Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2023

03-02-2023 | Breast Cancer

Could senescence phenotypes strike the balance to promote tumor dormancy?

Authors: Fang-Yen Chiu, Raegan M. Kvadas, Zeinab Mheidly, Ashkan Shahbandi, James G. Jackson

Published in: Cancer and Metastasis Reviews | Issue 1/2023

Login to get access

Abstract

After treatment and surgery, patient tumors can initially respond followed by a rapid relapse, or respond well and seemingly be cured, but then recur years or decades later. The state of surviving cancer cells during the long, undetected period is termed dormancy. By definition, the dormant tumor cells do not proliferate to create a mass that is detectable or symptomatic, but also never die. An intrinsic state and microenvironment that are inhospitable to the tumor would bias toward cell death and complete eradication, while conditions that favor the tumor would enable growth and relapse. In neither case would clinical dormancy be observed. Normal cells and tumor cells can enter a state of cellular senescence after stress such as that caused by cancer therapy. Senescence is characterized by a stable cell cycle arrest mediated by chromatin modifications that cause gene expression changes and a secretory phenotype involving many cytokines and chemokines. Senescent cell phenotypes have been shown to be both tumor promoting and tumor suppressive. The balance of these opposing forces presents an attractive model to explain tumor dormancy: phenotypes of stable arrest and immune suppression could promote survival, while reversible epigenetic programs combined with cytokines and growth factors that promote angiogenesis, survival, and proliferation could initiate the emergence from dormancy. In this review, we examine the phenotypes that have been characterized in different normal and cancer cells made senescent by various stresses and how these might explain the characteristics of tumor dormancy.
Literature
3.
go back to reference Roninson, I. B. (2003). Tumor cell senescence in cancer treatment. Cancer Research, 63(11), 2705–2715.PubMed Roninson, I. B. (2003). Tumor cell senescence in cancer treatment. Cancer Research, 63(11), 2705–2715.PubMed
4.
go back to reference Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37, 614–636.CrossRefPubMed Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37, 614–636.CrossRefPubMed
5.
go back to reference Chang, B. D., Broude, E. V., Dokmanovic, M., Zhu, H., Ruth, A., Xuan, Y., et al. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Research, 59(15), 3761–3767.PubMed Chang, B. D., Broude, E. V., Dokmanovic, M., Zhu, H., Ruth, A., Xuan, Y., et al. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Research, 59(15), 3761–3767.PubMed
9.
go back to reference Smith, J. R., & Pereira-Smith, O. M. (1996). Replicative senescence: Implications for in vivo aging and tumor suppression. Science, 273(5271), 63–67.CrossRefPubMed Smith, J. R., & Pereira-Smith, O. M. (1996). Replicative senescence: Implications for in vivo aging and tumor suppression. Science, 273(5271), 63–67.CrossRefPubMed
14.
go back to reference Tonnessen-Murray, C., Lozano, G., & Jackson, J. G. (2016). The p53 Protein: From Cell Regulation to Cancer. In G. Lozano, & A. J. Levine (Eds.), The p53 Protein: From Cell Regulation to Cancer (pp. 173–186, A Cold Spring Harbor Perspectives in Medicine Collection). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Tonnessen-Murray, C., Lozano, G., & Jackson, J. G. (2016). The p53 Protein: From Cell Regulation to Cancer. In G. Lozano, & A. J. Levine (Eds.), The p53 Protein: From Cell Regulation to Cancer (pp. 173–186, A Cold Spring Harbor Perspectives in Medicine Collection). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
16.
17.
go back to reference Wang, Y., Xu, Y., Chen, J., Ouyang, T., Li, J., Wang, T., et al. (2016). TP53 mutations are associated with higher rates of pathologic complete response to anthracycline/cyclophosphamide-based neoadjuvant chemotherapy in operable primary breast cancer. International Journal of Cancer, 138(2), 489–496. https://doi.org/10.1002/ijc.29715CrossRefPubMed Wang, Y., Xu, Y., Chen, J., Ouyang, T., Li, J., Wang, T., et al. (2016). TP53 mutations are associated with higher rates of pathologic complete response to anthracycline/cyclophosphamide-based neoadjuvant chemotherapy in operable primary breast cancer. International Journal of Cancer, 138(2), 489–496. https://​doi.​org/​10.​1002/​ijc.​29715CrossRefPubMed
19.
go back to reference Esserman, L. J., Berry, D. A., Cheang, M. C., Yau, C., Perou, C. M., Carey, L., et al. (2012). Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: Results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Research and Treatment, 132(3), 1049–1062. https://doi.org/10.1007/s10549-011-1895-2CrossRefPubMed Esserman, L. J., Berry, D. A., Cheang, M. C., Yau, C., Perou, C. M., Carey, L., et al. (2012). Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: Results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Research and Treatment, 132(3), 1049–1062. https://​doi.​org/​10.​1007/​s10549-011-1895-2CrossRefPubMed
50.
56.
go back to reference Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080.CrossRefPubMed Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293(5532), 1074–1080.CrossRefPubMed
108.
go back to reference Coppe, J. P., Patil, C. K., Rodier, F., Sun, Y., Munoz, D. P., Goldstein, J., et al. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 6(12), 2853–2868, 08-PLBI-RA-2566 [pii] https://doi.org/10.1371/journal.pbio.0060301. Coppe, J. P., Patil, C. K., Rodier, F., Sun, Y., Munoz, D. P., Goldstein, J., et al. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 6(12), 2853–2868, 08-PLBI-RA-2566 [pii] https://​doi.​org/​10.​1371/​journal.​pbio.​0060301.
111.
go back to reference Yadav, P. K., Ghosh, M., & Kataria, M. (2022). Matrix Metalloproteinases (MMPs) in Cancer Immunotherapy. In S. Chakraborti (Ed.), Handbook of Oxidative Stress in Cancer: Therapeutic Aspects (pp. 1–26). Singapore: Springer Singapore. Yadav, P. K., Ghosh, M., & Kataria, M. (2022). Matrix Metalloproteinases (MMPs) in Cancer Immunotherapy. In S. Chakraborti (Ed.), Handbook of Oxidative Stress in Cancer: Therapeutic Aspects (pp. 1–26). Singapore: Springer Singapore.
112.
118.
go back to reference Loeffler, S., Fayard, B., Weis, J., & Weissenberger, J. (2005). Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. International Journal of Cancer, 115(2), 202–213. https://doi.org/10.1002/ijc.20871CrossRefPubMed Loeffler, S., Fayard, B., Weis, J., & Weissenberger, J. (2005). Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. International Journal of Cancer, 115(2), 202–213. https://​doi.​org/​10.​1002/​ijc.​20871CrossRefPubMed
127.
go back to reference Singh, R. K., Gutman, M., Radinsky, R., Bucana, C. D., & Fidler, I. J. (1994). Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Research, 54(12), 3242–3247.PubMed Singh, R. K., Gutman, M., Radinsky, R., Bucana, C. D., & Fidler, I. J. (1994). Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Research, 54(12), 3242–3247.PubMed
128.
go back to reference Ishiko, T., Sakamoto, K., Yamashita, S., Masuda, Y., Kamohara, H., Mita, S., et al. (1995). Carcinoma-cells express IL-8 and the IL-8 receptor - their inhibition attenuates the growth of carcinoma-cells. International Journal of Oncology, 6(1), 119–122.PubMed Ishiko, T., Sakamoto, K., Yamashita, S., Masuda, Y., Kamohara, H., Mita, S., et al. (1995). Carcinoma-cells express IL-8 and the IL-8 receptor - their inhibition attenuates the growth of carcinoma-cells. International Journal of Oncology, 6(1), 119–122.PubMed
143.
go back to reference Owen, J., & Mohamadzadeh, M. (2013). Macrophages and chemokines as mediators of angiogenesis. Frontiers in Physiology, 4. Owen, J., & Mohamadzadeh, M. (2013). Macrophages and chemokines as mediators of angiogenesis. Frontiers in Physiology, 4.
145.
go back to reference Salcedo, R., Ponce, M. L., Young, H. A., Wasserman, K., Ward, J. M., Kleinman, H. K., et al. (2000). Human endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression. Blood, 96(1), 34–40.CrossRefPubMed Salcedo, R., Ponce, M. L., Young, H. A., Wasserman, K., Ward, J. M., Kleinman, H. K., et al. (2000). Human endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression. Blood, 96(1), 34–40.CrossRefPubMed
155.
167.
go back to reference Ratushna, O. O., Minchenko, D. O., Palladin Institute of Biochemistry, N. A. S. o. U., O. O. Bohomoletz National Medical University, U., Danilovskyi, S. V., Palladin Institute of Biochemistry, N. A. S. O. U., et al. (2012). Expression of anti-angiogenic genes in subcutaneous adipose tissue of the obese individuals with pre-diabetes and type 2 diabetes. Studia Biologica, 6(2), 17–32, https://doi.org/10.30970/sbi.0602.226. Ratushna, O. O., Minchenko, D. O., Palladin Institute of Biochemistry, N. A. S. o. U., O. O. Bohomoletz National Medical University, U., Danilovskyi, S. V., Palladin Institute of Biochemistry, N. A. S. O. U., et al. (2012). Expression of anti-angiogenic genes in subcutaneous adipose tissue of the obese individuals with pre-diabetes and type 2 diabetes. Studia Biologica, 6(2), 17–32, https://​doi.​org/​10.​30970/​sbi.​0602.​226.
169.
170.
go back to reference Lee, I. Y., Kim, J., Ko, E.-M., Jeoung, E. J., Kwon, Y.-G., & Choe, J. (2002). Interleukin-4 inhibits the vascular endothelial growth factor- and basic fibroblast growth factor-induced angiogenesis in vitro. Molecules and Cells, 14(1), 115–121.PubMed Lee, I. Y., Kim, J., Ko, E.-M., Jeoung, E. J., Kwon, Y.-G., & Choe, J. (2002). Interleukin-4 inhibits the vascular endothelial growth factor- and basic fibroblast growth factor-induced angiogenesis in vitro. Molecules and Cells, 14(1), 115–121.PubMed
174.
go back to reference Sgadari, C., Angiolillo, A. L., & Tosato, G. (1996). Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 87(9), 3877–3882.CrossRefPubMed Sgadari, C., Angiolillo, A. L., & Tosato, G. (1996). Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood, 87(9), 3877–3882.CrossRefPubMed
179.
go back to reference Hatanaka, H., Abe, Y., Naruke, M., Tokunaga, T., Oshika, Y., Kawakami, T., et al. (2001). Significant Correlation between Interleukin 10 Expression and Vascularization through Angiopoietin/TIE2 Networks in Non-small Cell Lung Cancer1. Clinical Cancer Research, 7(5), 1287–1292.PubMed Hatanaka, H., Abe, Y., Naruke, M., Tokunaga, T., Oshika, Y., Kawakami, T., et al. (2001). Significant Correlation between Interleukin 10 Expression and Vascularization through Angiopoietin/TIE2 Networks in Non-small Cell Lung Cancer1. Clinical Cancer Research, 7(5), 1287–1292.PubMed
182.
go back to reference Kohno, T., Mizukami, H., Suzuki, M., Saga, Y., Takei, Y., Shimpo, M., et al. Interleukin-10-mediated Inhibition of Angiogenesis and Tumor Growth in Mice Bearing VEGF-producing Ovarian Cancer. 4. Kohno, T., Mizukami, H., Suzuki, M., Saga, Y., Takei, Y., Shimpo, M., et al. Interleukin-10-mediated Inhibition of Angiogenesis and Tumor Growth in Mice Bearing VEGF-producing Ovarian Cancer. 4.
183.
go back to reference Farrar, J. D., Katz, K. H., Windsor, J., Thrush, G., Scheuermann, R. H., Uhr, J. W., et al. (1999). Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma in establishing and maintaining the tumor-dormant state. J Immunol, 162(5), 2842–2849.CrossRefPubMed Farrar, J. D., Katz, K. H., Windsor, J., Thrush, G., Scheuermann, R. H., Uhr, J. W., et al. (1999). Cancer dormancy. VII. A regulatory role for CD8+ T cells and IFN-gamma in establishing and maintaining the tumor-dormant state. J Immunol, 162(5), 2842–2849.CrossRefPubMed
191.
go back to reference Soriani, A., Zingoni, A., Cerboni, C., Iannitto, M. L., Ricciardi, M. R., Di Gialleonardo, V., et al. (2009). ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood, 113(15), 3503–3511. https://doi.org/10.1182/blood-2008-08-173914CrossRefPubMed Soriani, A., Zingoni, A., Cerboni, C., Iannitto, M. L., Ricciardi, M. R., Di Gialleonardo, V., et al. (2009). ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood, 113(15), 3503–3511. https://​doi.​org/​10.​1182/​blood-2008-08-173914CrossRefPubMed
193.
204.
go back to reference Mazzoni, M., Mauro, G., Erreni, M., Romeo, P., Minna, E., Vizioli, M. G., et al. (2019). Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. Journal of Experimental & Clinical Cancer Research, 38(1), 208. https://doi.org/10.1186/s13046-019-1198-8CrossRef Mazzoni, M., Mauro, G., Erreni, M., Romeo, P., Minna, E., Vizioli, M. G., et al. (2019). Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. Journal of Experimental & Clinical Cancer Research, 38(1), 208. https://​doi.​org/​10.​1186/​s13046-019-1198-8CrossRef
214.
go back to reference Shahbandi, A., Rao, S. G., Anderson, A. Y., Frey, W. D., Olayiwola, J. O., Ungerleider, N. A., et al. (2020). BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. Cell Death & Differentiation, 27(11), 3097–3116. https://doi.org/10.1038/s41418-020-0564-6CrossRef Shahbandi, A., Rao, S. G., Anderson, A. Y., Frey, W. D., Olayiwola, J. O., Ungerleider, N. A., et al. (2020). BH3 mimetics selectively eliminate chemotherapy-induced senescent cells and improve response in TP53 wild-type breast cancer. Cell Death & Differentiation, 27(11), 3097–3116. https://​doi.​org/​10.​1038/​s41418-020-0564-6CrossRef
221.
go back to reference Gayle, S. S., Sahni, J. M., Webb, B. M., Weber-Bonk, K. L., Shively, M. S., Spina, R., et al. (2019). Targeting BCL-xL improves the efficacy of bromodomain and extra-terminal protein inhibitors in triple-negative breast cancer by eliciting the death of senescent cells. Journal of Biological Chemistry, 294(3), 875–886. https://doi.org/10.1074/jbc.RA118.004712CrossRefPubMed Gayle, S. S., Sahni, J. M., Webb, B. M., Weber-Bonk, K. L., Shively, M. S., Spina, R., et al. (2019). Targeting BCL-xL improves the efficacy of bromodomain and extra-terminal protein inhibitors in triple-negative breast cancer by eliciting the death of senescent cells. Journal of Biological Chemistry, 294(3), 875–886. https://​doi.​org/​10.​1074/​jbc.​RA118.​004712CrossRefPubMed
Metadata
Title
Could senescence phenotypes strike the balance to promote tumor dormancy?
Authors
Fang-Yen Chiu
Raegan M. Kvadas
Zeinab Mheidly
Ashkan Shahbandi
James G. Jackson
Publication date
03-02-2023
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2023
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-023-10089-z

Other articles of this Issue 1/2023

Cancer and Metastasis Reviews 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine