Skip to main content
Top
Published in: Clinical and Translational Oncology 8/2023

25-03-2023 | Breast Cancer | RESEARCH ARTICLE

Synergistic effect of chrysin and radiotherapy against triple-negative breast cancer (TNBC) cell lines

Authors: Sevda Jafari, Sheida Dabiri, Elnaz Mehdizadeh Aghdam, Ezzatollah Fathi, Nazli Saeedi, Soheila Montazersaheb, Raheleh Farahzadi

Published in: Clinical and Translational Oncology | Issue 8/2023

Login to get access

Abstract

Purpose

Triple-negative breast cancer (TNBC) is the most aggressive form of breast cancer, accounting for 20% of cases. Due to the lack of a molecular target, limited options are available for TNBC treatment. Radiation therapy (RT) is a treatment modality for the management of TNBC following surgery; however, it has a detrimental effect on surrounding healthy tissues/cells at a higher rate.

Methods

We examined the effect of RT in combination with chrysin as a possible radiosensitizing agent in an MDA-MB-231 cell line as a model of a TNBC. The growth inhibitory effects of chrysin were examined using an MTT assay. Flow cytometry was performed to evaluate apoptosis and expression of hypoxia-induced factor-1α (HIF-1α). The protein expression of p-STAT3/STAT3 and Cyclin D1 was examined using western blotting. Real-time PCR determined apoptotic-related genes (Bax, BCL2, p53).

Results

Treatment of MDA-MB-231 cells with chrysin in combination with RT caused synergistic antitumor effects, with an optimum combination index (CI) of 0.495. Our results indicated that chrysin synergistically potentiated RT-induced apoptosis in MDA-MB-231 compared with monotherapies (chrysin and/or RT alone). Expression of HIF-1α was decreased in the cells exposed to combinational therapy. The apoptotic effect of combinational therapy was correlated with increased Bax (pro-apoptotic gene) and p53 levels along with reduced expression of Bcl-2 (anti-apoptotic gene). Increased apoptosis was associated with reduced expression of Cyclin D1, p-STAT3.

Conclusion

These findings highlight the potential effect of chrysin as a radiosensitizer, indicating the synergistic anti-cancer effect of chrysin and RT in TNBC. Further investigation is warranted in this regard.
Literature
2.
go back to reference DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–51.CrossRefPubMed DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, et al. Breast cancer statistics, 2019. CA Cancer J Clin. 2019;69(6):438–51.CrossRefPubMed
3.
go back to reference Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M, et al. The growing role of precision and personalized medicine for cancer treatment. Technology. 2018;6(03n04):79–100.CrossRefPubMed Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M, et al. The growing role of precision and personalized medicine for cancer treatment. Technology. 2018;6(03n04):79–100.CrossRefPubMed
5.
go back to reference O’Reilly EA, Gubbins L, Sharma S, Tully R, Guang MHZ, Weiner-Gorzel K, et al. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA clinical. 2015;3:257–75.CrossRefPubMedPubMedCentral O’Reilly EA, Gubbins L, Sharma S, Tully R, Guang MHZ, Weiner-Gorzel K, et al. The fate of chemoresistance in triple negative breast cancer (TNBC). BBA clinical. 2015;3:257–75.CrossRefPubMedPubMedCentral
6.
go back to reference He MY, Rancoule C, Rehailia-Blanchard A, Espenel S, Trone J-C, Bernichon E, et al. Radiotherapy in triple-negative breast cancer: current situation and upcoming strategies. Crit Rev Oncol Hematol. 2018;131:96–101.CrossRefPubMed He MY, Rancoule C, Rehailia-Blanchard A, Espenel S, Trone J-C, Bernichon E, et al. Radiotherapy in triple-negative breast cancer: current situation and upcoming strategies. Crit Rev Oncol Hematol. 2018;131:96–101.CrossRefPubMed
8.
go back to reference Forte GI, Minafra L, Bravatà V, Cammarata FP, Lamia D, Pisciotta P, et al. Radiogenomics: the utility in patient selection. Transl Cancer Res. 2017;6(Suppl 5):852S-S74.CrossRef Forte GI, Minafra L, Bravatà V, Cammarata FP, Lamia D, Pisciotta P, et al. Radiogenomics: the utility in patient selection. Transl Cancer Res. 2017;6(Suppl 5):852S-S74.CrossRef
9.
go back to reference Yi J, Zhu J, Zhao C, Kang Q, Zhang X, Suo K, et al. Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct. 2021;12(12):5204–18.CrossRefPubMed Yi J, Zhu J, Zhao C, Kang Q, Zhang X, Suo K, et al. Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct. 2021;12(12):5204–18.CrossRefPubMed
10.
go back to reference Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Shahbaz M, et al. Chrysin: Pharmacological and therapeutic properties. Life Sci. 2019;235:116797.CrossRefPubMed Naz S, Imran M, Rauf A, Orhan IE, Shariati MA, Shahbaz M, et al. Chrysin: Pharmacological and therapeutic properties. Life Sci. 2019;235:116797.CrossRefPubMed
11.
go back to reference Adangale SC, Wairkar S. Potential therapeutic activities and novel delivery systems of chrysin-a nature’s boon. Food Biosci. 2021;45:101316.CrossRef Adangale SC, Wairkar S. Potential therapeutic activities and novel delivery systems of chrysin-a nature’s boon. Food Biosci. 2021;45:101316.CrossRef
12.
go back to reference Talebi M, Talebi M, Farkhondeh T, Simal-Gandara J, Kopustinskiene DM, Bernatoniene J, et al. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int. 2021;21(1):1–20.CrossRef Talebi M, Talebi M, Farkhondeh T, Simal-Gandara J, Kopustinskiene DM, Bernatoniene J, et al. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell Int. 2021;21(1):1–20.CrossRef
13.
go back to reference Khaledi S, Jafari S, Hamidi S, Molavi O, Davaran S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-fluorouracil and chrysin. J Biomater Sci Polym Ed. 2020;31(9):1107–26.CrossRefPubMed Khaledi S, Jafari S, Hamidi S, Molavi O, Davaran S. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-fluorouracil and chrysin. J Biomater Sci Polym Ed. 2020;31(9):1107–26.CrossRefPubMed
14.
go back to reference Pawlonka J, Rak B, Ambroziak U. The regulation of cyclin D promoters–review. Cancer Treat Res Commun. 2021;27:100338.CrossRefPubMed Pawlonka J, Rak B, Ambroziak U. The regulation of cyclin D promoters–review. Cancer Treat Res Commun. 2021;27:100338.CrossRefPubMed
15.
go back to reference Qin A, Yu Q, Gao Y, Tan J, Huang H, Qiao Z, et al. Inhibition of STAT3/cyclinD1 pathway promotes chemotherapeutic sensitivity of colorectal caner. Biochem Biophys Res Commun. 2015;457(4):681–7.CrossRefPubMed Qin A, Yu Q, Gao Y, Tan J, Huang H, Qiao Z, et al. Inhibition of STAT3/cyclinD1 pathway promotes chemotherapeutic sensitivity of colorectal caner. Biochem Biophys Res Commun. 2015;457(4):681–7.CrossRefPubMed
16.
go back to reference Rasouli S, Zarghami N. Synergistic growth inhibitory effects of chrysin and metformin combination on breast cancer cells through hTERT and cyclin D1 suppression. Asian Pac J Cancer Prev. 2018;19(4):977.PubMedPubMedCentral Rasouli S, Zarghami N. Synergistic growth inhibitory effects of chrysin and metformin combination on breast cancer cells through hTERT and cyclin D1 suppression. Asian Pac J Cancer Prev. 2018;19(4):977.PubMedPubMedCentral
17.
go back to reference Maasomi ZJ, Soltanahmadi YP, Dadashpour M, Alipour S, Abolhasani S, Zarghami N. Synergistic anticancer effects of silibinin and chrysin in T47D breast cancer cells. Asian Pac J Cancer Prev. 2017;18(5):1283.PubMedCentral Maasomi ZJ, Soltanahmadi YP, Dadashpour M, Alipour S, Abolhasani S, Zarghami N. Synergistic anticancer effects of silibinin and chrysin in T47D breast cancer cells. Asian Pac J Cancer Prev. 2017;18(5):1283.PubMedCentral
18.
go back to reference Samarghandian S, Azimi-Nezhad M, Borji A, Hasanzadeh M, Jabbari F, Farkhondeh T, et al. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn Mag. 2016;12(Suppl 4):S436.PubMedPubMedCentral Samarghandian S, Azimi-Nezhad M, Borji A, Hasanzadeh M, Jabbari F, Farkhondeh T, et al. Inhibitory and cytotoxic activities of chrysin on human breast adenocarcinoma cells by induction of apoptosis. Pharmacogn Mag. 2016;12(Suppl 4):S436.PubMedPubMedCentral
19.
go back to reference Wawryk-Gawda E, Chylińska-Wrzos P, Lis-Sochocka M, Chłapek K, Bulak K, Jędrych M, et al. P53 protein in proliferation, repair and apoptosis of cells. Protoplasma. 2014;251(3):525–33.CrossRefPubMed Wawryk-Gawda E, Chylińska-Wrzos P, Lis-Sochocka M, Chłapek K, Bulak K, Jędrych M, et al. P53 protein in proliferation, repair and apoptosis of cells. Protoplasma. 2014;251(3):525–33.CrossRefPubMed
20.
go back to reference Huang R, Zhou P-K. HIF-1 signaling: a key orchestrator of cancer radioresistance. Radiat Med Prot. 2020;1(01):7–14.CrossRef Huang R, Zhou P-K. HIF-1 signaling: a key orchestrator of cancer radioresistance. Radiat Med Prot. 2020;1(01):7–14.CrossRef
21.
go back to reference Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, et al. Broad-spectrum preclinical antitumor activity of chrysin: current trends and future perspectives. Biomolecules. 2020;10(10):1374.CrossRefPubMedPubMedCentral Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, et al. Broad-spectrum preclinical antitumor activity of chrysin: current trends and future perspectives. Biomolecules. 2020;10(10):1374.CrossRefPubMedPubMedCentral
22.
go back to reference Zoi V, Galani V, Vartholomatos E, Zacharopoulou N, Tsoumeleka E, Gkizas G, et al. Curcumin and radiotherapy exert synergistic anti-glioma effect in vitro. Biomedicines. 2021;9(11):1562.CrossRefPubMedPubMedCentral Zoi V, Galani V, Vartholomatos E, Zacharopoulou N, Tsoumeleka E, Gkizas G, et al. Curcumin and radiotherapy exert synergistic anti-glioma effect in vitro. Biomedicines. 2021;9(11):1562.CrossRefPubMedPubMedCentral
23.
go back to reference Chou T-C. Drug combination studies and their synergy quantification using the chou-talalay methodsynergy quantification method. Cancer Res. 2010;70(2):440–6.CrossRefPubMed Chou T-C. Drug combination studies and their synergy quantification using the chou-talalay methodsynergy quantification method. Cancer Res. 2010;70(2):440–6.CrossRefPubMed
25.
go back to reference Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004;5(5):429–41.CrossRefPubMed Moeller BJ, Cao Y, Li CY, Dewhirst MW. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell. 2004;5(5):429–41.CrossRefPubMed
26.
go back to reference Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 2005;8(2):99–110.CrossRefPubMed Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, et al. Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell. 2005;8(2):99–110.CrossRefPubMed
27.
go back to reference Manjunath M, Choudhary B. Triple-negative breast cancer: a run-through of features, classification and current therapies. Oncol Lett. 2021;22(1):1–21.CrossRef Manjunath M, Choudhary B. Triple-negative breast cancer: a run-through of features, classification and current therapies. Oncol Lett. 2021;22(1):1–21.CrossRef
28.
go back to reference Zhang Q-Y, Wang F-X, Jia K-K, Kong L-D. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front Pharmacol. 2018;9:1253.CrossRefPubMedPubMedCentral Zhang Q-Y, Wang F-X, Jia K-K, Kong L-D. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front Pharmacol. 2018;9:1253.CrossRefPubMedPubMedCentral
29.
go back to reference Molavi O, Torkzaban F, Jafari S, Asnaashari S, Asgharian P. Chemical compositions and anti-proliferative activity of the aerial parts and rhizomes of squirting cucumber, Cucurbitaceae. Jundishapur J Nat Pharm Prod. 2020;15(1):e82990. Molavi O, Torkzaban F, Jafari S, Asnaashari S, Asgharian P. Chemical compositions and anti-proliferative activity of the aerial parts and rhizomes of squirting cucumber, Cucurbitaceae. Jundishapur J Nat Pharm Prod. 2020;15(1):e82990.
31.
go back to reference Salari N, Faraji F, Jafarpour S, Faraji F, Rasoulpoor S, Dokaneheifard S, et al. Anti-cancer activity of chrysin in cancer therapy: a systematic review. Indian J Surg Oncol. 2022;13:1–10.CrossRef Salari N, Faraji F, Jafarpour S, Faraji F, Rasoulpoor S, Dokaneheifard S, et al. Anti-cancer activity of chrysin in cancer therapy: a systematic review. Indian J Surg Oncol. 2022;13:1–10.CrossRef
32.
go back to reference Hennequin C, Guillerm S, Quero L. Combination of chemotherapy and radiotherapy: a thirty years evolution. Cancer/Radiothérapie. 2019;23(6–7):662–5.CrossRefPubMed Hennequin C, Guillerm S, Quero L. Combination of chemotherapy and radiotherapy: a thirty years evolution. Cancer/Radiothérapie. 2019;23(6–7):662–5.CrossRefPubMed
33.
go back to reference Bernal-Estévez D, Sánchez R, Tejada RE, Parra-López C. Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC Cancer. 2016;16(1):1–13.CrossRef Bernal-Estévez D, Sánchez R, Tejada RE, Parra-López C. Chemotherapy and radiation therapy elicits tumor specific T cell responses in a breast cancer patient. BMC Cancer. 2016;16(1):1–13.CrossRef
35.
36.
go back to reference Roy S, Sil A, Chakraborty T. Potentiating apoptosis and modulation of p53, Bcl2, and Bax by a novel chrysin ruthenium complex for effective chemotherapeutic efficacy against breast cancer. J Cell Physiol. 2019;234(4):4888–909.CrossRefPubMed Roy S, Sil A, Chakraborty T. Potentiating apoptosis and modulation of p53, Bcl2, and Bax by a novel chrysin ruthenium complex for effective chemotherapeutic efficacy against breast cancer. J Cell Physiol. 2019;234(4):4888–909.CrossRefPubMed
37.
go back to reference Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104–13.CrossRefPubMed Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25(1):104–13.CrossRefPubMed
38.
go back to reference Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008;18(2):254–67.CrossRefPubMed Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res. 2008;18(2):254–67.CrossRefPubMed
41.
go back to reference Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene. 2005;24(36):5552–60.CrossRefPubMed Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, et al. Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene. 2005;24(36):5552–60.CrossRefPubMed
Metadata
Title
Synergistic effect of chrysin and radiotherapy against triple-negative breast cancer (TNBC) cell lines
Authors
Sevda Jafari
Sheida Dabiri
Elnaz Mehdizadeh Aghdam
Ezzatollah Fathi
Nazli Saeedi
Soheila Montazersaheb
Raheleh Farahzadi
Publication date
25-03-2023
Publisher
Springer International Publishing
Published in
Clinical and Translational Oncology / Issue 8/2023
Print ISSN: 1699-048X
Electronic ISSN: 1699-3055
DOI
https://doi.org/10.1007/s12094-023-03141-5

Other articles of this Issue 8/2023

Clinical and Translational Oncology 8/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine