Skip to main content
Top
Published in: Breast Cancer Research 1/2022

Open Access 01-12-2022 | Breast Cancer | Review

Studies of parenchymal texture added to mammographic breast density and risk of breast cancer: a systematic review of the methods used in the literature

Authors: Akila Anandarajah, Yongzhen Chen, Graham A. Colditz, Angela Hardi, Carolyn Stoll, Shu Jiang

Published in: Breast Cancer Research | Issue 1/2022

Login to get access

Abstract

This systematic review aimed to assess the methods used to classify mammographic breast parenchymal features in relation to the prediction of future breast cancer. The databases including Medline (Ovid) 1946-, Embase.com 1947-, CINAHL Plus 1937-, Scopus 1823-, Cochrane Library (including CENTRAL), and Clinicaltrials.gov were searched through October 2021 to extract published articles in English describing the relationship of parenchymal texture features with the risk of breast cancer. Twenty-eight articles published since 2016 were included in the final review. The identification of parenchymal texture features varied from using a predefined list to machine-driven identification. A reduction in the number of features chosen for subsequent analysis in relation to cancer incidence then varied across statistical approaches and machine learning methods. The variation in approach and number of features identified for inclusion in analysis precluded generating a quantitative summary or meta-analysis of the value of these features to improve predicting risk of future breast cancers. This updated overview of the state of the art revealed research gaps; based on these, we provide recommendations for future studies using parenchymal features for mammogram images to make use of accumulating image data, and external validation of prediction models that extend to 5 and 10 years to guide clinical risk management. Following these recommendations could enhance the applicability of models, helping improve risk classification and risk prediction for women to tailor screening and prevention strategies to the level of risk.
Appendix
Available only for authorised users
Literature
1.
go back to reference van Ravesteyn NT, van Lier L, Schechter CB, Ekwueme DU, Royalty J, Miller JW, et al. Transition from film to digital mammography: impact for breast cancer screening through the national breast and cervical cancer early detection program. Am J Prev Med. 2015;48(5):535–42.CrossRef van Ravesteyn NT, van Lier L, Schechter CB, Ekwueme DU, Royalty J, Miller JW, et al. Transition from film to digital mammography: impact for breast cancer screening through the national breast and cervical cancer early detection program. Am J Prev Med. 2015;48(5):535–42.CrossRef
2.
go back to reference Hopper JL, Nguyen TL, Schmidt DF, Makalic E, Song YM, Sung J, et al. Going beyond conventional mammographic density to discover novel mammogram-based predictors of breast cancer risk. J Clin Med. 2020;9(3):627.CrossRef Hopper JL, Nguyen TL, Schmidt DF, Makalic E, Song YM, Sung J, et al. Going beyond conventional mammographic density to discover novel mammogram-based predictors of breast cancer risk. J Clin Med. 2020;9(3):627.CrossRef
3.
go back to reference Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih YC, et al. Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society. JAMA. 2015;314(15):1599–614.CrossRef Oeffinger KC, Fontham ET, Etzioni R, Herzig A, Michaelson JS, Shih YC, et al. Breast cancer screening for women at average risk: 2015 guideline update from the American Cancer Society. JAMA. 2015;314(15):1599–614.CrossRef
4.
go back to reference Siu AL, Force USPST. Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2016;164(4):279–96.CrossRef Siu AL, Force USPST. Screening for breast cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2016;164(4):279–96.CrossRef
5.
go back to reference Qaseem A, Lin JS, Mustafa RA, Horwitch CA, Wilt TJ, Clinical Guidelines Committee of the American College of P, et al. Screening for breast cancer in average-risk women: a guidance statement from the American College of Physicians. Ann Intern Med. 2019;170(8):547–60.CrossRef Qaseem A, Lin JS, Mustafa RA, Horwitch CA, Wilt TJ, Clinical Guidelines Committee of the American College of P, et al. Screening for breast cancer in average-risk women: a guidance statement from the American College of Physicians. Ann Intern Med. 2019;170(8):547–60.CrossRef
6.
go back to reference Bevers TB, Ward JH, Arun BK, Colditz GA, Cowan KH, Daly MB, et al. Breast cancer risk reduction, Version 2.2015. J Natl Compr Cancer Netw. 2015;13(7):880–915.CrossRef Bevers TB, Ward JH, Arun BK, Colditz GA, Cowan KH, Daly MB, et al. Breast cancer risk reduction, Version 2.2015. J Natl Compr Cancer Netw. 2015;13(7):880–915.CrossRef
7.
go back to reference Louro J, Posso M, Hilton Boon M, Roman M, Domingo L, Castells X, et al. A systematic review and quality assessment of individualised breast cancer risk prediction models. Br J Cancer. 2019;121(1):76–85.CrossRef Louro J, Posso M, Hilton Boon M, Roman M, Domingo L, Castells X, et al. A systematic review and quality assessment of individualised breast cancer risk prediction models. Br J Cancer. 2019;121(1):76–85.CrossRef
8.
go back to reference Brooks JD, Nabi HH, Andrulis IL, Antoniou AC, Chiquette J, Despres P, et al. Personalized risk assessment for prevention and early detection of breast cancer: integration and implementation (PERSPECTIVE I&I). J Pers Med. 2021;11(6):511.CrossRef Brooks JD, Nabi HH, Andrulis IL, Antoniou AC, Chiquette J, Despres P, et al. Personalized risk assessment for prevention and early detection of breast cancer: integration and implementation (PERSPECTIVE I&I). J Pers Med. 2021;11(6):511.CrossRef
10.
go back to reference Pashayan N, Antoniou AC, Ivanus U, Esserman LJ, Easton DF, French D, et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol. 2020;17(11):687–705.CrossRef Pashayan N, Antoniou AC, Ivanus U, Esserman LJ, Easton DF, French D, et al. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol. 2020;17(11):687–705.CrossRef
11.
go back to reference Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36.CrossRef Boyd NF, Guo H, Martin LJ, Sun L, Stone J, Fishell E, et al. Mammographic density and the risk and detection of breast cancer. N Engl J Med. 2007;356(3):227–36.CrossRef
12.
go back to reference Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6(10):798–808.CrossRef Boyd NF, Rommens JM, Vogt K, Lee V, Hopper JL, Yaffe MJ, et al. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005;6(10):798–808.CrossRef
13.
go back to reference Ray KM, Price ER, Joe BN. Breast density legislation: mandatory disclosure to patients, alternative screening, billing, reimbursement. AJR Am J Roentgenol. 2015;204(2):257–60.CrossRef Ray KM, Price ER, Joe BN. Breast density legislation: mandatory disclosure to patients, alternative screening, billing, reimbursement. AJR Am J Roentgenol. 2015;204(2):257–60.CrossRef
14.
go back to reference Bae JM, Kim EH. Breast density and risk of breast cancer in asian women: a meta-analysis of observational studies. J Prev Med Public Health. 2016;49(6):367–75.CrossRef Bae JM, Kim EH. Breast density and risk of breast cancer in asian women: a meta-analysis of observational studies. J Prev Med Public Health. 2016;49(6):367–75.CrossRef
15.
go back to reference Chiu SY, Duffy S, Yen AM, Tabar L, Smith RA, Chen HH. Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a Swedish mammographic screening. Cancer Epidemiol Biomark Prev. 2010;19(5):1219–28.CrossRef Chiu SY, Duffy S, Yen AM, Tabar L, Smith RA, Chen HH. Effect of baseline breast density on breast cancer incidence, stage, mortality, and screening parameters: 25-year follow-up of a Swedish mammographic screening. Cancer Epidemiol Biomark Prev. 2010;19(5):1219–28.CrossRef
16.
go back to reference Burton A, Maskarinec G, Perez-Gomez B, Vachon C, Miao H, Lajous M, et al. Mammographic density and ageing: a collaborative pooled analysis of cross-sectional data from 22 countries worldwide. PLoS Med. 2017;14(6):e1002335.CrossRef Burton A, Maskarinec G, Perez-Gomez B, Vachon C, Miao H, Lajous M, et al. Mammographic density and ageing: a collaborative pooled analysis of cross-sectional data from 22 countries worldwide. PLoS Med. 2017;14(6):e1002335.CrossRef
17.
go back to reference Soguel L, Diorio C. Anthropometric factors, adult weight gain, and mammographic features. Cancer Causes Control. 2016;27(3):333–40.CrossRef Soguel L, Diorio C. Anthropometric factors, adult weight gain, and mammographic features. Cancer Causes Control. 2016;27(3):333–40.CrossRef
18.
go back to reference Yaffe MJ. Mammographic density. Measurement of mammographic density. Breast Cancer Res. 2008;10(3):209.CrossRef Yaffe MJ. Mammographic density. Measurement of mammographic density. Breast Cancer Res. 2008;10(3):209.CrossRef
19.
go back to reference Kaufhold J, Thomas J, Eberhard J, Galbo C, Trotter DG. A calibration approach to glandular tissue composition estimation in digital mammography. Med Phys. 2002;29(8):1867–80.CrossRef Kaufhold J, Thomas J, Eberhard J, Galbo C, Trotter DG. A calibration approach to glandular tissue composition estimation in digital mammography. Med Phys. 2002;29(8):1867–80.CrossRef
20.
go back to reference Wolfe JN. Breast patterns as an index of risk for developing breast cancer. Am J Roentgenol. 1976;126(6):1130–7.CrossRef Wolfe JN. Breast patterns as an index of risk for developing breast cancer. Am J Roentgenol. 1976;126(6):1130–7.CrossRef
21.
go back to reference Gastounioti A, Conant EF, Kontos D. Beyond breast density: a review on the advancing role of parenchymal texture analysis in breast cancer risk assessment. Breast Cancer Res. 2016;18(1):91.CrossRef Gastounioti A, Conant EF, Kontos D. Beyond breast density: a review on the advancing role of parenchymal texture analysis in breast cancer risk assessment. Breast Cancer Res. 2016;18(1):91.CrossRef
22.
go back to reference Lloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation. 2010;121(15):1768–77.CrossRef Lloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation. 2010;121(15):1768–77.CrossRef
23.
go back to reference Lloyd-Jones DM, Liu K, Tian L, Greenland P. Narrative review: assessment of C-reactive protein in risk prediction for cardiovascular disease. Ann Intern Med. 2006;145(1):35–42.CrossRef Lloyd-Jones DM, Liu K, Tian L, Greenland P. Narrative review: assessment of C-reactive protein in risk prediction for cardiovascular disease. Ann Intern Med. 2006;145(1):35–42.CrossRef
24.
go back to reference Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280–6.CrossRef Hayden JA, van der Windt DA, Cartwright JL, Cote P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013;158(4):280–6.CrossRef
25.
go back to reference Abdolell M, Payne JI, Caines J, Tsuruda K, Barnes PJ, Talbot PJ, et al. Assessing breast cancer risk within the general screening population: developing a breast cancer risk model to identify higher risk women at mammographic screening. Eur Radiol. 2020;30(10):5417–26.CrossRef Abdolell M, Payne JI, Caines J, Tsuruda K, Barnes PJ, Talbot PJ, et al. Assessing breast cancer risk within the general screening population: developing a breast cancer risk model to identify higher risk women at mammographic screening. Eur Radiol. 2020;30(10):5417–26.CrossRef
26.
go back to reference Ali MA, Czene K, Eriksson L, Hall P, Humphreys K. Breast tissue organisation and its association with breast cancer risk. Breast Cancer Res. 2017;19(1):103.CrossRef Ali MA, Czene K, Eriksson L, Hall P, Humphreys K. Breast tissue organisation and its association with breast cancer risk. Breast Cancer Res. 2017;19(1):103.CrossRef
27.
go back to reference Azam S, Eriksson M, Sjolander A, Gabrielson M, Hellgren R, Czene K, et al. Mammographic microcalcifications and risk of breast cancer. Br J Cancer. 2021;125:759–65.CrossRef Azam S, Eriksson M, Sjolander A, Gabrielson M, Hellgren R, Czene K, et al. Mammographic microcalcifications and risk of breast cancer. Br J Cancer. 2021;125:759–65.CrossRef
28.
go back to reference Choi WJ, Cha JH, Kim HH, Shin HJ, Chae EY. Analysis of prior mammography with negative result in women with interval breast cancer. Breast Cancer. 2016;23(4):583–9.CrossRef Choi WJ, Cha JH, Kim HH, Shin HJ, Chae EY. Analysis of prior mammography with negative result in women with interval breast cancer. Breast Cancer. 2016;23(4):583–9.CrossRef
29.
go back to reference Eriksson M, Czene K, Pawitan Y, Leifland K, Darabi H, Hall P. A clinical model for identifying the short-term risk of breast cancer. Breast Cancer Res. 2017;19(1):29.CrossRef Eriksson M, Czene K, Pawitan Y, Leifland K, Darabi H, Hall P. A clinical model for identifying the short-term risk of breast cancer. Breast Cancer Res. 2017;19(1):29.CrossRef
30.
go back to reference Evans KK, Culpan AM, Wolfe JM. Detecting the “gist” of breast cancer in mammograms three years before localized signs of cancer are visible. Br J Radiol. 2019;92(1099):20190136.CrossRef Evans KK, Culpan AM, Wolfe JM. Detecting the “gist” of breast cancer in mammograms three years before localized signs of cancer are visible. Br J Radiol. 2019;92(1099):20190136.CrossRef
31.
go back to reference Gastounioti A, Hsieh MK, Cohen E, Pantalone L, Conant EF, Kontos D. Incorporating breast anatomy in computational phenotyping of mammographic parenchymal patterns for breast cancer risk estimation. Sci Rep. 2018;8(1):17489.CrossRef Gastounioti A, Hsieh MK, Cohen E, Pantalone L, Conant EF, Kontos D. Incorporating breast anatomy in computational phenotyping of mammographic parenchymal patterns for breast cancer risk estimation. Sci Rep. 2018;8(1):17489.CrossRef
32.
go back to reference Heidari M, Khuzani AZ, Hollingsworth AB, Danala G, Mirniaharikandehei S, Qiu Y, et al. Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm. Phys Med Biol. 2018;63(3):035020.CrossRef Heidari M, Khuzani AZ, Hollingsworth AB, Danala G, Mirniaharikandehei S, Qiu Y, et al. Prediction of breast cancer risk using a machine learning approach embedded with a locality preserving projection algorithm. Phys Med Biol. 2018;63(3):035020.CrossRef
33.
go back to reference Heine J, Fowler E, Scott CG, Jensen MR, Shepherd J, Hruska CB, et al. Mammographic variation measures, breast density, and breast cancer risk. AJR Am J Roentgenol. 2021;217(2):326–35.CrossRef Heine J, Fowler E, Scott CG, Jensen MR, Shepherd J, Hruska CB, et al. Mammographic variation measures, breast density, and breast cancer risk. AJR Am J Roentgenol. 2021;217(2):326–35.CrossRef
34.
go back to reference Hsu W, Zhou X, Petruse A, Chau N, Lee-Felker S, Hoyt A, et al. Role of clinical and imaging risk factors in predicting breast cancer diagnosis among BI-RADS 4 cases. Clin Breast Cancer. 2019;19(1):e142–51.CrossRef Hsu W, Zhou X, Petruse A, Chau N, Lee-Felker S, Hoyt A, et al. Role of clinical and imaging risk factors in predicting breast cancer diagnosis among BI-RADS 4 cases. Clin Breast Cancer. 2019;19(1):e142–51.CrossRef
35.
go back to reference Kontos D, Winham SJ, Oustimov A, Pantalone L, Hsieh MK, Gastounioti A, et al. Radiomic phenotypes of mammographic parenchymal complexity: toward augmenting breast density in breast cancer risk assessment. Radiology. 2019;290(1):41–9.CrossRef Kontos D, Winham SJ, Oustimov A, Pantalone L, Hsieh MK, Gastounioti A, et al. Radiomic phenotypes of mammographic parenchymal complexity: toward augmenting breast density in breast cancer risk assessment. Radiology. 2019;290(1):41–9.CrossRef
36.
go back to reference Ma L, Cai Y, Lin X, He Z, Zeng H, Chen W, Qin G. Association of the differences in average glandular dose with breast cancer risk. BioMed Res Int. 2020;2020:8943659. Ma L, Cai Y, Lin X, He Z, Zeng H, Chen W, Qin G. Association of the differences in average glandular dose with breast cancer risk. BioMed Res Int. 2020;2020:8943659.
37.
go back to reference Li T, Tang L, Gandomkar Z, Heard R, Mello-Thoms C, Shao Z, et al. Mammographic density and other risk factors for breast cancer among women in China. Breast J. 2018;24(3):426–8.CrossRef Li T, Tang L, Gandomkar Z, Heard R, Mello-Thoms C, Shao Z, et al. Mammographic density and other risk factors for breast cancer among women in China. Breast J. 2018;24(3):426–8.CrossRef
38.
go back to reference Malkov S, Shepherd JA, Scott CG, Tamimi RM, Ma L, Bertrand KA, et al. Mammographic texture and risk of breast cancer by tumor type and estrogen receptor status. Breast Cancer Res. 2016;18(1):122.CrossRef Malkov S, Shepherd JA, Scott CG, Tamimi RM, Ma L, Bertrand KA, et al. Mammographic texture and risk of breast cancer by tumor type and estrogen receptor status. Breast Cancer Res. 2016;18(1):122.CrossRef
39.
go back to reference Perez-Benito FJ, Signol F, Perez-Cortes JC, Pollan M, Perez-Gomez B, Salas-Trejo D, et al. Global parenchymal texture features based on histograms of oriented gradients improve cancer development risk estimation from healthy breasts. Comput Methods Programs Biomed. 2019;177:123–32.CrossRef Perez-Benito FJ, Signol F, Perez-Cortes JC, Pollan M, Perez-Gomez B, Salas-Trejo D, et al. Global parenchymal texture features based on histograms of oriented gradients improve cancer development risk estimation from healthy breasts. Comput Methods Programs Biomed. 2019;177:123–32.CrossRef
40.
go back to reference Schmidt DF, Makalic E, Goudey B, Dite GS, Stone J, Nguyen TL, et al. Cirrus: an automated mammography-based measure of breast cancer risk based on textural features. JNCI Cancer Spectr. 2018;2(4):pky057.CrossRef Schmidt DF, Makalic E, Goudey B, Dite GS, Stone J, Nguyen TL, et al. Cirrus: an automated mammography-based measure of breast cancer risk based on textural features. JNCI Cancer Spectr. 2018;2(4):pky057.CrossRef
41.
go back to reference Sorin V, Yagil Y, Shalmon A, Gotlieb M, Faermann R, Halshtok-Neiman O, et al. Background parenchymal enhancement at contrast-enhanced spectral mammography (CESM) as a breast cancer risk factor. Acad Radiol. 2020;27(9):1234–40.CrossRef Sorin V, Yagil Y, Shalmon A, Gotlieb M, Faermann R, Halshtok-Neiman O, et al. Background parenchymal enhancement at contrast-enhanced spectral mammography (CESM) as a breast cancer risk factor. Acad Radiol. 2020;27(9):1234–40.CrossRef
42.
go back to reference Tagliafico AS, Valdora F, Mariscotti G, Durando M, Nori J, La Forgia D, et al. An exploratory radiomics analysis on digital breast tomosynthesis in women with mammographically negative dense breasts. Breast. 2018;40:92–6.CrossRef Tagliafico AS, Valdora F, Mariscotti G, Durando M, Nori J, La Forgia D, et al. An exploratory radiomics analysis on digital breast tomosynthesis in women with mammographically negative dense breasts. Breast. 2018;40:92–6.CrossRef
43.
go back to reference Tan M, Zheng B, Leader JK, Gur D. Association Between changes in mammographic image features and risk for near-term breast cancer development. IEEE Trans Med Imaging. 2016;35(7):1719–28.CrossRef Tan M, Zheng B, Leader JK, Gur D. Association Between changes in mammographic image features and risk for near-term breast cancer development. IEEE Trans Med Imaging. 2016;35(7):1719–28.CrossRef
44.
go back to reference Tan M, Mariapun S, Yip CH, Ng KH, Teo SH. A novel method of determining breast cancer risk using parenchymal textural analysis of mammography images on an Asian cohort. Phys Med Biol. 2019;64(3):035016.CrossRef Tan M, Mariapun S, Yip CH, Ng KH, Teo SH. A novel method of determining breast cancer risk using parenchymal textural analysis of mammography images on an Asian cohort. Phys Med Biol. 2019;64(3):035016.CrossRef
45.
go back to reference Wang C, Brentnall AR, Cuzick J, Harkness EF, Evans DG, Astley S. A novel and fully automated mammographic texture analysis for risk prediction: results from two case–control studies. Breast Cancer Res. 2017;19(1):114.CrossRef Wang C, Brentnall AR, Cuzick J, Harkness EF, Evans DG, Astley S. A novel and fully automated mammographic texture analysis for risk prediction: results from two case–control studies. Breast Cancer Res. 2017;19(1):114.CrossRef
46.
go back to reference Ward L, Heller S, Hudson S, Wilkinson L. Parenchymal pattern in women with dense breasts. Variation with age and impact on screening outcomes: observations from a UK screening programme. Eur Radiol. 2018;28(11):4717–24.CrossRef Ward L, Heller S, Hudson S, Wilkinson L. Parenchymal pattern in women with dense breasts. Variation with age and impact on screening outcomes: observations from a UK screening programme. Eur Radiol. 2018;28(11):4717–24.CrossRef
47.
go back to reference Warner ET, Rice MS, Zeleznik OA, Fowler EE, Murthy D, Vachon CM, et al. Automated percent mammographic density, mammographic texture variation, and risk of breast cancer: a nested case–control study. NPJ Breast Cancer. 2021;7(1):68.CrossRef Warner ET, Rice MS, Zeleznik OA, Fowler EE, Murthy D, Vachon CM, et al. Automated percent mammographic density, mammographic texture variation, and risk of breast cancer: a nested case–control study. NPJ Breast Cancer. 2021;7(1):68.CrossRef
48.
go back to reference Winkel RR, Euler-Chelpin MV, Lynge E, Diao P, Lillholm M, Kallenberg M, et al. Risk stratification of women with false-positive test results in mammography screening based on mammographic morphology and density: a case control study. Cancer Epidemiol. 2017;49:53–60.CrossRef Winkel RR, Euler-Chelpin MV, Lynge E, Diao P, Lillholm M, Kallenberg M, et al. Risk stratification of women with false-positive test results in mammography screening based on mammographic morphology and density: a case control study. Cancer Epidemiol. 2017;49:53–60.CrossRef
49.
go back to reference Winkel RR, von Euler-Chelpin M, Nielsen M, Petersen K, Lillholm M, Nielsen MB, et al. Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: a case–control study. BMC Cancer. 2016;16(1):414.CrossRef Winkel RR, von Euler-Chelpin M, Nielsen M, Petersen K, Lillholm M, Nielsen MB, et al. Mammographic density and structural features can individually and jointly contribute to breast cancer risk assessment in mammography screening: a case–control study. BMC Cancer. 2016;16(1):414.CrossRef
50.
go back to reference Yan S, Wang Y, Aghaei F, Qiu Y, Zheng B. Improving performance of breast cancer risk prediction by incorporating optical density image feature analysis: an assessment. Acad Radiol. 2022;29(Suppl 1):S199–210.CrossRef Yan S, Wang Y, Aghaei F, Qiu Y, Zheng B. Improving performance of breast cancer risk prediction by incorporating optical density image feature analysis: an assessment. Acad Radiol. 2022;29(Suppl 1):S199–210.CrossRef
51.
go back to reference Yan S, Wang Y, Aghaei F, Qiu Y, Zheng B. Applying a new bilateral mammographic density segmentation method to improve accuracy of breast cancer risk prediction. Int J Comput Assist Radiol Surg. 2017;12(10):1819–28.CrossRef Yan S, Wang Y, Aghaei F, Qiu Y, Zheng B. Applying a new bilateral mammographic density segmentation method to improve accuracy of breast cancer risk prediction. Int J Comput Assist Radiol Surg. 2017;12(10):1819–28.CrossRef
52.
go back to reference Pertuz S, Sassi A, Holli-Helenius K, Kämäräinen J, Rinta-Kiikka I, Lääperi AL, Arponen O. Clinical evaluation of a fully-automated parenchymal analysis software for breast cancer risk assessment: A pilot study in a Finnish sample. Eur J Radiol. 2019;121:108710.CrossRef Pertuz S, Sassi A, Holli-Helenius K, Kämäräinen J, Rinta-Kiikka I, Lääperi AL, Arponen O. Clinical evaluation of a fully-automated parenchymal analysis software for breast cancer risk assessment: A pilot study in a Finnish sample. Eur J Radiol. 2019;121:108710.CrossRef
53.
go back to reference Brentnall AR, Cuzick J, Buist DS, Bowles EJA. Long-term accuracy of breast cancer risk assessment combining classic risk factors and breast density. JAMA Oncol. 2018;4(9):e180174.CrossRef Brentnall AR, Cuzick J, Buist DS, Bowles EJA. Long-term accuracy of breast cancer risk assessment combining classic risk factors and breast density. JAMA Oncol. 2018;4(9):e180174.CrossRef
54.
go back to reference Evans DGR, Donnelly LS, Harkness EF, Astley SM, Stavrinos P, Dawe S, et al. Breast cancer risk feedback to women in the UK NHS breast screening population. Br J Cancer. 2016;114(9):1045–52.CrossRef Evans DGR, Donnelly LS, Harkness EF, Astley SM, Stavrinos P, Dawe S, et al. Breast cancer risk feedback to women in the UK NHS breast screening population. Br J Cancer. 2016;114(9):1045–52.CrossRef
55.
go back to reference Brentnall AR, Harkness EF, Astley SM, Donnelly LS, Stavrinos P, Sampson S, et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015;17(1):147.CrossRef Brentnall AR, Harkness EF, Astley SM, Donnelly LS, Stavrinos P, Sampson S, et al. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015;17(1):147.CrossRef
56.
go back to reference Visvanathan K, Fabian CJ, Bantug E, Brewster AM, Davidson NE, DeCensi A, et al. Use of endocrine therapy for breast cancer risk reduction: ASCO clinical practice guideline update. J Clin Oncol. 2019;37(33):3152–65.CrossRef Visvanathan K, Fabian CJ, Bantug E, Brewster AM, Davidson NE, DeCensi A, et al. Use of endocrine therapy for breast cancer risk reduction: ASCO clinical practice guideline update. J Clin Oncol. 2019;37(33):3152–65.CrossRef
57.
go back to reference Gastounioti A, Desai S, Ahluwalia VS, Conant EF, Kontos D. Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review. Breast Cancer Res. 2022;24(1):14.CrossRef Gastounioti A, Desai S, Ahluwalia VS, Conant EF, Kontos D. Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review. Breast Cancer Res. 2022;24(1):14.CrossRef
58.
go back to reference Gao J, Warren R, Warren-Forward H, Forbes JF. Reproducibility of visual assessment on mammographic density. Breast Cancer Res Treat. 2008;108(1):121–7.CrossRef Gao J, Warren R, Warren-Forward H, Forbes JF. Reproducibility of visual assessment on mammographic density. Breast Cancer Res Treat. 2008;108(1):121–7.CrossRef
59.
go back to reference Pettersson A, Graff RE, Ursin G, Santos Silva ID, McCormack V, Baglietto L, et al. Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst. 2014;106(5):dju078.CrossRef Pettersson A, Graff RE, Ursin G, Santos Silva ID, McCormack V, Baglietto L, et al. Mammographic density phenotypes and risk of breast cancer: a meta-analysis. J Natl Cancer Inst. 2014;106(5):dju078.CrossRef
60.
go back to reference Dench E, Bond-Smith D, Darcey E, Lee G, Aung YK, Chan A, et al. Measurement challenge: protocol for international case–control comparison of mammographic measures that predict breast cancer risk. BMJ Open. 2019;9(12):e031041.CrossRef Dench E, Bond-Smith D, Darcey E, Lee G, Aung YK, Chan A, et al. Measurement challenge: protocol for international case–control comparison of mammographic measures that predict breast cancer risk. BMJ Open. 2019;9(12):e031041.CrossRef
61.
go back to reference Buda M, Saha A, Walsh R, Ghate S, Li N, Swiecicki A, et al. A data set and deep learning algorithm for the detection of masses and architectural distortions in digital breast tomosynthesis images. JAMA Netw Open. 2021;4(8):e2119100.CrossRef Buda M, Saha A, Walsh R, Ghate S, Li N, Swiecicki A, et al. A data set and deep learning algorithm for the detection of masses and architectural distortions in digital breast tomosynthesis images. JAMA Netw Open. 2021;4(8):e2119100.CrossRef
62.
go back to reference Pace LE, Keating NL. Should women at lower-than-average risk of breast cancer undergo less frequent screening? J Natl Cancer Inst. 2021;113(8):953–4.CrossRef Pace LE, Keating NL. Should women at lower-than-average risk of breast cancer undergo less frequent screening? J Natl Cancer Inst. 2021;113(8):953–4.CrossRef
63.
go back to reference Pertuz S, Sassi A, Karivaara-Mäkelä M, Holli-Helenius K, Lääperi A-L, Rinta-Kiikka I, et al. Micro-parenchymal patterns for breast cancer risk assessment. Biomed Phys Eng Express. 2019;5(6):065008.CrossRef Pertuz S, Sassi A, Karivaara-Mäkelä M, Holli-Helenius K, Lääperi A-L, Rinta-Kiikka I, et al. Micro-parenchymal patterns for breast cancer risk assessment. Biomed Phys Eng Express. 2019;5(6):065008.CrossRef
Metadata
Title
Studies of parenchymal texture added to mammographic breast density and risk of breast cancer: a systematic review of the methods used in the literature
Authors
Akila Anandarajah
Yongzhen Chen
Graham A. Colditz
Angela Hardi
Carolyn Stoll
Shu Jiang
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2022
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-022-01600-5

Other articles of this Issue 1/2022

Breast Cancer Research 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine