, et al. Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol. 2021;9(5):276–92.CrossRefPubMed
43.
go back to reference Shojaeefar E, Malih N, Rezaei N. The possible double-edged sword effects of vitamin D on COVID-19: a hypothesis. Cell Biol Int. 2021;45(1):54–7.CrossRefPubMed Shojaeefar E, Malih N, Rezaei N. The possible double-edged sword effects of vitamin D on COVID-19: a hypothesis. Cell Biol Int. 2021;45(1):54–7.CrossRefPubMed
44.
go back to reference Steinman JB, Lum FM, Ho PP, Kaminski N, Steinman L. Reduced development of COVID-19 in children reveals molecular checkpoints gating pathogenesis illuminating potential therapeutics. Proc Natl Acad Sci USA. 2020;117(40):24620–6.CrossRefPubMedPubMedCentral Steinman JB, Lum FM, Ho PP, Kaminski N, Steinman L. Reduced development of COVID-19 in children reveals molecular checkpoints gating pathogenesis illuminating potential therapeutics. Proc Natl Acad Sci USA. 2020;117(40):24620–6.CrossRefPubMedPubMedCentral
45.
go back to reference Olsen SJ, Winn AK, Budd AP, Prill MM, Steel J, Midgley CM, et al. Changes in influenza and other respiratory virus activity during the COVID-19 pandemic-United States, 2020–2021. Am J Transplant. 2021;21(10):3481–6.CrossRefPubMed Olsen SJ, Winn AK, Budd AP, Prill MM, Steel J, Midgley CM, et al. Changes in influenza and other respiratory virus activity during the COVID-19 pandemic-United States, 2020–2021. Am J Transplant. 2021;21(10):3481–6.CrossRefPubMed
46.
go back to reference Urbani F, Cometa M, Martelli C, Santoli F, Rana R, Ursitti A, et al. Update on virus-induced asthma exacerbations. Expert Rev Clin Immunol. 2023:1–14. Urbani F, Cometa M, Martelli C, Santoli F, Rana R, Ursitti A, et al. Update on virus-induced asthma exacerbations. Expert Rev Clin Immunol. 2023:1–14.
48.
go back to reference Contoli M, Ito K, Padovani A, Poletti D, Marku B, Edwards MR, et al. Th2 cytokines impair innate immune responses to rhinovirus in respiratory epithelial cells. Allergy. 2015;70(8):910–20.CrossRefPubMed Contoli M, Ito K, Padovani A, Poletti D, Marku B, Edwards MR, et al. Th2 cytokines impair innate immune responses to rhinovirus in respiratory epithelial cells. Allergy. 2015;70(8):910–20.CrossRefPubMed
49.
go back to reference Durrani SR, Montville DJ, Pratt AS, Sahu S, DeVries MK, Rajamanickam V, et al. Innate immune responses to rhinovirus are reduced by the high-affinity IgE receptor in allergic asthmatic children. J Allergy Clin Immunol. 2012;130(2):489–95.CrossRefPubMedPubMedCentral Durrani SR, Montville DJ, Pratt AS, Sahu S, DeVries MK, Rajamanickam V, et al. Innate immune responses to rhinovirus are reduced by the high-affinity IgE receptor in allergic asthmatic children. J Allergy Clin Immunol. 2012;130(2):489–95.CrossRefPubMedPubMedCentral
50.
go back to reference Lynch JP, Werder RB, Simpson J, Loh Z, Zhang V, Haque A, et al. Aeroallergen-induced IL-33 predisposes to respiratory virus-induced asthma by dampening antiviral immunity. J Allergy Clin Immunol. 2016;138(5):1326–37.CrossRefPubMed Lynch JP, Werder RB, Simpson J, Loh Z, Zhang V, Haque A, et al. Aeroallergen-induced IL-33 predisposes to respiratory virus-induced asthma by dampening antiviral immunity. J Allergy Clin Immunol. 2016;138(5):1326–37.CrossRefPubMed
51.
go back to reference Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med. 2005;201(6):937–47.CrossRefPubMedPubMedCentral Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med. 2005;201(6):937–47.CrossRefPubMedPubMedCentral
Metadata
Title
Asthma and COVID-19: a controversial relationship
Authors
Carlos A. Dounce-Cuevas
Angélica Flores-Flores
Mariana S. Bazán
Victor Portales-Rivera
Araceli A. Morelos-Ulíbarri
Blanca Bazán-Perkins
Publication date
01-12-2023
Publisher
BioMed Central
Published in
Virology Journal / Issue 1/2023
Electronic ISSN: 1743-422X
DOI
https://doi.org/10.1186/s12985-023-02174-0

Other articles of this Issue 1/2023

Virology Journal 1/2023 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.