Skip to main content
Top
Published in: Breast Cancer Research 1/2022

Open Access 01-12-2022 | Research article

LncRNA IPW inhibits growth of ductal carcinoma in situ by downregulating ID2 through miR-29c

Authors: Ravindra Pramod Deshpande, Sambad Sharma, Yin Liu, Puspa Raj Pandey, Xinhong Pei, Kerui Wu, Shih-Ying Wu, Abhishek Tyagi, Dan Zhao, Yin-Yuan Mo, Kounosuke Watabe

Published in: Breast Cancer Research | Issue 1/2022

Login to get access

Abstract

Background

Ductal carcinoma in situ (DCIS) of breast is the noninvasive lesion that has propensity to progress to the malignant form. At present, it is still unknown which lesions can potentially progress to invasive forms. In this study, we aimed to identify key lncRNAs involved in DCIS growth.

Methods

We employ disease-related lncProfiler array to identify IPW in specimens of DCIS and matching control samples and validate the observations in three DCIS-non-tumorigenic cell lines. Further, we examine the mechanism of IPW action and the downstream signaling in in vitro and in vivo assays. Importantly, we screened a library containing 390 natural compounds to identify candidate compound selectively inhibiting IPW low DCIS cells.

Results

We identified lncRNA IPW as a novel tumor suppressor critical for inhibiting DCIS growth. Ectopic expression of IPW in DCIS cells strongly inhibited cell proliferation, colony formation and cell cycle progression while silencing IPW in primary breast cells promoted their growth. Additionally, orthotropic implantation of cells with ectopic expression of IPW exhibited decreased tumor growth in vivo. Mechanistically, IPW epigenetically enhanced miR-29c expression by promoting H3K4me3 enrichment in its promoter region. Furthermore, we identified that miR-29c negatively regulated a stemness promoting gene, ID2, and diminished self-renewal ability of DCIS cells. Importantly, we screened a library containing 390 natural compounds and identified toyocamycin as a compound that selectively inhibited the growth of DCIS with low expression of IPW, while it did not affect DCIS with high IPW expression. Toyocamycin also suppressed genes associated with self-renewal ability and inhibited DCIS growth in vivo.

Conclusion

Our findings revealed a critical role of the IPW-miR-29c-ID2 axis in DCIS formation and suggested potential clinical use of toyocamycin for the treatment of DCIS.
Appendix
Available only for authorised users
Literature
2.
go back to reference McCormick B, Winter K, Hudis C, Kuerer HM, Rakovitch E, Smith BL, Sneige N, Moughan J, Shah A, Germain I, et al. RTOG 9804: a prospective randomized trial for good-risk ductal carcinoma in situ comparing radiotherapy with observation. J Clin Oncol. 2015;33(7):709–15.PubMedPubMedCentralCrossRef McCormick B, Winter K, Hudis C, Kuerer HM, Rakovitch E, Smith BL, Sneige N, Moughan J, Shah A, Germain I, et al. RTOG 9804: a prospective randomized trial for good-risk ductal carcinoma in situ comparing radiotherapy with observation. J Clin Oncol. 2015;33(7):709–15.PubMedPubMedCentralCrossRef
3.
go back to reference Co M, Lee A, Kwong A. Non-surgical treatment for ductal carcinoma in situ of the breasts - a prospective study on patient’s perspective. Cancer Treat Res Commun. 2021;26:100241.PubMedCrossRef Co M, Lee A, Kwong A. Non-surgical treatment for ductal carcinoma in situ of the breasts - a prospective study on patient’s perspective. Cancer Treat Res Commun. 2021;26:100241.PubMedCrossRef
4.
5.
go back to reference Fidler IJ, Kripke ML. Genomic analysis of primary tumors does not address the prevalence of metastatic cells in the population. Nat Genet. 2003;34(1):23.PubMedCrossRef Fidler IJ, Kripke ML. Genomic analysis of primary tumors does not address the prevalence of metastatic cells in the population. Nat Genet. 2003;34(1):23.PubMedCrossRef
6.
go back to reference Carraro DM, Elias EV, Andrade VP. Ductal carcinoma in situ of the breast: morphological and molecular features implicated in progression. Biosci Rep 2014;34(1). Carraro DM, Elias EV, Andrade VP. Ductal carcinoma in situ of the breast: morphological and molecular features implicated in progression. Biosci Rep 2014;34(1).
7.
go back to reference Morlando M, Ballarino M, Fatica A. Long non-coding RNAs: new players in Hematopoiesis and Leukemia. Front Med (Lausanne). 2015;2:23. Morlando M, Ballarino M, Fatica A. Long non-coding RNAs: new players in Hematopoiesis and Leukemia. Front Med (Lausanne). 2015;2:23.
8.
go back to reference Blythe AJ, Fox AH, Bond CS. The ins and outs of lncRNA structure: how, why and what comes next? Biochim Biophys Acta. 2016;1859(1):46–58.PubMedCrossRef Blythe AJ, Fox AH, Bond CS. The ins and outs of lncRNA structure: how, why and what comes next? Biochim Biophys Acta. 2016;1859(1):46–58.PubMedCrossRef
9.
go back to reference Chen LL. Linking long noncoding RNA localization and function. Trends Biochem Sci. 2016;41(9):761–72.PubMedCrossRef Chen LL. Linking long noncoding RNA localization and function. Trends Biochem Sci. 2016;41(9):761–72.PubMedCrossRef
10.
go back to reference Akhade VS, Pal D, Kanduri C. Long noncoding RNA: genome organization and mechanism of action. Adv Exp Med Biol. 2017;1008:47–74.PubMedCrossRef Akhade VS, Pal D, Kanduri C. Long noncoding RNA: genome organization and mechanism of action. Adv Exp Med Biol. 2017;1008:47–74.PubMedCrossRef
11.
go back to reference Jedeszko C, Victor BC, Podgorski I, Sloane BF. Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Res. 2009;69(23):9148–55.PubMedPubMedCentralCrossRef Jedeszko C, Victor BC, Podgorski I, Sloane BF. Fibroblast hepatocyte growth factor promotes invasion of human mammary ductal carcinoma in situ. Cancer Res. 2009;69(23):9148–55.PubMedPubMedCentralCrossRef
12.
go back to reference Vidi PA, Bissell MJ, Lelièvre SA. Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol. 2013;945:193–219.PubMedPubMedCentralCrossRef Vidi PA, Bissell MJ, Lelièvre SA. Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol. 2013;945:193–219.PubMedPubMedCentralCrossRef
13.
go back to reference Liu Y, Pandey PR, Sharma S, Xing F, Wu K, Chittiboyina A, Wu SY, Tyagi A, Watabe K. ID2 and GJB2 promote early-stage breast cancer progression by regulating cancer stemness. Breast Cancer Res Treat. 2019;175(1):77–90.PubMedPubMedCentralCrossRef Liu Y, Pandey PR, Sharma S, Xing F, Wu K, Chittiboyina A, Wu SY, Tyagi A, Watabe K. ID2 and GJB2 promote early-stage breast cancer progression by regulating cancer stemness. Breast Cancer Res Treat. 2019;175(1):77–90.PubMedPubMedCentralCrossRef
16.
go back to reference Fridrichova I, Zmetakova I. MicroRNAs contribute to breast cancer invasiveness. Cells 2019;8(11). Fridrichova I, Zmetakova I. MicroRNAs contribute to breast cancer invasiveness. Cells 2019;8(11).
17.
go back to reference Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188413.PubMedCrossRef Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188413.PubMedCrossRef
18.
go back to reference Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, et al. MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: a review. Front Oncol. 2020;10:526850.PubMedPubMedCentralCrossRef Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, Lungulescu C, Scripcariu DV, Stolniceanu CR, Konsoulova-Kirova AA, et al. MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: a review. Front Oncol. 2020;10:526850.PubMedPubMedCentralCrossRef
19.
go back to reference Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. Biochim Biophys Acta Gene Regul Mech. 2020;1863(4):194378.PubMedCrossRef Tomar D, Yadav AS, Kumar D, Bhadauriya G, Kundu GC. Non-coding RNAs as potential therapeutic targets in breast cancer. Biochim Biophys Acta Gene Regul Mech. 2020;1863(4):194378.PubMedCrossRef
20.
go back to reference Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.PubMedPubMedCentralCrossRef Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329(5992):689–93.PubMedPubMedCentralCrossRef
22.
go back to reference Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.PubMedCrossRef Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.PubMedCrossRef
23.
go back to reference Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 2007;39(3):311–8.PubMedCrossRef Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 2007;39(3):311–8.PubMedCrossRef
24.
go back to reference Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell. 2005;120(2):169–81.PubMedCrossRef Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell. 2005;120(2):169–81.PubMedCrossRef
25.
go back to reference Salz T, Deng C, Pampo C, Siemann D, Qiu Y, Brown K, Huang S. Histone methyltransferase hSETD1A is a novel regulator of metastasis in breast cancer. Mol Cancer Res. 2015;13(3):461–9.PubMedCrossRef Salz T, Deng C, Pampo C, Siemann D, Qiu Y, Brown K, Huang S. Histone methyltransferase hSETD1A is a novel regulator of metastasis in breast cancer. Mol Cancer Res. 2015;13(3):461–9.PubMedCrossRef
26.
go back to reference South PF, Harmeyer KM, Serratore ND, Briggs SD. H3K4 methyltransferase Set1 is involved in maintenance of ergosterol homeostasis and resistance to Brefeldin A. Proc Natl Acad Sci U S A. 2013;110(11):E1016-1025.PubMedPubMedCentralCrossRef South PF, Harmeyer KM, Serratore ND, Briggs SD. H3K4 methyltransferase Set1 is involved in maintenance of ergosterol homeostasis and resistance to Brefeldin A. Proc Natl Acad Sci U S A. 2013;110(11):E1016-1025.PubMedPubMedCentralCrossRef
27.
go back to reference Liu X, Huang J, Chen T, Wang Y, Xin S, Li J, Pei G, Kang J. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Res. 2008;18(12):1177–89.PubMedCrossRef Liu X, Huang J, Chen T, Wang Y, Xin S, Li J, Pei G, Kang J. Yamanaka factors critically regulate the developmental signaling network in mouse embryonic stem cells. Cell Res. 2008;18(12):1177–89.PubMedCrossRef
28.
go back to reference Fuławka Ł, Donizy P, Hałoń A. Yamanaka’s factors and core transcription factors–the molecular link between embryogenesis and carcinogenesis. Postepy Hig Med Dosw (Online). 2014;68:715–21.CrossRef Fuławka Ł, Donizy P, Hałoń A. Yamanaka’s factors and core transcription factors–the molecular link between embryogenesis and carcinogenesis. Postepy Hig Med Dosw (Online). 2014;68:715–21.CrossRef
29.
go back to reference Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.PubMedPubMedCentralCrossRef Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.PubMedPubMedCentralCrossRef
30.
go back to reference Tanabe Y, Suehara Y, Kohsaka S, Hayashi T, Akaike K, Mukaihara K, Kurihara T, Kim Y, Okubo T, Ishii M, et al. IRE1α-XBP1 inhibitors exerted anti-tumor activities in Ewing’s sarcoma. Oncotarget. 2018;9(18):14428–43.PubMedPubMedCentralCrossRef Tanabe Y, Suehara Y, Kohsaka S, Hayashi T, Akaike K, Mukaihara K, Kurihara T, Kim Y, Okubo T, Ishii M, et al. IRE1α-XBP1 inhibitors exerted anti-tumor activities in Ewing’s sarcoma. Oncotarget. 2018;9(18):14428–43.PubMedPubMedCentralCrossRef
31.
go back to reference Ri M, Tashiro E, Oikawa D, Shinjo S, Tokuda M, Yokouchi Y, Narita T, Masaki A, Ito A, Ding J, et al. Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing. Blood Cancer J. 2012;2(7):e79.PubMedPubMedCentralCrossRef Ri M, Tashiro E, Oikawa D, Shinjo S, Tokuda M, Yokouchi Y, Narita T, Masaki A, Ito A, Ding J, et al. Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing. Blood Cancer J. 2012;2(7):e79.PubMedPubMedCentralCrossRef
32.
go back to reference Stelzer Y, Sagi I, Yanuka O, Eiges R, Benvenisty N. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet. 2014;46(6):551–7.PubMedCrossRef Stelzer Y, Sagi I, Yanuka O, Eiges R, Benvenisty N. The noncoding RNA IPW regulates the imprinted DLK1-DIO3 locus in an induced pluripotent stem cell model of Prader-Willi syndrome. Nat Genet. 2014;46(6):551–7.PubMedCrossRef
33.
go back to reference Rachmilewitz J, Elkin M, Looijenga LH, Verkerk AJ, Gonik B, Lustig O, Werner D, de Groot N, Hochberg A. Characterization of the imprinted IPW gene: allelic expression in normal and tumorigenic human tissues. Oncogene. 1996;13(8):1687–92.PubMed Rachmilewitz J, Elkin M, Looijenga LH, Verkerk AJ, Gonik B, Lustig O, Werner D, de Groot N, Hochberg A. Characterization of the imprinted IPW gene: allelic expression in normal and tumorigenic human tissues. Oncogene. 1996;13(8):1687–92.PubMed
34.
go back to reference Davies HD, Leusink GL, McConnell A, Deyell M, Cassidy SB, Fick GH, Coppes MJ. Myeloid leukemia in Prader-Willi syndrome. J Pediatr. 2003;142(2):174–8.PubMedCrossRef Davies HD, Leusink GL, McConnell A, Deyell M, Cassidy SB, Fick GH, Coppes MJ. Myeloid leukemia in Prader-Willi syndrome. J Pediatr. 2003;142(2):174–8.PubMedCrossRef
35.
go back to reference Kristiina P, Reijo S, Markus K, Eero P. Cancer incidence among persons Prader-Willi syndrome in Finland. 2008. Kristiina P, Reijo S, Markus K, Eero P. Cancer incidence among persons Prader-Willi syndrome in Finland. 2008.
36.
go back to reference Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing MiRNA-LncRNA interactions. Methods Mol Biol. 2016;1402:271–86.PubMedCrossRef Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing MiRNA-LncRNA interactions. Methods Mol Biol. 2016;1402:271–86.PubMedCrossRef
38.
go back to reference Hulshoff MS, Xu X, Krenning G, Zeisberg EM. Epigenetic regulation of endothelial-to-mesenchymal transition in chronic heart disease. Arterioscler Thromb Vasc Biol. 2018;38(9):1986–96.PubMedCrossRef Hulshoff MS, Xu X, Krenning G, Zeisberg EM. Epigenetic regulation of endothelial-to-mesenchymal transition in chronic heart disease. Arterioscler Thromb Vasc Biol. 2018;38(9):1986–96.PubMedCrossRef
39.
go back to reference Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, Azidis-Yates E, Vassiliadis D, Bell CC, Gilan O, et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. 2019;36(4):385-401.e388.PubMedPubMedCentralCrossRef Burr ML, Sparbier CE, Chan KL, Chan YC, Kersbergen A, Lam EYN, Azidis-Yates E, Vassiliadis D, Bell CC, Gilan O, et al. An evolutionarily conserved function of polycomb silences the MHC class I antigen presentation pathway and enables immune evasion in cancer. Cancer Cell. 2019;36(4):385-401.e388.PubMedPubMedCentralCrossRef
40.
go back to reference Sankar A, Lerdrup M, Manaf A, Johansen JV, Gonzalez JM, Borup R, Blanshard R, Klungland A, Hansen K, Andersen CY, et al. KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes. Nat Cell Biol. 2020;22(4):380–8.PubMedPubMedCentralCrossRef Sankar A, Lerdrup M, Manaf A, Johansen JV, Gonzalez JM, Borup R, Blanshard R, Klungland A, Hansen K, Andersen CY, et al. KDM4A regulates the maternal-to-zygotic transition by protecting broad H3K4me3 domains from H3K9me3 invasion in oocytes. Nat Cell Biol. 2020;22(4):380–8.PubMedPubMedCentralCrossRef
41.
go back to reference Xiu B, Chi Y, Liu L, Chi W, Zhang Q, Chen J, Guo R, Si J, Li L, Xue J, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol Cancer. 2019;18(1):187.PubMedPubMedCentralCrossRef Xiu B, Chi Y, Liu L, Chi W, Zhang Q, Chen J, Guo R, Si J, Li L, Xue J, et al. LINC02273 drives breast cancer metastasis by epigenetically increasing AGR2 transcription. Mol Cancer. 2019;18(1):187.PubMedPubMedCentralCrossRef
42.
go back to reference Neumann P, Jaé N, Knau A, Glaser SF, Fouani Y, Rossbach O, Krüger M, John D, Bindereif A, Grote P, et al. The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun. 2018;9(1):237.PubMedPubMedCentralCrossRef Neumann P, Jaé N, Knau A, Glaser SF, Fouani Y, Rossbach O, Krüger M, John D, Bindereif A, Grote P, et al. The lncRNA GATA6-AS epigenetically regulates endothelial gene expression via interaction with LOXL2. Nat Commun. 2018;9(1):237.PubMedPubMedCentralCrossRef
43.
go back to reference Veneziano D, Marceca GP, Di Bella S, Nigita G, Distefano R, Croce CM. Investigating miRNA-lncRNA interactions: computational tools and resources. Methods Mol Biol. 2019;1970:251–77.PubMedCrossRef Veneziano D, Marceca GP, Di Bella S, Nigita G, Distefano R, Croce CM. Investigating miRNA-lncRNA interactions: computational tools and resources. Methods Mol Biol. 2019;1970:251–77.PubMedCrossRef
44.
go back to reference Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147(4):759–72.PubMedCrossRef Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell. 2011;147(4):759–72.PubMedCrossRef
45.
go back to reference Pandey PR, Xing F, Sharma S, Watabe M, Pai SK, Iiizumi-Gairani M, Fukuda K, Hirota S, Mo YY, Watabe K. Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer. Oncogene. 2013;32(42):5111–22.PubMedCrossRef Pandey PR, Xing F, Sharma S, Watabe M, Pai SK, Iiizumi-Gairani M, Fukuda K, Hirota S, Mo YY, Watabe K. Elevated lipogenesis in epithelial stem-like cell confers survival advantage in ductal carcinoma in situ of breast cancer. Oncogene. 2013;32(42):5111–22.PubMedCrossRef
46.
go back to reference Shan NL, Minden A, Furmanski P, Bak MJ, Cai L, Wernyj R, Sargsyan D, Cheng D, Wu R, Kuo HD, et al. Analysis of the transcriptome: regulation of cancer stemness in breast ductal carcinoma in situ by Vitamin D Compounds. Cancer Prev Res (Phila). 2020;13(8):673–86.CrossRef Shan NL, Minden A, Furmanski P, Bak MJ, Cai L, Wernyj R, Sargsyan D, Cheng D, Wu R, Kuo HD, et al. Analysis of the transcriptome: regulation of cancer stemness in breast ductal carcinoma in situ by Vitamin D Compounds. Cancer Prev Res (Phila). 2020;13(8):673–86.CrossRef
47.
go back to reference Martinez LM, Robila V, Clark NM, Du W, Idowu MO, Rutkowski MR, Bos PD. Regulatory T cells control the switch from in situ to invasive breast cancer. Front Immunol. 1942;2019:10. Martinez LM, Robila V, Clark NM, Du W, Idowu MO, Rutkowski MR, Bos PD. Regulatory T cells control the switch from in situ to invasive breast cancer. Front Immunol. 1942;2019:10.
48.
go back to reference Kurooka H, Yokota Y. Nucleo-cytoplasmic shuttling of Id2, a negative regulator of basic helix-loop-helix transcription factors. J Biol Chem. 2005;280(6):4313–20.PubMedCrossRef Kurooka H, Yokota Y. Nucleo-cytoplasmic shuttling of Id2, a negative regulator of basic helix-loop-helix transcription factors. J Biol Chem. 2005;280(6):4313–20.PubMedCrossRef
49.
go back to reference Jiang J, Yu C, Chen M, Zhang H, Tian S, Sun C. Reduction of miR-29c enhances pancreatic cancer cell migration and stem cell-like phenotype. Oncotarget. 2015;6(5):2767–78.PubMedCrossRef Jiang J, Yu C, Chen M, Zhang H, Tian S, Sun C. Reduction of miR-29c enhances pancreatic cancer cell migration and stem cell-like phenotype. Oncotarget. 2015;6(5):2767–78.PubMedCrossRef
50.
go back to reference Li W, Yi J, Zheng X, Liu S, Fu W, Ren L, Li L, Hoon DSB, Wang J, Du G. miR-29c plays a suppressive role in breast cancer by targeting the TIMP3/STAT1/FOXO1 pathway. Clin Epigenetics. 2018;10:64.PubMedPubMedCentralCrossRef Li W, Yi J, Zheng X, Liu S, Fu W, Ren L, Li L, Hoon DSB, Wang J, Du G. miR-29c plays a suppressive role in breast cancer by targeting the TIMP3/STAT1/FOXO1 pathway. Clin Epigenetics. 2018;10:64.PubMedPubMedCentralCrossRef
51.
go back to reference Zhang W, Luo P. MicroRNA-29c restores cisplatin sensitivity in liver cancer through direct inhibition of sirtuin 1 expression. Oncol Lett. 2018;16(2):1543–50.PubMedPubMedCentral Zhang W, Luo P. MicroRNA-29c restores cisplatin sensitivity in liver cancer through direct inhibition of sirtuin 1 expression. Oncol Lett. 2018;16(2):1543–50.PubMedPubMedCentral
52.
go back to reference Dong HJ, Jang GB, Lee HY, Park SR, Kim JY, Nam JS, Hong IS. The Wnt/β-catenin signaling/Id2 cascade mediates the effects of hypoxia on the hierarchy of colorectal-cancer stem cells. Sci Rep. 2016;6:22966.PubMedPubMedCentralCrossRef Dong HJ, Jang GB, Lee HY, Park SR, Kim JY, Nam JS, Hong IS. The Wnt/β-catenin signaling/Id2 cascade mediates the effects of hypoxia on the hierarchy of colorectal-cancer stem cells. Sci Rep. 2016;6:22966.PubMedPubMedCentralCrossRef
53.
go back to reference Bae WJ, Koo BS, Lee SH, Kim JM, Rho YS, Lim JY, Moon JH, Cho JH, Lim YC. Inhibitor of DNA binding 2 is a novel therapeutic target for stemness of head and neck squamous cell carcinoma. Br J Cancer. 2017;117(12):1810–8.PubMedPubMedCentralCrossRef Bae WJ, Koo BS, Lee SH, Kim JM, Rho YS, Lim JY, Moon JH, Cho JH, Lim YC. Inhibitor of DNA binding 2 is a novel therapeutic target for stemness of head and neck squamous cell carcinoma. Br J Cancer. 2017;117(12):1810–8.PubMedPubMedCentralCrossRef
54.
go back to reference Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4(4):359–65.PubMedPubMedCentralCrossRef Lee GY, Kenny PA, Lee EH, Bissell MJ. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat Methods. 2007;4(4):359–65.PubMedPubMedCentralCrossRef
55.
go back to reference Pandey PR, Okuda H, Watabe M, Pai SK, Liu W, Kobayashi A, Xing F, Fukuda K, Hirota S, Sugai T, et al. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat. 2011;130(2):387–98.PubMedCrossRef Pandey PR, Okuda H, Watabe M, Pai SK, Liu W, Kobayashi A, Xing F, Fukuda K, Hirota S, Sugai T, et al. Resveratrol suppresses growth of cancer stem-like cells by inhibiting fatty acid synthase. Breast Cancer Res Treat. 2011;130(2):387–98.PubMedCrossRef
Metadata
Title
LncRNA IPW inhibits growth of ductal carcinoma in situ by downregulating ID2 through miR-29c
Authors
Ravindra Pramod Deshpande
Sambad Sharma
Yin Liu
Puspa Raj Pandey
Xinhong Pei
Kerui Wu
Shih-Ying Wu
Abhishek Tyagi
Dan Zhao
Yin-Yuan Mo
Kounosuke Watabe
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Breast Cancer Research / Issue 1/2022
Electronic ISSN: 1465-542X
DOI
https://doi.org/10.1186/s13058-022-01504-4

Other articles of this Issue 1/2022

Breast Cancer Research 1/2022 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine