Skip to main content
Top
Published in: Journal of Translational Medicine 1/2022

Open Access 01-12-2022 | Breast Cancer | Research

Metabolomic profiles of metformin in breast cancer survivors: a pooled analysis of plasmas from two randomized placebo-controlled trials

Authors: Federica Bellerba, Anastasia Chrysovalantou Chatziioannou, Paniz Jasbi, Nivonirina Robinot, Pekka Keski-Rahkonen, Amarine Trolat, Béatrice Vozar, Sheri J. Hartman, Augustin Scalbert, Bernardo Bonanni, Harriet Johansson, Dorothy D. Sears, Sara Gandini

Published in: Journal of Translational Medicine | Issue 1/2022

Login to get access

Abstract

Background

Obesity is a major health concern for breast cancer survivors, being associated with high recurrence and reduced efficacy during cancer treatment. Metformin treatment is associated with reduced breast cancer incidence, recurrence and mortality. To better understand the underlying mechanisms through which metformin may reduce recurrence, we aimed to conduct metabolic profiling of overweight/obese breast cancer survivors before and after metformin treatment.

Methods

Fasting plasma samples from 373 overweight or obese breast cancer survivors randomly assigned to metformin (n = 194) or placebo (n = 179) administration were collected at baseline, after 6 months (Reach For Health trial), and after 12 months (MetBreCS trial). Archival samples were concurrently analyzed using three complementary methods: untargeted LC–QTOF-MS metabolomics, targeted LC–MS metabolomics (AbsoluteIDQ p180, Biocrates), and gas chromatography phospholipid fatty acid assay. Multivariable linear regression models and family-wise error correction were used to identify metabolites that significantly changed after metformin treatment.

Results

Participants (n = 352) with both baseline and study end point samples available were included in the analysis. After adjusting for confounders such as study center, age, body mass index and false discovery rate, we found that metformin treatment was significantly associated with decreased levels of citrulline, arginine, tyrosine, caffeine, paraxanthine, and theophylline, and increased levels of leucine, isoleucine, proline, 3-methyl-2-oxovalerate, 4-methyl-2-oxovalerate, alanine and indoxyl-sulphate. Long-chain unsaturated phosphatidylcholines (PC ae C36:4, PC ae C38:5, PC ae C36:5 and PC ae C38:6) were significantly decreased with the metformin treatment, as were phospholipid-derived long-chain n-6 fatty acids. The metabolomic profiles of metformin treatment suggest change in specific biochemical pathways known to impair cancer cell growth including activation of CYP1A2, alterations in fatty acid desaturase activity, and altered metabolism of specific amino acids, including impaired branched chain amino acid catabolism.

Conclusions

Our results in overweight breast cancer survivors identify new metabolic effects of metformin treatment that may mechanistically contribute to reduced risk of recurrence in this population and reduced obesity-related cancer risk reported in observational studies.

Trial registration

ClinicalTrials.gov identifier: NCT01302379 and EudraCT Protocol #: 2015-001001-14.
Appendix
Available only for authorised users
Literature
7.
go back to reference Madiraju AK, Qiu Y, Perry RJ, Rahimi Y, Zhang X-M, Zhang D, Camporez J-PG, Cline GW, Butrico GM, Kemp BE, Casals G, Steinberg GR, Vatner DF, Petersen KF, Shulman GI. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med. 2018;24:1384–94. https://doi.org/10.1038/s41591-018-0125-4.CrossRef Madiraju AK, Qiu Y, Perry RJ, Rahimi Y, Zhang X-M, Zhang D, Camporez J-PG, Cline GW, Butrico GM, Kemp BE, Casals G, Steinberg GR, Vatner DF, Petersen KF, Shulman GI. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat Med. 2018;24:1384–94. https://​doi.​org/​10.​1038/​s41591-018-0125-4.CrossRef
9.
go back to reference Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez J-P, Lee H-Y, Cline GW, Samuel VT, Kibbey RG, Shulman GI. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542–6. https://doi.org/10.1038/nature13270.CrossRef Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez J-P, Lee H-Y, Cline GW, Samuel VT, Kibbey RG, Shulman GI. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542–6. https://​doi.​org/​10.​1038/​nature13270.CrossRef
10.
go back to reference Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, Liu J, Deng Y, Xia J, Chen B, Zhang S, Yun C, Lian G, Zhang X, Zhang H, Bisson WH, Shi J, Gao X, Ge P, Liu C, Krausz KW, Nichols RG, Cai J, Rimal B, Patterson AD, Wang X, Gonzalez FJ, Jiang C. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24:1919–29. https://doi.org/10.1038/s41591-018-0222-4.CrossRef Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, Liu J, Deng Y, Xia J, Chen B, Zhang S, Yun C, Lian G, Zhang X, Zhang H, Bisson WH, Shi J, Gao X, Ge P, Liu C, Krausz KW, Nichols RG, Cai J, Rimal B, Patterson AD, Wang X, Gonzalez FJ, Jiang C. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24:1919–29. https://​doi.​org/​10.​1038/​s41591-018-0222-4.CrossRef
11.
go back to reference Patterson RE, Marinac CR, Sears DD, Kerr J, Hartman SJ, Cadmus-Bertram L, Villaseñor A, Flatt SW, Godbole S, Li H, Laughlin GA, Oratowski-Coleman J, Parker BA, Natarajan L. The effects of metformin and weight loss on biomarkers associated with breast cancer outcomes. JNCI J Natl Cancer Inst. 2018;110:1239–47. https://doi.org/10.1093/jnci/djy040.CrossRef Patterson RE, Marinac CR, Sears DD, Kerr J, Hartman SJ, Cadmus-Bertram L, Villaseñor A, Flatt SW, Godbole S, Li H, Laughlin GA, Oratowski-Coleman J, Parker BA, Natarajan L. The effects of metformin and weight loss on biomarkers associated with breast cancer outcomes. JNCI J Natl Cancer Inst. 2018;110:1239–47. https://​doi.​org/​10.​1093/​jnci/​djy040.CrossRef
12.
go back to reference Patterson RE, Marinac CR, Natarajan L, Hartman SJ, Cadmus-Bertram L, Flatt SW, Li H, Parker B, Oratowski-Coleman J, Villaseñor A, Godbole S, Kerr J. Recruitment strategies, design, and participant characteristics in a trial of weight-loss and metformin in breast cancer survivors. Contemp Clin Trials. 2016;47:64–71. https://doi.org/10.1016/j.cct.2015.12.009.CrossRef Patterson RE, Marinac CR, Natarajan L, Hartman SJ, Cadmus-Bertram L, Flatt SW, Li H, Parker B, Oratowski-Coleman J, Villaseñor A, Godbole S, Kerr J. Recruitment strategies, design, and participant characteristics in a trial of weight-loss and metformin in breast cancer survivors. Contemp Clin Trials. 2016;47:64–71. https://​doi.​org/​10.​1016/​j.​cct.​2015.​12.​009.CrossRef
13.
go back to reference Geijsen AJMR, Brezina S, Keski-Rahkonen P, Baierl A, Bachleitner-Hofmann T, Bergmann MM, Boehm J, Brenner H, Chang-Claude J, van Duijnhoven FJB, Gigic B, Gumpenberger T, Hofer P, Hoffmeister M, Holowatyj AN, Karner-Hanusch J, Kok DE, Leeb G, Ulvik A, Robinot N, Ose J, Stift A, Schrotz-King P, Ulrich AB, Ueland PM, Kampman E, Scalbert A, Habermann N, Gsur A, Ulrich CM. Plasma metabolites associated with colorectal cancer: a discovery-replication strategy. Int J Cancer. 2019;145:1221–31. https://doi.org/10.1002/ijc.32146.CrossRef Geijsen AJMR, Brezina S, Keski-Rahkonen P, Baierl A, Bachleitner-Hofmann T, Bergmann MM, Boehm J, Brenner H, Chang-Claude J, van Duijnhoven FJB, Gigic B, Gumpenberger T, Hofer P, Hoffmeister M, Holowatyj AN, Karner-Hanusch J, Kok DE, Leeb G, Ulvik A, Robinot N, Ose J, Stift A, Schrotz-King P, Ulrich AB, Ueland PM, Kampman E, Scalbert A, Habermann N, Gsur A, Ulrich CM. Plasma metabolites associated with colorectal cancer: a discovery-replication strategy. Int J Cancer. 2019;145:1221–31. https://​doi.​org/​10.​1002/​ijc.​32146.CrossRef
15.
go back to reference Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A. HMDB 4.0: the human metabolome database for 2018. Nucl Acids Res. 2018;46:D608–17. https://doi.org/10.1093/nar/gkx1089.CrossRef Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, Sayeeda Z, Lo E, Assempour N, Berjanskii M, Singhal S, Arndt D, Liang Y, Badran H, Grant J, Serra-Cayuela A, Liu Y, Mandal R, Neveu V, Pon A, Knox C, Wilson M, Manach C, Scalbert A. HMDB 4.0: the human metabolome database for 2018. Nucl Acids Res. 2018;46:D608–17. https://​doi.​org/​10.​1093/​nar/​gkx1089.CrossRef
17.
go back to reference Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabol Off J Metabolomic Soc. 2007;3:211–21. https://doi.org/10.1007/s11306-007-0082-2.CrossRef Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, Fan TW-M, Fiehn O, Goodacre R, Griffin JL, Hankemeier T, Hardy N, Harnly J, Higashi R, Kopka J, Lane AN, Lindon JC, Marriott P, Nicholls AW, Reily MD, Thaden JJ, Viant MR. Proposed minimum reporting standards for chemical analysis Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabol Off J Metabolomic Soc. 2007;3:211–21. https://​doi.​org/​10.​1007/​s11306-007-0082-2.CrossRef
18.
go back to reference Chajès V, Assi N, Biessy C, Ferrari P, Rinaldi S, Slimani N, Lenoir GM, Baglietto L, His M, Boutron-Ruault MC, Trichopoulou A, Lagiou P, Katsoulis M, Kaaks R, Kühn T, Panico S, Pala V, Masala G, Bueno-de-Mesquita HB, Peeters PH, van Gils C, Hjartåker A, Standahl Olsen K, Borgund Barnung R, Barricarte A, Redondo-Sanchez D, Menéndez V, Amiano P, Wennberg M, Key T, Khaw KT, Merritt MA, Riboli E, Gunter MJ, Romieu I. A prospective evaluation of plasma phospholipid fatty acids and breast cancer risk in the EPIC study. Ann Oncol Off J Eur Soc Med Oncol. 2017;28:2836–42. https://doi.org/10.1093/annonc/mdx482.CrossRef Chajès V, Assi N, Biessy C, Ferrari P, Rinaldi S, Slimani N, Lenoir GM, Baglietto L, His M, Boutron-Ruault MC, Trichopoulou A, Lagiou P, Katsoulis M, Kaaks R, Kühn T, Panico S, Pala V, Masala G, Bueno-de-Mesquita HB, Peeters PH, van Gils C, Hjartåker A, Standahl Olsen K, Borgund Barnung R, Barricarte A, Redondo-Sanchez D, Menéndez V, Amiano P, Wennberg M, Key T, Khaw KT, Merritt MA, Riboli E, Gunter MJ, Romieu I. A prospective evaluation of plasma phospholipid fatty acids and breast cancer risk in the EPIC study. Ann Oncol Off J Eur Soc Med Oncol. 2017;28:2836–42. https://​doi.​org/​10.​1093/​annonc/​mdx482.CrossRef
19.
go back to reference Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol. 1996;58:267–88. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Methodol. 1996;58:267–88.
22.
go back to reference Safai N, Suvitaival T, Ali A, Spégel P, Al-Majdoub M, Carstensen B, Vestergaard H, Ridderstråle M. CIMT Trial Group, effect of metformin on plasma metabolite profile in the Copenhagen Insulin and Metformin Therapy (CIMT) trial. Diabet Med J Br Diabet Assoc. 2018;35:944–53. https://doi.org/10.1111/dme.13636.CrossRef Safai N, Suvitaival T, Ali A, Spégel P, Al-Majdoub M, Carstensen B, Vestergaard H, Ridderstråle M. CIMT Trial Group, effect of metformin on plasma metabolite profile in the Copenhagen Insulin and Metformin Therapy (CIMT) trial. Diabet Med J Br Diabet Assoc. 2018;35:944–53. https://​doi.​org/​10.​1111/​dme.​13636.CrossRef
25.
go back to reference Sonnet DS, O’Leary MN, Gutierrez MA, Nguyen SM, Mateen S, Hsu Y, Mitchell KP, Lopez AJ, Vockley J, Kennedy BK, Ramanathan A. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD. Sci Rep. 2016;6:28775. https://doi.org/10.1038/srep28775.CrossRef Sonnet DS, O’Leary MN, Gutierrez MA, Nguyen SM, Mateen S, Hsu Y, Mitchell KP, Lopez AJ, Vockley J, Kennedy BK, Ramanathan A. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD. Sci Rep. 2016;6:28775. https://​doi.​org/​10.​1038/​srep28775.CrossRef
29.
go back to reference Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, Verfaillie C, Grünewald TGP, Fendt S-M. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 2017;8:15267. https://doi.org/10.1038/ncomms15267.CrossRef Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, Verfaillie C, Grünewald TGP, Fendt S-M. Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun. 2017;8:15267. https://​doi.​org/​10.​1038/​ncomms15267.CrossRef
32.
go back to reference Arrieta O, Barrón F, Padilla M-ÁS, Avilés-Salas A, Ramírez-Tirado LA, Arguelles Jiménez MJ, Vergara E, Zatarain-Barrón ZL, Hernández-Pedro N, Cardona AF, Cruz-Rico G, Barrios-Bernal P, Yamamoto Ramos M, Rosell R. Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol. 2019;5:e192553. https://doi.org/10.1001/jamaoncol.2019.2553.CrossRef Arrieta O, Barrón F, Padilla M-ÁS, Avilés-Salas A, Ramírez-Tirado LA, Arguelles Jiménez MJ, Vergara E, Zatarain-Barrón ZL, Hernández-Pedro N, Cardona AF, Cruz-Rico G, Barrios-Bernal P, Yamamoto Ramos M, Rosell R. Effect of metformin plus tyrosine kinase inhibitors compared with tyrosine kinase inhibitors alone in patients with epidermal growth factor receptor-mutated lung adenocarcinoma: a phase 2 randomized clinical trial. JAMA Oncol. 2019;5:e192553. https://​doi.​org/​10.​1001/​jamaoncol.​2019.​2553.CrossRef
39.
40.
go back to reference Xu T, Brandmaier S, Messias AC, Herder C, Draisma HHM, Demirkan A, Yu Z, Ried JS, Haller T, Heier M, Campillos M, Fobo G, Stark R, Holzapfel C, Adam J, Chi S, Rotter M, Panni T, Quante AS, He Y, Prehn C, Roemisch-Margl W, Kastenmüller G, Willemsen G, Pool R, Kasa K, van Dijk KW, Hankemeier T, Meisinger C, Thorand B, Ruepp A, Hrabé de Angelis M, Li Y, Wichmann H-E, Stratmann B, Strauch K, Metspalu A, Gieger C, Suhre K, Adamski J, Illig T, Rathmann W, Roden M, Peters A, van Duijn CM, Boomsma DI, Meitinger T, Wang-Sattler R. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diabetes Care. 2015;38:1858–67. https://doi.org/10.2337/dc15-0658.CrossRef Xu T, Brandmaier S, Messias AC, Herder C, Draisma HHM, Demirkan A, Yu Z, Ried JS, Haller T, Heier M, Campillos M, Fobo G, Stark R, Holzapfel C, Adam J, Chi S, Rotter M, Panni T, Quante AS, He Y, Prehn C, Roemisch-Margl W, Kastenmüller G, Willemsen G, Pool R, Kasa K, van Dijk KW, Hankemeier T, Meisinger C, Thorand B, Ruepp A, Hrabé de Angelis M, Li Y, Wichmann H-E, Stratmann B, Strauch K, Metspalu A, Gieger C, Suhre K, Adamski J, Illig T, Rathmann W, Roden M, Peters A, van Duijn CM, Boomsma DI, Meitinger T, Wang-Sattler R. Effects of metformin on metabolite profiles and LDL cholesterol in patients with type 2 diabetes. Diabetes Care. 2015;38:1858–67. https://​doi.​org/​10.​2337/​dc15-0658.CrossRef
41.
go back to reference Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost H-G, Fritsche A, Häring H-U, Hrabě de Angelis M, Peters A, Roden M, Prehn C, Wang-Sattler R, Illig T, Schulze MB, Adamski J, Boeing H, Pischon T. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–48. https://doi.org/10.2337/db12-0495.CrossRef Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost H-G, Fritsche A, Häring H-U, Hrabě de Angelis M, Peters A, Roden M, Prehn C, Wang-Sattler R, Illig T, Schulze MB, Adamski J, Boeing H, Pischon T. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–48. https://​doi.​org/​10.​2337/​db12-0495.CrossRef
44.
48.
go back to reference Azrad M, Zhang K, Vollmer RT, Madden J, Polascik TJ, Snyder DC, Ruffin MT, Moul JW, Brenner D, Hardy RW, Demark-Wahnefried W. Prostatic alpha-linolenic acid (ALA) is positively associated with aggressive prostate cancer: a relationship which may depend on genetic variation in ALA metabolism. PLoS ONE. 2012;7:e53104. https://doi.org/10.1371/journal.pone.0053104.CrossRef Azrad M, Zhang K, Vollmer RT, Madden J, Polascik TJ, Snyder DC, Ruffin MT, Moul JW, Brenner D, Hardy RW, Demark-Wahnefried W. Prostatic alpha-linolenic acid (ALA) is positively associated with aggressive prostate cancer: a relationship which may depend on genetic variation in ALA metabolism. PLoS ONE. 2012;7:e53104. https://​doi.​org/​10.​1371/​journal.​pone.​0053104.CrossRef
52.
go back to reference Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23:850–8. https://doi.org/10.1038/nm.4345.CrossRef Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, Ståhlman M, Olsson LM, Serino M, Planas-Fèlix M, Xifra G, Mercader JM, Torrents D, Burcelin R, Ricart W, Perkins R, Fernàndez-Real JM, Bäckhed F. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23:850–8. https://​doi.​org/​10.​1038/​nm.​4345.CrossRef
62.
go back to reference Kotsopoulos J, Ghadirian P, El-Sohemy A, Lynch HT, Snyder C, Daly M, Domchek S, Randall S, Karlan B, Zhang P, Zhang S, Sun P, Narod SA. The CYP1A2 genotype modifies the association between coffee consumption and breast cancer risk among BRCA1 mutation carriers. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2007;16:912–6. https://doi.org/10.1158/1055-9965.EPI-06-1074.CrossRef Kotsopoulos J, Ghadirian P, El-Sohemy A, Lynch HT, Snyder C, Daly M, Domchek S, Randall S, Karlan B, Zhang P, Zhang S, Sun P, Narod SA. The CYP1A2 genotype modifies the association between coffee consumption and breast cancer risk among BRCA1 mutation carriers. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2007;16:912–6. https://​doi.​org/​10.​1158/​1055-9965.​EPI-06-1074.CrossRef
Metadata
Title
Metabolomic profiles of metformin in breast cancer survivors: a pooled analysis of plasmas from two randomized placebo-controlled trials
Authors
Federica Bellerba
Anastasia Chrysovalantou Chatziioannou
Paniz Jasbi
Nivonirina Robinot
Pekka Keski-Rahkonen
Amarine Trolat
Béatrice Vozar
Sheri J. Hartman
Augustin Scalbert
Bernardo Bonanni
Harriet Johansson
Dorothy D. Sears
Sara Gandini
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2022
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03809-6

Other articles of this Issue 1/2022

Journal of Translational Medicine 1/2022 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.