Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3/2020

01-09-2020 | Breast Cancer

Coordinated dysregulation of cancer progression by the HER family and p21-activated kinases

Authors: Rakesh Kumar, Aswathy Mary Paul, Ravikumar Amjesh, Bijesh George, M. Radhakrishna Pillai

Published in: Cancer and Metastasis Reviews | Issue 3/2020

Login to get access

Abstract

Most epithelial cancer types are polygenic in nature and are driven by coordinated dysregulation of multiple regulatory pathways, genes, and protein modifications. The process of coordinated regulation of cancer promoting pathways in response to extrinsic and intrinsic signals facilitates the dysregulation of several pathways with complementary functions, contributing to the hallmarks of cancer. Dysregulation and hyperactivation of cell surface human epidermal growth factor receptors (HERs) and cytoskeleton remodeling by p21-activated kinases (PAKs) are two prominent interconnected aspects of oncogenesis. We briefly discuss the discoveries and significant advances in the area of coordinated regulation of HERs and PAKs in the development and progression of breast and other epithelial cancers. We also discuss how initial studies involving heregulin signaling via HER3-HER2 axis and HER2-overexpressing breast cancer cells not only discovered a mechanistic role of PAK1 in breast cancer pathobiology but also acted as a bridge in generating a broader cancer research interest in other PAK family members and cancer types and catalyzed establishing the role of PAKs in human cancer, at-large. In addition, growth factor stimulation of the PAK pathway also helped to recognize new facets of PAKs, connecting the PAK pathway to oncogenesis, nuclear signaling, gene expression, mitotic progression, DNA damage response, among other phenotypic responses, and shaped the field of PAK cancer research. Finally, we recount some of the current limitations of HER- and PAK-directed therapeutics in counteracting acquired therapeutic resistance and discuss how cancer’s as a polygenic disease may be best targeted with a polygenic approach.
Literature
1.
go back to reference Ghosh, S., Marrocco, I., & Yarden, Y. (2020). Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment. Advances in Cancer Research, 147, 1–57.PubMed Ghosh, S., Marrocco, I., & Yarden, Y. (2020). Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment. Advances in Cancer Research, 147, 1–57.PubMed
2.
go back to reference Chen, M.-K., Hsu, J. L., & Hung, M.-C. (2020). Nuclear receptor tyrosine kinase transport and functions in cancer. Advances in Cancer Research, 147, 59–107.PubMed Chen, M.-K., Hsu, J. L., & Hung, M.-C. (2020). Nuclear receptor tyrosine kinase transport and functions in cancer. Advances in Cancer Research, 147, 59–107.PubMed
3.
go back to reference Kumar, R., George, B., Campbell, M. R., Verma, N., Paul, A. M., Melo-Alvim, C., Ribeiro, L., Pillai, M. R., Marques da Costa, L., & Moasser, M. M. (2020). HER family in cancer progression: From discovery to 2020 and beyond. Advances in Cancer Research, 147, 109–152.PubMed Kumar, R., George, B., Campbell, M. R., Verma, N., Paul, A. M., Melo-Alvim, C., Ribeiro, L., Pillai, M. R., Marques da Costa, L., & Moasser, M. M. (2020). HER family in cancer progression: From discovery to 2020 and beyond. Advances in Cancer Research, 147, 109–152.PubMed
4.
go back to reference Kumar, R., & Mendelsohn, J. (1991). Polypeptide growth factors in the regulation of human tumor cell proliferation. Current Opinion in Oncology, 3(1), 70–74.PubMed Kumar, R., & Mendelsohn, J. (1991). Polypeptide growth factors in the regulation of human tumor cell proliferation. Current Opinion in Oncology, 3(1), 70–74.PubMed
5.
go back to reference Mendelsohn, J. (2000). Blockade of receptors for growth factors: An anticancer therapy - the Fourth Annual Joseph H. Burchenal American Association for Cancer Research Clinical Research Award Lecture. Clinical Cancer Research, 6(3), 747–753.PubMed Mendelsohn, J. (2000). Blockade of receptors for growth factors: An anticancer therapy - the Fourth Annual Joseph H. Burchenal American Association for Cancer Research Clinical Research Award Lecture. Clinical Cancer Research, 6(3), 747–753.PubMed
6.
go back to reference Kumar, R. (2001). Targeting epidermal growth factor receptor family members for treatment of breast cancer. Biological Therapy of Breast Cancer, 3, 3–6. Kumar, R. (2001). Targeting epidermal growth factor receptor family members for treatment of breast cancer. Biological Therapy of Breast Cancer, 3, 3–6.
7.
go back to reference Kumar, R., de Vijver, Van, M., Tortora, G., Ciardiello, F., Goldkorn, T., Miller, W. H., & Norton, L. (2019). A tribute to John Mendelsohn: A pioneer in targeted cancer therapy. Cancer Research, 79(17), 4315–4323.PubMed Kumar, R., de Vijver, Van, M., Tortora, G., Ciardiello, F., Goldkorn, T., Miller, W. H., & Norton, L. (2019). A tribute to John Mendelsohn: A pioneer in targeted cancer therapy. Cancer Research, 79(17), 4315–4323.PubMed
8.
go back to reference Kumar, R., & Vadlamudi, R. K. (2002). Emerging functions of p21-activated kinases in human cancer cells. Journal of Cellular Physiology, 193(2), 133–144.PubMed Kumar, R., & Vadlamudi, R. K. (2002). Emerging functions of p21-activated kinases in human cancer cells. Journal of Cellular Physiology, 193(2), 133–144.PubMed
9.
go back to reference Gururaj, A. E., Rayala, S. K., & Kumar, R. (2005). p21-activated kinase signaling in breast cancer. Breast Cancer Research : BCR, 7(1), 5–12.PubMed Gururaj, A. E., Rayala, S. K., & Kumar, R. (2005). p21-activated kinase signaling in breast cancer. Breast Cancer Research : BCR, 7(1), 5–12.PubMed
10.
go back to reference Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nature Reviews. Cancer, 6(6), 459–471.PubMed Kumar, R., Gururaj, A. E., & Barnes, C. J. (2006). p21-activated kinases in cancer. Nature Reviews. Cancer, 6(6), 459–471.PubMed
11.
go back to reference Molli, P. R., Li, D. Q., Murray, B. W., Rayala, S. K., & Kumar, R. (2009). PAK signaling in oncogenesis. Oncogene, 28(28), 2545–2555.PubMedPubMedCentral Molli, P. R., Li, D. Q., Murray, B. W., Rayala, S. K., & Kumar, R. (2009). PAK signaling in oncogenesis. Oncogene, 28(28), 2545–2555.PubMedPubMedCentral
12.
go back to reference Kumar, R., & Li, D.-Q. (2016). PAKs in human Cancer progression: From inception to cancer therapeutic to future oncobiology. Advances in Cancer Research, 130, 137–209.PubMed Kumar, R., & Li, D.-Q. (2016). PAKs in human Cancer progression: From inception to cancer therapeutic to future oncobiology. Advances in Cancer Research, 130, 137–209.PubMed
13.
go back to reference Kumar, R., Sanawar, R., Li, X., & Li, F. (2017). Structure, biochemistry, and biology of PAK kinases. Gene, 605, 20–31.PubMed Kumar, R., Sanawar, R., Li, X., & Li, F. (2017). Structure, biochemistry, and biology of PAK kinases. Gene, 605, 20–31.PubMed
14.
go back to reference Cohen, S. (1962). Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. The Journal of Biological Chemistry, 237, 1555–1562.PubMed Cohen, S. (1962). Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal. The Journal of Biological Chemistry, 237, 1555–1562.PubMed
15.
go back to reference Carpenter, G., King Jr., L., & Cohen, S. (1978). Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature, 276(5686), 409–410.PubMed Carpenter, G., King Jr., L., & Cohen, S. (1978). Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature, 276(5686), 409–410.PubMed
16.
go back to reference Carpenter, G., King Jr., L., & Cohen, S. (1979). Rapid enhancement of protein phosphorylation in A-431 cell membrane preparations by epidermal growth factor. The Journal of Biological Chemistry, 254(11), 4884–4891.PubMed Carpenter, G., King Jr., L., & Cohen, S. (1979). Rapid enhancement of protein phosphorylation in A-431 cell membrane preparations by epidermal growth factor. The Journal of Biological Chemistry, 254(11), 4884–4891.PubMed
17.
go back to reference Cohen, S., Carpenter, G., & King Jr., L. (1980). Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. The Journal of Biological Chemistry, 255(10), 4834–4842.PubMed Cohen, S., Carpenter, G., & King Jr., L. (1980). Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. The Journal of Biological Chemistry, 255(10), 4834–4842.PubMed
18.
go back to reference Semba, K., Kamata, N., Toyoshima, K., & Yamamoto, T. (1985). A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 82(19), 6497–6501.PubMedPubMedCentral Semba, K., Kamata, N., Toyoshima, K., & Yamamoto, T. (1985). A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 82(19), 6497–6501.PubMedPubMedCentral
19.
go back to reference Schechter, A. L., Hung, M. C., Vaidyanathan, L., Weinberg, R. A., Yang-Feng, T. L., Francke, U., et al. (1985). The neu gene: An erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science (New York, N.Y.), 229(4717), 976–978. Schechter, A. L., Hung, M. C., Vaidyanathan, L., Weinberg, R. A., Yang-Feng, T. L., Francke, U., et al. (1985). The neu gene: An erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science (New York, N.Y.), 229(4717), 976–978.
20.
go back to reference Hung, M. C., Schechter, A. L., Chevray, P. Y., Stern, D. F., & Weinberg, R. A. (1986). Molecular cloning of the neu gene: Absence of gross structural alteration in oncogenic alleles. Proceedings of the National Academy of Sciences of the United States of America, 83(2), 261–264.PubMedPubMedCentral Hung, M. C., Schechter, A. L., Chevray, P. Y., Stern, D. F., & Weinberg, R. A. (1986). Molecular cloning of the neu gene: Absence of gross structural alteration in oncogenic alleles. Proceedings of the National Academy of Sciences of the United States of America, 83(2), 261–264.PubMedPubMedCentral
21.
go back to reference van de Vijver, M. J., Peterse, J. L., Mooi, W. J., Wisman, P., Lomans, J., Dalesio, O., & Nusse, R. (1988). Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. The New England Journal of Medicine, 319(19), 1239–1245.PubMed van de Vijver, M. J., Peterse, J. L., Mooi, W. J., Wisman, P., Lomans, J., Dalesio, O., & Nusse, R. (1988). Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. The New England Journal of Medicine, 319(19), 1239–1245.PubMed
22.
go back to reference Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science (New York, N.Y.), 244(4905), 707–712. Slamon, D. J., Godolphin, W., Jones, L. A., Holt, J. A., Wong, S. G., Keith, D. E., et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science (New York, N.Y.), 244(4905), 707–712.
23.
go back to reference Kraus, M. H., Issing, W., Miki, T., Popescu, N. C., & Aaronson, S. A. (1989). Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: Evidence for overexpression in a subset of human mammary tumors. Proceedings of the National Academy of Sciences of the United States of America, 86(23), 9193–9197.PubMedPubMedCentral Kraus, M. H., Issing, W., Miki, T., Popescu, N. C., & Aaronson, S. A. (1989). Isolation and characterization of ERBB3, a third member of the ERBB/epidermal growth factor receptor family: Evidence for overexpression in a subset of human mammary tumors. Proceedings of the National Academy of Sciences of the United States of America, 86(23), 9193–9197.PubMedPubMedCentral
24.
go back to reference Plowman, G. D., Whitney, G. S., Neubauer, M. G., Green, J. M., McDonald, V. L., Todaro, G. J., & Shoyab, M. (1990). Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proceedings of the National Academy of Sciences of the United States of America, 87(13), 4905–4909.PubMedPubMedCentral Plowman, G. D., Whitney, G. S., Neubauer, M. G., Green, J. M., McDonald, V. L., Todaro, G. J., & Shoyab, M. (1990). Molecular cloning and expression of an additional epidermal growth factor receptor-related gene. Proceedings of the National Academy of Sciences of the United States of America, 87(13), 4905–4909.PubMedPubMedCentral
25.
go back to reference Plowman, G. D., Culouscou, J. M., Whitney, G. S., Green, J. M., Carlton, G. W., Foy, L., et al. (1993). Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proceedings of the National Academy of Sciences of the United States of America, 90(5), 1746–1750.PubMedPubMedCentral Plowman, G. D., Culouscou, J. M., Whitney, G. S., Green, J. M., Carlton, G. W., Foy, L., et al. (1993). Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proceedings of the National Academy of Sciences of the United States of America, 90(5), 1746–1750.PubMedPubMedCentral
26.
go back to reference Earp 3rd, H. S., Calvo, B. F., & Sartor, C. I. (2003). The EGF receptor family--multiple roles in proliferation, differentiation, and neoplasia with an emphasis on HER4. Transactions of the American Clinical and Climatological Association, 114, 315–334.PubMedPubMedCentral Earp 3rd, H. S., Calvo, B. F., & Sartor, C. I. (2003). The EGF receptor family--multiple roles in proliferation, differentiation, and neoplasia with an emphasis on HER4. Transactions of the American Clinical and Climatological Association, 114, 315–334.PubMedPubMedCentral
27.
go back to reference Jones, F. E. (2008). HER4 intracellular domain (4ICD) activity in the developing mammary gland and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 13(2), 247–258.PubMedPubMedCentral Jones, F. E. (2008). HER4 intracellular domain (4ICD) activity in the developing mammary gland and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 13(2), 247–258.PubMedPubMedCentral
28.
go back to reference Pines, G., Köstler, W. J., & Yarden, Y. (2010). Oncogenic mutant forms of EGFR: Lessons in signal transduction and targets for cancer therapy. FEBS Letters, 584(12), 2699–2706.PubMedPubMedCentral Pines, G., Köstler, W. J., & Yarden, Y. (2010). Oncogenic mutant forms of EGFR: Lessons in signal transduction and targets for cancer therapy. FEBS Letters, 584(12), 2699–2706.PubMedPubMedCentral
29.
go back to reference Paez, J. G., Jänne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science (New York, N.Y.), 304(5676), 1497–1500. Paez, J. G., Jänne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S., et al. (2004). EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science (New York, N.Y.), 304(5676), 1497–1500.
30.
go back to reference Carey, K. D., Garton, A. J., Romero, M. S., Kahler, J., Thomson, S., Ross, S., et al. (2006). Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Research, 66(16), 8163–8171.PubMed Carey, K. D., Garton, A. J., Romero, M. S., Kahler, J., Thomson, S., Ross, S., et al. (2006). Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib. Cancer Research, 66(16), 8163–8171.PubMed
31.
go back to reference Zhang, K., Cui, J., Xi, H., Bian, S., Ma, L., Shen, W., et al. (2015). Serum HER2 is a potential surrogate for tissue HER2 status in gastric cancer: A systematic review and meta-analysis. PLoS One, 10(8), e0136322–e0136322.PubMedPubMedCentral Zhang, K., Cui, J., Xi, H., Bian, S., Ma, L., Shen, W., et al. (2015). Serum HER2 is a potential surrogate for tissue HER2 status in gastric cancer: A systematic review and meta-analysis. PLoS One, 10(8), e0136322–e0136322.PubMedPubMedCentral
32.
go back to reference Robichaux, J. P., Elamin, Y. Y., Vijayan, R. S. K., Nilsson, M. B., Hu, L., He, J., et al. (2019). Pan-cancer landscape and analysis of ERBB2 mutations identifies poziotinib as a clinically active inhibitor and enhancer of T-DM1 activity. Cancer Cell, 36(4), 444–457.e7.PubMed Robichaux, J. P., Elamin, Y. Y., Vijayan, R. S. K., Nilsson, M. B., Hu, L., He, J., et al. (2019). Pan-cancer landscape and analysis of ERBB2 mutations identifies poziotinib as a clinically active inhibitor and enhancer of T-DM1 activity. Cancer Cell, 36(4), 444–457.e7.PubMed
33.
go back to reference Wang, Z. (2017). ErbB receptors and cancer. Methods in Molecular Biology (Clifton, N.J.), 1652, 3–35. Wang, Z. (2017). ErbB receptors and cancer. Methods in Molecular Biology (Clifton, N.J.), 1652, 3–35.
34.
go back to reference Baulida, J., Kraus, M. H., Alimandi, M., Di Fiore, P. P., & Carpenter, G. (1996). All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. The Journal of Biological Chemistry, 271(9), 5251–5257.PubMed Baulida, J., Kraus, M. H., Alimandi, M., Di Fiore, P. P., & Carpenter, G. (1996). All ErbB receptors other than the epidermal growth factor receptor are endocytosis impaired. The Journal of Biological Chemistry, 271(9), 5251–5257.PubMed
35.
go back to reference Haslekås, C., Breen, K., Pedersen, K. W., Johannessen, L. E., Stang, E., & Madshus, I. H. (2005). The inhibitory effect of ErbB2 on epidermal growth factor-induced formation of clathrin-coated pits correlates with retention of epidermal growth factor receptor-ErbB2 oligomeric complexes at the plasma membrane. Molecular Biology of the Cell, 16(12), 5832–5842.PubMedPubMedCentral Haslekås, C., Breen, K., Pedersen, K. W., Johannessen, L. E., Stang, E., & Madshus, I. H. (2005). The inhibitory effect of ErbB2 on epidermal growth factor-induced formation of clathrin-coated pits correlates with retention of epidermal growth factor receptor-ErbB2 oligomeric complexes at the plasma membrane. Molecular Biology of the Cell, 16(12), 5832–5842.PubMedPubMedCentral
36.
go back to reference Sorkin, A., & von Zastrow, M. (2009). Endocytosis and signalling: Intertwining molecular networks. Nature Reviews. Molecular and Cellular Biology, 10(9), 609–622. Sorkin, A., & von Zastrow, M. (2009). Endocytosis and signalling: Intertwining molecular networks. Nature Reviews. Molecular and Cellular Biology, 10(9), 609–622.
37.
go back to reference Pedersen, N. M., Madshus, I. H., Haslekås, C., & Stang, E. (2008). Geldanamycin-induced down-regulation of ErbB2 from the plasma membrane is clathrin dependent but proteasomal activity independent. Molecular Cancer Research : MCR, 6(3), 491–500.PubMed Pedersen, N. M., Madshus, I. H., Haslekås, C., & Stang, E. (2008). Geldanamycin-induced down-regulation of ErbB2 from the plasma membrane is clathrin dependent but proteasomal activity independent. Molecular Cancer Research : MCR, 6(3), 491–500.PubMed
38.
go back to reference Peschard, P., & Park, M. (2003). Escape from Cbl-mediated downregulation: A recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell, 3(6), 519–523.PubMed Peschard, P., & Park, M. (2003). Escape from Cbl-mediated downregulation: A recurrent theme for oncogenic deregulation of receptor tyrosine kinases. Cancer Cell, 3(6), 519–523.PubMed
39.
go back to reference Pietilä, M., Sahgal, P., Peuhu, E., Jäntti, N. Z., Paatero, I., Närvä, E., et al. (2019). SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nature Communications, 10(1), 2340.PubMedPubMedCentral Pietilä, M., Sahgal, P., Peuhu, E., Jäntti, N. Z., Paatero, I., Närvä, E., et al. (2019). SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nature Communications, 10(1), 2340.PubMedPubMedCentral
40.
go back to reference Wiley, H. S. (2003). Trafficking of the ErbB receptors and its influence on signaling. Experimental Cell Research, 284(1), 78–88.PubMed Wiley, H. S. (2003). Trafficking of the ErbB receptors and its influence on signaling. Experimental Cell Research, 284(1), 78–88.PubMed
41.
go back to reference Waterman, H., Alroy, I., Strano, S., Seger, R., & Yarden, Y. (1999). The C-terminus of the kinase-defective neuregulin receptor ErbB-3 confers mitogenic superiority and dictates endocytic routing. The EMBO Journal, 18(12), 3348–3358.PubMedPubMedCentral Waterman, H., Alroy, I., Strano, S., Seger, R., & Yarden, Y. (1999). The C-terminus of the kinase-defective neuregulin receptor ErbB-3 confers mitogenic superiority and dictates endocytic routing. The EMBO Journal, 18(12), 3348–3358.PubMedPubMedCentral
42.
go back to reference Stern, D. F., & Kamps, M. P. (1988). EGF-stimulated tyrosine phosphorylation of p185neu: A potential model for receptor interactions. The EMBO Journal, 7(4), 995–1001.PubMedPubMedCentral Stern, D. F., & Kamps, M. P. (1988). EGF-stimulated tyrosine phosphorylation of p185neu: A potential model for receptor interactions. The EMBO Journal, 7(4), 995–1001.PubMedPubMedCentral
43.
go back to reference King, C. R., Borrello, I., Bellot, F., Comoglio, P., & Schlessinger, J. (1988). Egf binding to its receptor triggers a rapid tyrosine phosphorylation of the erbB-2 protein in the mammary tumor cell line SK-BR-3. The EMBO Journal, 7(6), 1647–1651.PubMedPubMedCentral King, C. R., Borrello, I., Bellot, F., Comoglio, P., & Schlessinger, J. (1988). Egf binding to its receptor triggers a rapid tyrosine phosphorylation of the erbB-2 protein in the mammary tumor cell line SK-BR-3. The EMBO Journal, 7(6), 1647–1651.PubMedPubMedCentral
44.
go back to reference Wada, T., Qian, X. L., & Greene, M. I. (1990). Intermolecular association of the p185neu protein and EGF receptor modulates EGF receptor function. Cell, 61(7), 1339–1347.PubMed Wada, T., Qian, X. L., & Greene, M. I. (1990). Intermolecular association of the p185neu protein and EGF receptor modulates EGF receptor function. Cell, 61(7), 1339–1347.PubMed
45.
go back to reference Goldman, R., Levy, R. B., Peles, E., & Yarden, Y. (1990). Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: A mechanism for receptor transregulation. Biochemistry, 29(50), 11024–11028.PubMed Goldman, R., Levy, R. B., Peles, E., & Yarden, Y. (1990). Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: A mechanism for receptor transregulation. Biochemistry, 29(50), 11024–11028.PubMed
46.
go back to reference Ferguson, K. M. (2008). Structure-based view of epidermal growth factor receptor regulation. Annual Review of Biophysics, 37, 353–373.PubMedPubMedCentral Ferguson, K. M. (2008). Structure-based view of epidermal growth factor receptor regulation. Annual Review of Biophysics, 37, 353–373.PubMedPubMedCentral
47.
go back to reference Linggi, B., & Carpenter, G. (2006). ErbB receptors: New insights on mechanisms and biology. Trends in Cell Biology, 16(12), 649–656.PubMed Linggi, B., & Carpenter, G. (2006). ErbB receptors: New insights on mechanisms and biology. Trends in Cell Biology, 16(12), 649–656.PubMed
48.
go back to reference Jones, R. B., Gordus, A., Krall, J. A., & MacBeath, G. (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature, 439(7073), 168–174.PubMed Jones, R. B., Gordus, A., Krall, J. A., & MacBeath, G. (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature, 439(7073), 168–174.PubMed
49.
go back to reference Schulze, W. X., Deng, L., & Mann, M. (2005). Phosphotyrosine interactome of the ErbB-receptor kinase family. Molecular Systems Biology, 1, 2005.0008–2005.0008.PubMedPubMedCentral Schulze, W. X., Deng, L., & Mann, M. (2005). Phosphotyrosine interactome of the ErbB-receptor kinase family. Molecular Systems Biology, 1, 2005.0008–2005.0008.PubMedPubMedCentral
50.
go back to reference Sweeney, C., Fambrough, D., Huard, C., Diamonti, A. J., Lander, E. S., Cantley, L. C., & Carraway 3rd, K. L. (2001). Growth factor-specific signaling pathway stimulation and gene expression mediated by ErbB receptors. The Journal of Biological Chemistry, 276(25), 22685–22698.PubMed Sweeney, C., Fambrough, D., Huard, C., Diamonti, A. J., Lander, E. S., Cantley, L. C., & Carraway 3rd, K. L. (2001). Growth factor-specific signaling pathway stimulation and gene expression mediated by ErbB receptors. The Journal of Biological Chemistry, 276(25), 22685–22698.PubMed
51.
go back to reference Kawamoto, T., Sato, J. D., Le, A., Polikoff, J., Sato, G. H., & Mendelsohn, J. (1983). Growth stimulation of A431 cells by epidermal growth factor: Identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 80(5), 1337–1341.PubMedPubMedCentral Kawamoto, T., Sato, J. D., Le, A., Polikoff, J., Sato, G. H., & Mendelsohn, J. (1983). Growth stimulation of A431 cells by epidermal growth factor: Identification of high-affinity receptors for epidermal growth factor by an anti-receptor monoclonal antibody. Proceedings of the National Academy of Sciences of the United States of America, 80(5), 1337–1341.PubMedPubMedCentral
52.
go back to reference Van de Vijver, M. J., Kumar, R., & Mendelsohn, J. (1991). Ligand-induced activation of A431 cell epidermal growth factor receptors occurs primarily by an autocrine pathway that acts upon receptors on the surface rather than intracellularly. The Journal of Biological Chemistry, 266(12), 7503–7508.PubMed Van de Vijver, M. J., Kumar, R., & Mendelsohn, J. (1991). Ligand-induced activation of A431 cell epidermal growth factor receptors occurs primarily by an autocrine pathway that acts upon receptors on the surface rather than intracellularly. The Journal of Biological Chemistry, 266(12), 7503–7508.PubMed
53.
go back to reference Mendelsohn, J. (2000). Jeremiah Metzger Lecture. Targeted cancer therapy. Transactions of the American Clinical and Climatological Association, 111, 95–111.PubMedPubMedCentral Mendelsohn, J. (2000). Jeremiah Metzger Lecture. Targeted cancer therapy. Transactions of the American Clinical and Climatological Association, 111, 95–111.PubMedPubMedCentral
54.
go back to reference Mendelsohn, J., Prewett, M., Rockwell, P., & Goldstein, N. I. (2015). CCR 20th anniversary commentary: A chimeric antibody, C225, inhibits EGFR activation and tumor growth. In Clinical cancer research : An official journal of the American Association for Cancer Research. United: States. Mendelsohn, J., Prewett, M., Rockwell, P., & Goldstein, N. I. (2015). CCR 20th anniversary commentary: A chimeric antibody, C225, inhibits EGFR activation and tumor growth. In Clinical cancer research : An official journal of the American Association for Cancer Research. United: States.
55.
go back to reference Kumar, R., Murad, F., Bogler, O., O’Malley, B. W., & Hortobagyi, G. N. (2019). John Mendelsohn: A visionary scientist, oncologist and leader. Genes & Cancer, 10(5–6), 109–118. Kumar, R., Murad, F., Bogler, O., O’Malley, B. W., & Hortobagyi, G. N. (2019). John Mendelsohn: A visionary scientist, oncologist and leader. Genes & Cancer, 10(5–6), 109–118.
56.
go back to reference Lupu, R., Colomer, R., Zugmaier, G., Sarup, J., Shepard, M., Slamon, D., & Lippman, M. E. (1990). Direct interaction of a ligand for the erbB2 oncogene product with the EGF receptor and p185erbB2. Science (New York, N.Y.), 249(4976), 1552–1555. Lupu, R., Colomer, R., Zugmaier, G., Sarup, J., Shepard, M., Slamon, D., & Lippman, M. E. (1990). Direct interaction of a ligand for the erbB2 oncogene product with the EGF receptor and p185erbB2. Science (New York, N.Y.), 249(4976), 1552–1555.
57.
go back to reference Kumar, R., Shepard, H. M., & Mendelsohn, J. (1991). Regulation of phosphorylation of the c-erbB-2/HER2 gene product by a monoclonal antibody and serum growth factor(s) in human mammary carcinoma cells. Molecular and Cellular Biology, 11(2), 979–986.PubMedPubMedCentral Kumar, R., Shepard, H. M., & Mendelsohn, J. (1991). Regulation of phosphorylation of the c-erbB-2/HER2 gene product by a monoclonal antibody and serum growth factor(s) in human mammary carcinoma cells. Molecular and Cellular Biology, 11(2), 979–986.PubMedPubMedCentral
58.
go back to reference Carter, P., Presta, L., Gorman, C. M., Ridgway, J. B., Henner, D., Wong, W. L., et al. (1992). Humanization of an anti-p185HER2 antibody for human cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 89(10), 4285–4289.PubMedPubMedCentral Carter, P., Presta, L., Gorman, C. M., Ridgway, J. B., Henner, D., Wong, W. L., et al. (1992). Humanization of an anti-p185HER2 antibody for human cancer therapy. Proceedings of the National Academy of Sciences of the United States of America, 89(10), 4285–4289.PubMedPubMedCentral
59.
go back to reference Baselga, J., Tripathy, D., Mendelsohn, J., Baughman, S., Benz, C. C., Dantis, L., et al. (1999). Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Seminars in Oncology, 26(4 Suppl 12), 78–83.PubMed Baselga, J., Tripathy, D., Mendelsohn, J., Baughman, S., Benz, C. C., Dantis, L., et al. (1999). Phase II study of weekly intravenous trastuzumab (Herceptin) in patients with HER2/neu-overexpressing metastatic breast cancer. Seminars in Oncology, 26(4 Suppl 12), 78–83.PubMed
60.
go back to reference Adam, L., Vadlamudi, R., Kondapaka, S. B., Chernoff, J., Mendelsohn, J., & Kumar, R. (1998). Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. The Journal of Biological Chemistry, 273(43), 28238–28246.PubMed Adam, L., Vadlamudi, R., Kondapaka, S. B., Chernoff, J., Mendelsohn, J., & Kumar, R. (1998). Heregulin regulates cytoskeletal reorganization and cell migration through the p21-activated kinase-1 via phosphatidylinositol-3 kinase. The Journal of Biological Chemistry, 273(43), 28238–28246.PubMed
61.
go back to reference Kumar, R. (2007). ErbB-dependent signaling as a determinant of trastuzumab resistance. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 13(16), 4657–4659. Kumar, R. (2007). ErbB-dependent signaling as a determinant of trastuzumab resistance. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 13(16), 4657–4659.
62.
go back to reference Mills, G. B., & Yarden, Y. (2010). The rebirth of a phoenix: Ovarian cancers are addicted to ErbB-3. Cancer Cell, 17(3), 217–218.PubMed Mills, G. B., & Yarden, Y. (2010). The rebirth of a phoenix: Ovarian cancers are addicted to ErbB-3. Cancer Cell, 17(3), 217–218.PubMed
63.
go back to reference Morrison, M. M., Hutchinson, K., Williams, M. M., Stanford, J. C., Balko, J. M., Young, C., et al. (2013). ErbB3 downregulation enhances luminal breast tumor response to antiestrogens. The Journal of Clinical Investigation, 123(10), 4329–4343.PubMedPubMedCentral Morrison, M. M., Hutchinson, K., Williams, M. M., Stanford, J. C., Balko, J. M., Young, C., et al. (2013). ErbB3 downregulation enhances luminal breast tumor response to antiestrogens. The Journal of Clinical Investigation, 123(10), 4329–4343.PubMedPubMedCentral
64.
go back to reference Wang, S., Huang, J., Lyu, H., Lee, C.-K., Tan, J., Wang, J., & Liu, B. (2013). Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death & Disease, 4(3), e556–e556. Wang, S., Huang, J., Lyu, H., Lee, C.-K., Tan, J., Wang, J., & Liu, B. (2013). Functional cooperation of miR-125a, miR-125b, and miR-205 in entinostat-induced downregulation of erbB2/erbB3 and apoptosis in breast cancer cells. Cell Death & Disease, 4(3), e556–e556.
65.
go back to reference Li, X., Xu, Y., Ding, Y., Li, C., Zhao, H., Wang, J., & Meng, S. (2018). Posttranscriptional upregulation of HER3 by HER2 mRNA induces trastuzumab resistance in breast cancer. Molecular Cancer, 17(1), 113.PubMedPubMedCentral Li, X., Xu, Y., Ding, Y., Li, C., Zhao, H., Wang, J., & Meng, S. (2018). Posttranscriptional upregulation of HER3 by HER2 mRNA induces trastuzumab resistance in breast cancer. Molecular Cancer, 17(1), 113.PubMedPubMedCentral
66.
go back to reference Kennedy, S. P., Han, J. Z. R., Portman, N., Nobis, M., Hastings, J. F., Murphy, K. J., et al. (2019). Targeting promiscuous heterodimerization overcomes innate resistance to ERBB2 dimerization inhibitors in breast cancer. Breast Cancer Research, 21(1), 43.PubMed Kennedy, S. P., Han, J. Z. R., Portman, N., Nobis, M., Hastings, J. F., Murphy, K. J., et al. (2019). Targeting promiscuous heterodimerization overcomes innate resistance to ERBB2 dimerization inhibitors in breast cancer. Breast Cancer Research, 21(1), 43.PubMed
67.
go back to reference Cytoskeleton Signaling in Cancer, Editors - Kumar, R. and Hall, A. (2009). Cancer. Metastasis Reviews, 28(1–2), 1–263. Cytoskeleton Signaling in Cancer, Editors - Kumar, R. and Hall, A. (2009). Cancer. Metastasis Reviews, 28(1–2), 1–263.
68.
go back to reference Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S., & Lim, L. (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367(6458), 40–46.PubMed Manser, E., Leung, T., Salihuddin, H., Zhao, Z. S., & Lim, L. (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367(6458), 40–46.PubMed
69.
go back to reference Galisteo, M. L., Chernoff, J., Su, Y. C., Skolnik, E. Y., & Schlessinger, J. (1996). The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. The Journal of Biological Chemistry, 271(35), 20997–201000.PubMed Galisteo, M. L., Chernoff, J., Su, Y. C., Skolnik, E. Y., & Schlessinger, J. (1996). The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. The Journal of Biological Chemistry, 271(35), 20997–201000.PubMed
70.
go back to reference Bekri, S., Adélaïde, J., Merscher, S., Grosgeorge, J., Caroli-Bosc, F., Perucca-Lostanlen, D., et al. (1997). Detailed map of a region commonly amplified at 11q13➔q14 in human breast carcinoma. Cytogenet Cell Genet., 79(1–2), 125–131. Methods in Molecular Biology. N.J: Clifton. Bekri, S., Adélaïde, J., Merscher, S., Grosgeorge, J., Caroli-Bosc, F., Perucca-Lostanlen, D., et al. (1997). Detailed map of a region commonly amplified at 11q13➔q14 in human breast carcinoma. Cytogenet Cell Genet., 79(1–2), 125–131. Methods in Molecular Biology. N.J: Clifton.
71.
go back to reference Adam, L., Vadlamudi, R., Mandal, M., Chernoff, J., & Kumar, R. (2000). Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. The Journal of Biological Chemistry., 275(16), 12041–12050.PubMed Adam, L., Vadlamudi, R., Mandal, M., Chernoff, J., & Kumar, R. (2000). Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. The Journal of Biological Chemistry., 275(16), 12041–12050.PubMed
72.
go back to reference Vadlamudi, R. K., Adam, L., Wang, R. A., Mandal, M., Nguyen, D., Sahin, A., et al. (2000). Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. The Journal of Biological Chemistry, 275(46), 36238–36244.PubMed Vadlamudi, R. K., Adam, L., Wang, R. A., Mandal, M., Nguyen, D., Sahin, A., et al. (2000). Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. The Journal of Biological Chemistry, 275(46), 36238–36244.PubMed
73.
go back to reference Bagheri-Yarmand, R., Mandal, M., Taludker, A. H., Wang, R. A., Vadlamudi, R. K., Kung, H. J., & Kumar, R. (2001). Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. The Journal of Biological Chemistry., 276(31), 29403–29409.PubMed Bagheri-Yarmand, R., Mandal, M., Taludker, A. H., Wang, R. A., Vadlamudi, R. K., Kung, H. J., & Kumar, R. (2001). Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. The Journal of Biological Chemistry., 276(31), 29403–29409.PubMed
74.
go back to reference Oladimeji, P., Skerl, R., Rusch, C., & Diakonova, M. (2016). Synergistic activation of ERα by estrogen and prolactin in breast cancer cells requires tyrosyl phosphorylation of PAK1. Cancer Research, 76(9), 2600–2611.PubMedPubMedCentral Oladimeji, P., Skerl, R., Rusch, C., & Diakonova, M. (2016). Synergistic activation of ERα by estrogen and prolactin in breast cancer cells requires tyrosyl phosphorylation of PAK1. Cancer Research, 76(9), 2600–2611.PubMedPubMedCentral
75.
go back to reference Li, F., Adam, L., Vadlamudi, R. K., Zhou, H., Sen, S., Chernoff, J., & Kumar, R. (2002). p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Reports, 3(8), 767–773.PubMedPubMedCentral Li, F., Adam, L., Vadlamudi, R. K., Zhou, H., Sen, S., Chernoff, J., & Kumar, R. (2002). p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Reports, 3(8), 767–773.PubMedPubMedCentral
76.
go back to reference Singh, R. R., Song, C., Yang, Z., & Kumar, R. (2005). Nuclear localization and chromatin targets of p21-activated kinase 1. The Journal of Biological Chemistry, 280(18), 18130–18137.PubMed Singh, R. R., Song, C., Yang, Z., & Kumar, R. (2005). Nuclear localization and chromatin targets of p21-activated kinase 1. The Journal of Biological Chemistry, 280(18), 18130–18137.PubMed
77.
go back to reference Cotteret, S., & Chernoff, J. (2005). Pak GITs to Aurora-A. Developmental Cell, 9(5), 573–574.PubMed Cotteret, S., & Chernoff, J. (2005). Pak GITs to Aurora-A. Developmental Cell, 9(5), 573–574.PubMed
78.
go back to reference Wang, R.-A., Vadlamudi, R. K., Bagheri-Yarmand, R., Beuvink, I., Hynes, N. E., & Kumar, R. (2003). Essential functions of p21-activated kinase 1 in morphogenesis and differentiation of mammary glands. The Journal of Cell Biology, 161(3), 583–592.PubMedPubMedCentral Wang, R.-A., Vadlamudi, R. K., Bagheri-Yarmand, R., Beuvink, I., Hynes, N. E., & Kumar, R. (2003). Essential functions of p21-activated kinase 1 in morphogenesis and differentiation of mammary glands. The Journal of Cell Biology, 161(3), 583–592.PubMedPubMedCentral
79.
go back to reference Wang, R.-A., Mazumdar, A., Vadlamudi, R. K., & Kumar, R. (2002). P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. The EMBO Journal, 21(20), 5437–5447.PubMedPubMedCentral Wang, R.-A., Mazumdar, A., Vadlamudi, R. K., & Kumar, R. (2002). P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. The EMBO Journal, 21(20), 5437–5447.PubMedPubMedCentral
80.
go back to reference Wang, R.-A., Zhang, H., Balasenthil, S., Medina, D., & Kumar, R. (2006). PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene, 25(20), 2931–2936.PubMed Wang, R.-A., Zhang, H., Balasenthil, S., Medina, D., & Kumar, R. (2006). PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene, 25(20), 2931–2936.PubMed
81.
go back to reference Holm, C., Rayala, S., Jirström, K., Stål, O., Kumar, R., & Landberg, G. (2006). Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. Journal of the National Cancer Institute, 98(10), 671–680.PubMed Holm, C., Rayala, S., Jirström, K., Stål, O., Kumar, R., & Landberg, G. (2006). Association between Pak1 expression and subcellular localization and tamoxifen resistance in breast cancer patients. Journal of the National Cancer Institute, 98(10), 671–680.PubMed
82.
go back to reference Rayala, S. K., Molli, P. R., & Kumar, R. (2006). Nuclear p21-activated kinase 1 in breast cancer packs off tamoxifen sensitivity. Cancer Research, 66(12), 5985–5988.PubMed Rayala, S. K., Molli, P. R., & Kumar, R. (2006). Nuclear p21-activated kinase 1 in breast cancer packs off tamoxifen sensitivity. Cancer Research, 66(12), 5985–5988.PubMed
83.
go back to reference Jordan, V. C. (2006). Pak up your breast tumor--and grow! Journal of the National Cancer. United States: Institute. Jordan, V. C. (2006). Pak up your breast tumor--and grow! Journal of the National Cancer. United States: Institute.
84.
go back to reference Kumar, R., & Hung, M.-C. (2005). Signaling intricacies take center stage in cancer cells. Cancer Research, 65(7), 2511–2515.PubMed Kumar, R., & Hung, M.-C. (2005). Signaling intricacies take center stage in cancer cells. Cancer Research, 65(7), 2511–2515.PubMed
85.
go back to reference Kumar, R., Deivendran, S., Santhosh Kumar, T. R., & Pillai, M. R. (2017). Signaling coupled epigenomic regulation of gene expression. Oncogene, 36(43), 5917–5926.PubMed Kumar, R., Deivendran, S., Santhosh Kumar, T. R., & Pillai, M. R. (2017). Signaling coupled epigenomic regulation of gene expression. Oncogene, 36(43), 5917–5926.PubMed
86.
go back to reference Balasenthil, S., Barnes, C. J., Rayala, S. K., & Kumar, R. (2004). Estrogen receptor activation at serine 305 is sufficient to upregulate cyclin D1 in breast cancer cells. FEBS Letters, 567(2–3), 243–247. Balasenthil, S., Barnes, C. J., Rayala, S. K., & Kumar, R. (2004). Estrogen receptor activation at serine 305 is sufficient to upregulate cyclin D1 in breast cancer cells. FEBS Letters, 567(2–3), 243–247.
87.
go back to reference Balasenthil, S., Sahin, A. A., Barnes, C. J., Wang, R.-A., Pestell, R. G., Vadlamudi, R. K., & Kumar, R. (2004). p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. The Journal of Biological Chemistry, 279(2), 1422–1428.PubMed Balasenthil, S., Sahin, A. A., Barnes, C. J., Wang, R.-A., Pestell, R. G., Vadlamudi, R. K., & Kumar, R. (2004). p21-activated kinase-1 signaling mediates cyclin D1 expression in mammary epithelial and cancer cells. The Journal of Biological Chemistry, 279(2), 1422–1428.PubMed
88.
go back to reference Tharakan, R., Lepont, P., Singleton, D., Kumar, R., & Khan, S. (2008). Phosphorylation of estrogen receptor alpha, serine residue 305 enhances activity. Molecular and Cellular Endocrinology, 295(1–2), 70–78.PubMed Tharakan, R., Lepont, P., Singleton, D., Kumar, R., & Khan, S. (2008). Phosphorylation of estrogen receptor alpha, serine residue 305 enhances activity. Molecular and Cellular Endocrinology, 295(1–2), 70–78.PubMed
89.
go back to reference Rayala, S. K., Talukder, A. H., Balasenthil, S., Tharakan, R., Barnes, C. J., Wang, R.-A., et al. (2006). P21-activated kinase 1 regulation of estrogen receptor-alpha activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Research, 66(3), 1694–1701.PubMed Rayala, S. K., Talukder, A. H., Balasenthil, S., Tharakan, R., Barnes, C. J., Wang, R.-A., et al. (2006). P21-activated kinase 1 regulation of estrogen receptor-alpha activation involves serine 305 activation linked with serine 118 phosphorylation. Cancer Research, 66(3), 1694–1701.PubMed
90.
go back to reference Curtis, C., Shah, S. P., Chin, S.-F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403), 346–352.PubMedPubMedCentral Curtis, C., Shah, S. P., Chin, S.-F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 486(7403), 346–352.PubMedPubMedCentral
91.
go back to reference Mertins, P., Mani, D. R., Ruggles, K. V, Gillette, M. A., Clauser, K. R., Wang, P., et al. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 534(7605), 55–62. Mertins, P., Mani, D. R., Ruggles, K. V, Gillette, M. A., Clauser, K. R., Wang, P., et al. (2016). Proteogenomics connects somatic mutations to signalling in breast cancer. Nature, 534(7605), 55–62.
92.
go back to reference Vadlamudi, R. K., Li, F., Barnes, C. J., Bagheri-Yarmand, R., & Kumar, R. (2004). p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Reports, 5(2), 154–160.PubMedPubMedCentral Vadlamudi, R. K., Li, F., Barnes, C. J., Bagheri-Yarmand, R., & Kumar, R. (2004). p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Reports, 5(2), 154–160.PubMedPubMedCentral
93.
go back to reference Molli, P. R., Li, D.-Q., Bagheri-Yarmand, R., Pakala, S. B., Katayama, H., Sen, S., et al. (2010). Arpc1b, a centrosomal protein, is both an activator and substrate of Aurora A. The Journal of Cell Biology, 190(1), 101–114.PubMedPubMedCentral Molli, P. R., Li, D.-Q., Bagheri-Yarmand, R., Pakala, S. B., Katayama, H., Sen, S., et al. (2010). Arpc1b, a centrosomal protein, is both an activator and substrate of Aurora A. The Journal of Cell Biology, 190(1), 101–114.PubMedPubMedCentral
94.
go back to reference Sánchez-Solana, B., Motwani, M., Li, D.-Q., Eswaran, J., & Kumar, R. (2012). p21-activated kinase-1 signaling regulates transcription of tissue factor and tissue factor pathway inhibitor. The Journal of Biological Chemistry, 287(47), 39291–39302.PubMedPubMedCentral Sánchez-Solana, B., Motwani, M., Li, D.-Q., Eswaran, J., & Kumar, R. (2012). p21-activated kinase-1 signaling regulates transcription of tissue factor and tissue factor pathway inhibitor. The Journal of Biological Chemistry, 287(47), 39291–39302.PubMedPubMedCentral
95.
go back to reference Callow, M. G., Clairvoyant, F., Zhu, S., Schryver, B., Whyte, D. B., Bischoff, J. R., et al. (2002). Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. The Journal of Biological Chemistry, 277(1), 550–558.PubMed Callow, M. G., Clairvoyant, F., Zhu, S., Schryver, B., Whyte, D. B., Bischoff, J. R., et al. (2002). Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. The Journal of Biological Chemistry, 277(1), 550–558.PubMed
96.
go back to reference Gong, W., An, Z., Wang, Y., Pan, X., Fang, W., Jiang, B., & Zhang, H. (2009). P21-activated kinase 5 is overexpressed during colorectal cancer progression and regulates colorectal carcinoma cell adhesion and migration. International Journal of Cancer, 125(3), 548–555.PubMed Gong, W., An, Z., Wang, Y., Pan, X., Fang, W., Jiang, B., & Zhang, H. (2009). P21-activated kinase 5 is overexpressed during colorectal cancer progression and regulates colorectal carcinoma cell adhesion and migration. International Journal of Cancer, 125(3), 548–555.PubMed
97.
go back to reference Lee, S. R., Ramos, S. M., Ko, A., Masiello, D., Swanson, K. D., Lu, M. L., & Balk, S. P. (2002). AR and ER interaction with a p21-activated kinase (PAK6). Molecular Endocrinology (Baltimore, Md.), 16(1), 85–99. Lee, S. R., Ramos, S. M., Ko, A., Masiello, D., Swanson, K. D., Lu, M. L., & Balk, S. P. (2002). AR and ER interaction with a p21-activated kinase (PAK6). Molecular Endocrinology (Baltimore, Md.), 16(1), 85–99.
98.
go back to reference Heiser, L. M., Wang, N. J., Talcott, C. L., Laderoute, K. R., Knapp, M., Guan, Y., et al. (2009). Integrated analysis of breast cancer cell lines reveals unique signaling pathways. Genome Biology, 10(3), R31.PubMedPubMedCentral Heiser, L. M., Wang, N. J., Talcott, C. L., Laderoute, K. R., Knapp, M., Guan, Y., et al. (2009). Integrated analysis of breast cancer cell lines reveals unique signaling pathways. Genome Biology, 10(3), R31.PubMedPubMedCentral
99.
go back to reference Shrestha, Y., Schafer, E. J., Boehm, J. S., Thomas, S. R., He, F., Du, J., et al. (2012). PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene, 31(29), 3397–3408.PubMed Shrestha, Y., Schafer, E. J., Boehm, J. S., Thomas, S. R., He, F., Du, J., et al. (2012). PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling. Oncogene, 31(29), 3397–3408.PubMed
100.
go back to reference Arias-Romero, L. E., Villamar-Cruz, O., Pacheco, A., Kosoff, R., Huang, M., Muthuswamy, S. K., et al. (2010). A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene, 29(43), 5839–5849.PubMedPubMedCentral Arias-Romero, L. E., Villamar-Cruz, O., Pacheco, A., Kosoff, R., Huang, M., Muthuswamy, S. K., et al. (2010). A Rac-Pak signaling pathway is essential for ErbB2-mediated transformation of human breast epithelial cancer cells. Oncogene, 29(43), 5839–5849.PubMedPubMedCentral
101.
go back to reference Liu, Y., Chen, N., Cui, X., Zheng, X., Deng, L., Price, S., et al. (2010). The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis. Oncogene, 29(44), 5883–5894.PubMedPubMedCentral Liu, Y., Chen, N., Cui, X., Zheng, X., Deng, L., Price, S., et al. (2010). The protein kinase Pak4 disrupts mammary acinar architecture and promotes mammary tumorigenesis. Oncogene, 29(44), 5883–5894.PubMedPubMedCentral
102.
go back to reference Puto, L. A., Pestonjamasp, K., King, C. C., & Bokoch, G. M. (2003). p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. The Journal of Biological Chemistry, 278(11), 9388–9393.PubMed Puto, L. A., Pestonjamasp, K., King, C. C., & Bokoch, G. M. (2003). p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. The Journal of Biological Chemistry, 278(11), 9388–9393.PubMed
103.
go back to reference Ohshiro, K., Bui-Nguyen, T. M., Divijendra Natha, R. S., Schwartz, A. M., Levine, P., & Kumar, R. (2012). Thrombin stimulation of inflammatory breast cancer cells leads to aggressiveness via the EGFR-PAR1-Pak1 pathway. The International Journal of Biological Markers, 27(4), e305–e313.PubMedPubMedCentral Ohshiro, K., Bui-Nguyen, T. M., Divijendra Natha, R. S., Schwartz, A. M., Levine, P., & Kumar, R. (2012). Thrombin stimulation of inflammatory breast cancer cells leads to aggressiveness via the EGFR-PAR1-Pak1 pathway. The International Journal of Biological Markers, 27(4), e305–e313.PubMedPubMedCentral
104.
go back to reference Long, W., Yi, P., Amazit, L., LaMarca, H. L., Ashcroft, F., Kumar, R., et al. (2010). SRC-3Delta4 mediates the interaction of EGFR with FAK to promote cell migration. Molecular Cell, 37(3), 321–332.PubMedPubMedCentral Long, W., Yi, P., Amazit, L., LaMarca, H. L., Ashcroft, F., Kumar, R., et al. (2010). SRC-3Delta4 mediates the interaction of EGFR with FAK to promote cell migration. Molecular Cell, 37(3), 321–332.PubMedPubMedCentral
105.
go back to reference Ueda, Y., Wang, S., Dumont, N., Yi, J. Y., Koh, Y., & Arteaga, C. L. (2004). Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. The Journal of Biological Chemistry, 279(23), 24505–24513.PubMed Ueda, Y., Wang, S., Dumont, N., Yi, J. Y., Koh, Y., & Arteaga, C. L. (2004). Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility. The Journal of Biological Chemistry, 279(23), 24505–24513.PubMed
106.
go back to reference Vadlamudi, R. K., Li, F., Adam, L., Nguyen, D., Ohta, Y., Stossel, T. P., & Kumar, R. (2002). Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nature Cell Biology, 4(9), 681–690.PubMed Vadlamudi, R. K., Li, F., Adam, L., Nguyen, D., Ohta, Y., Stossel, T. P., & Kumar, R. (2002). Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nature Cell Biology, 4(9), 681–690.PubMed
107.
go back to reference Wang, S. E., Shin, I., Wu, F. Y., Friedman, D. B., & Arteaga, C. L. (2006). HER2/Neu (ErbB2) signaling to Rac1-Pak1 is temporally and spatially modulated by transforming growth factor beta. Cancer Research, 66(19), 9591–9600.PubMed Wang, S. E., Shin, I., Wu, F. Y., Friedman, D. B., & Arteaga, C. L. (2006). HER2/Neu (ErbB2) signaling to Rac1-Pak1 is temporally and spatially modulated by transforming growth factor beta. Cancer Research, 66(19), 9591–9600.PubMed
108.
go back to reference Rafn, B., Nielsen, C. F., Andersen, S. H., Szyniarowski, P., Corcelle-Termeau, E., Valo, E., et al. (2012). ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Molecular Cell, 45(6), 764–776.PubMed Rafn, B., Nielsen, C. F., Andersen, S. H., Szyniarowski, P., Corcelle-Termeau, E., Valo, E., et al. (2012). ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Molecular Cell, 45(6), 764–776.PubMed
109.
go back to reference Brix, D. M., Tvingsholm, S. A., Hansen, M. B., Clemmensen, K. B., Ohman, T., Siino, V., et al. (2019). Release of transcriptional repression via ErbB2-induced, SUMO-directed phosphorylation of myeloid zinc finger-1 serine 27 activates lysosome redistribution and invasion. Oncogene, 38(17), 3170–3184.PubMedPubMedCentral Brix, D. M., Tvingsholm, S. A., Hansen, M. B., Clemmensen, K. B., Ohman, T., Siino, V., et al. (2019). Release of transcriptional repression via ErbB2-induced, SUMO-directed phosphorylation of myeloid zinc finger-1 serine 27 activates lysosome redistribution and invasion. Oncogene, 38(17), 3170–3184.PubMedPubMedCentral
110.
go back to reference Motwani, M., Li, D.-Q., Horvath, A., & Kumar, R. (2013). Identification of novel gene targets and functions of p21-activated kinase 1 during DNA damage by gene expression profiling. PLoS One, 8(8), e66585.PubMedPubMedCentral Motwani, M., Li, D.-Q., Horvath, A., & Kumar, R. (2013). Identification of novel gene targets and functions of p21-activated kinase 1 during DNA damage by gene expression profiling. PLoS One, 8(8), e66585.PubMedPubMedCentral
111.
go back to reference Berger, A., Hoelbl-Kovacic, A., Bourgeais, J., Hoefling, L., Warsch, W., Grundschober, E., et al. (2014). PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis. Leukemia, 28(3), 629–641.PubMed Berger, A., Hoelbl-Kovacic, A., Bourgeais, J., Hoefling, L., Warsch, W., Grundschober, E., et al. (2014). PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis. Leukemia, 28(3), 629–641.PubMed
112.
go back to reference Chatterjee, A., Ghosh, J., Ramdas, B., Mali, R. S., Martin, H., Kobayashi, M., et al. (2014). Regulation of Stat5 by FAK and PAK1 in oncogenic FLT3- and KIT-driven leukemogenesis. Cell Reports, 9(4), 1333–1348.PubMedPubMedCentral Chatterjee, A., Ghosh, J., Ramdas, B., Mali, R. S., Martin, H., Kobayashi, M., et al. (2014). Regulation of Stat5 by FAK and PAK1 in oncogenic FLT3- and KIT-driven leukemogenesis. Cell Reports, 9(4), 1333–1348.PubMedPubMedCentral
113.
go back to reference Meng, Q., Rayala, S. K., Gururaj, A. E., Talukder, A. H., O’Malley, B. W., & Kumar, R. (2007). Signaling-dependent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5866–5871.PubMedPubMedCentral Meng, Q., Rayala, S. K., Gururaj, A. E., Talukder, A. H., O’Malley, B. W., & Kumar, R. (2007). Signaling-dependent and coordinated regulation of transcription, splicing, and translation resides in a single coregulator, PCBP1. Proceedings of the National Academy of Sciences of the United States of America, 104(14), 5866–5871.PubMedPubMedCentral
114.
go back to reference Li, Y., Shao, Y., Tong, Y., Shen, T., Zhang, J., Li, Y., et al. (2012). Nucleo-cytoplasmic shuttling of PAK4 modulates β-catenin intracellular translocation and signaling. Biochimica et Biophysica Acta, 1823(2), 465–475.PubMed Li, Y., Shao, Y., Tong, Y., Shen, T., Zhang, J., Li, Y., et al. (2012). Nucleo-cytoplasmic shuttling of PAK4 modulates β-catenin intracellular translocation and signaling. Biochimica et Biophysica Acta, 1823(2), 465–475.PubMed
115.
go back to reference Oladimeji, P., & Diakonova, M. (2016). PAK1 translocates into nucleus in response to prolactin but not to estrogen. Biochemical and Biophysical Research Communications, 473(1), 206–211.PubMedPubMedCentral Oladimeji, P., & Diakonova, M. (2016). PAK1 translocates into nucleus in response to prolactin but not to estrogen. Biochemical and Biophysical Research Communications, 473(1), 206–211.PubMedPubMedCentral
116.
go back to reference Pérez-Yépez, E. A., Saldívar-Cerón, H. I., Villamar-Cruz, O., Pérez-Plasencia, C., & Arias-Romero, L. E. (2018). p21 activated kinase 1: Nuclear activity and its role during DNA damage repair. DNA Repair, 65, 42–46.PubMed Pérez-Yépez, E. A., Saldívar-Cerón, H. I., Villamar-Cruz, O., Pérez-Plasencia, C., & Arias-Romero, L. E. (2018). p21 activated kinase 1: Nuclear activity and its role during DNA damage repair. DNA Repair, 65, 42–46.PubMed
117.
go back to reference Siu, M. K. Y., Kong, D. S. H., Ngai, S. Y. P., Chan, H. Y., Jiang, L., Wong, E. S. Y., et al. (2015). p21-activated kinases 1, 2 and 4 in endometrial cancers: Effects on clinical outcomes and cell proliferation. PLoS One, 10(7), e0133467.PubMedPubMedCentral Siu, M. K. Y., Kong, D. S. H., Ngai, S. Y. P., Chan, H. Y., Jiang, L., Wong, E. S. Y., et al. (2015). p21-activated kinases 1, 2 and 4 in endometrial cancers: Effects on clinical outcomes and cell proliferation. PLoS One, 10(7), e0133467.PubMedPubMedCentral
118.
go back to reference Zhu, G., Wang, Y., Huang, B., Liang, J., Ding, Y., Xu, A., & Wu, W. (2012). A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells. Oncogene, 31(8), 1001–1012.PubMed Zhu, G., Wang, Y., Huang, B., Liang, J., Ding, Y., Xu, A., & Wu, W. (2012). A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells. Oncogene, 31(8), 1001–1012.PubMed
119.
go back to reference Park, M.-H., Kim, D.-J., You, S.-T., Lee, C.-S., Kim, H. K., Park, S. M., et al. (2012). Phosphorylation of β-catenin at serine 663 regulates its transcriptional activity. Biochemical and Biophysical Research Communications, 419(3), 543–549.PubMed Park, M.-H., Kim, D.-J., You, S.-T., Lee, C.-S., Kim, H. K., Park, S. M., et al. (2012). Phosphorylation of β-catenin at serine 663 regulates its transcriptional activity. Biochemical and Biophysical Research Communications, 419(3), 543–549.PubMed
120.
go back to reference Ding, Q., Xia, W., Liu, J.-C., Yang, J.-Y., Lee, D.-F., Xia, J., et al. (2005). Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Molecular Cell, 19(2), 159–170.PubMed Ding, Q., Xia, W., Liu, J.-C., Yang, J.-Y., Lee, D.-F., Xia, J., et al. (2005). Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Molecular Cell, 19(2), 159–170.PubMed
121.
go back to reference Arias-Romero, L. E., Villamar-Cruz, O., Huang, M., Hoeflich, K. P., & Chernoff, J. (2013). Pak1 kinase links ErbB2 to β-catenin in transformation of breast epithelial cells. Cancer Research, 73(12), 3671–3682.PubMedPubMedCentral Arias-Romero, L. E., Villamar-Cruz, O., Huang, M., Hoeflich, K. P., & Chernoff, J. (2013). Pak1 kinase links ErbB2 to β-catenin in transformation of breast epithelial cells. Cancer Research, 73(12), 3671–3682.PubMedPubMedCentral
122.
go back to reference Adam, L., Vadlamudi, R. K., McCrea, P., & Kumar, R. (2001). Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/beta -catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. The Journal of Biological Chemistry, 276(30), 28443–28450.PubMed Adam, L., Vadlamudi, R. K., McCrea, P., & Kumar, R. (2001). Tiam1 overexpression potentiates heregulin-induced lymphoid enhancer factor-1/beta -catenin nuclear signaling in breast cancer cells by modulating the intercellular stability. The Journal of Biological Chemistry, 276(30), 28443–28450.PubMed
123.
go back to reference Bagheri-Yarmand, R., Vadlamudi, R. K., Wang, R. A., Mendelsohn, J., & Kumar, R. (2000). Vascular endothelial growth factor up-regulation via p21-activated kinase-1 signaling regulates heregulin-beta1-mediated angiogenesis. The Journal of Biological Chemistry, 275(50), 39451–39457.PubMed Bagheri-Yarmand, R., Vadlamudi, R. K., Wang, R. A., Mendelsohn, J., & Kumar, R. (2000). Vascular endothelial growth factor up-regulation via p21-activated kinase-1 signaling regulates heregulin-beta1-mediated angiogenesis. The Journal of Biological Chemistry, 275(50), 39451–39457.PubMed
124.
go back to reference Barnes, C. J., Vadlamudi, R. K., Mishra, S. K., Jacobson, R. H., Li, F., & Kumar, R. (2003). Functional inactivation of a transcriptional corepressor by a signaling kinase. Nature Structural Biology, 10(8), 622–628.PubMed Barnes, C. J., Vadlamudi, R. K., Mishra, S. K., Jacobson, R. H., Li, F., & Kumar, R. (2003). Functional inactivation of a transcriptional corepressor by a signaling kinase. Nature Structural Biology, 10(8), 622–628.PubMed
125.
go back to reference Thomas, J.-L., Moncollin, V., Ravel-Chapuis, A., Valente, C., Corda, D., Méjat, A., & Schaeffer, L. (2015). PAK1 and CtBP1 regulate the coupling of neuronal activity to muscle chromatin and gene expression. Molecular and Cellular Biology, 35(24), 4110–4120.PubMedPubMedCentral Thomas, J.-L., Moncollin, V., Ravel-Chapuis, A., Valente, C., Corda, D., Méjat, A., & Schaeffer, L. (2015). PAK1 and CtBP1 regulate the coupling of neuronal activity to muscle chromatin and gene expression. Molecular and Cellular Biology, 35(24), 4110–4120.PubMedPubMedCentral
126.
go back to reference Yang, Z., Rayala, S., Nguyen, D., Vadlamudi, R. K., Chen, S., & Kumar, R. (2005). Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and functions. Cancer Research, 65(8), 3179–3184.PubMed Yang, Z., Rayala, S., Nguyen, D., Vadlamudi, R. K., Chen, S., & Kumar, R. (2005). Pak1 phosphorylation of snail, a master regulator of epithelial-to-mesenchyme transition, modulates snail’s subcellular localization and functions. Cancer Research, 65(8), 3179–3184.PubMed
127.
go back to reference Vadlamudi, R. K., Manavathi, B., Singh, R. R., Nguyen, D., Li, F., & Kumar, R. (2005). An essential role of Pak1 phosphorylation of SHARP in Notch signaling. Oncogene, 24(28), 4591–4596.PubMed Vadlamudi, R. K., Manavathi, B., Singh, R. R., Nguyen, D., Li, F., & Kumar, R. (2005). An essential role of Pak1 phosphorylation of SHARP in Notch signaling. Oncogene, 24(28), 4591–4596.PubMed
128.
go back to reference Roig, J., & Traugh, J. A. (1999). p21-activated protein kinase gamma-PAK is activated by ionizing radiation and other DNA-damaging agents. Similarities and differences to alpha-PAK. The Journal of Biological Chemistry, 274(44), 31119–31122.PubMed Roig, J., & Traugh, J. A. (1999). p21-activated protein kinase gamma-PAK is activated by ionizing radiation and other DNA-damaging agents. Similarities and differences to alpha-PAK. The Journal of Biological Chemistry, 274(44), 31119–31122.PubMed
129.
go back to reference Li, D.-Q., Nair, S. S., Ohshiro, K., Kumar, A., Nair, V. S., Pakala, S. B., et al. (2012). MORC2 signaling integrates phosphorylation-dependent, ATPase-coupled chromatin remodeling during the DNA damage response. Cell Reports, 2(6), 1657–1669.PubMedPubMedCentral Li, D.-Q., Nair, S. S., Ohshiro, K., Kumar, A., Nair, V. S., Pakala, S. B., et al. (2012). MORC2 signaling integrates phosphorylation-dependent, ATPase-coupled chromatin remodeling during the DNA damage response. Cell Reports, 2(6), 1657–1669.PubMedPubMedCentral
130.
go back to reference Advani, S. J., Camargo, M. F., Seguin, L., Mielgo, A., Anand, S., Hicks, A. M., et al. (2015). Kinase-independent role for CRAF-driving tumour radioresistance via CHK2. Nature Communications, 6, 8154.PubMedPubMedCentral Advani, S. J., Camargo, M. F., Seguin, L., Mielgo, A., Anand, S., Hicks, A. M., et al. (2015). Kinase-independent role for CRAF-driving tumour radioresistance via CHK2. Nature Communications, 6, 8154.PubMedPubMedCentral
131.
go back to reference Millan-Zambrano, G., Santos-Rosa, H., Puddu, F., Robson, S. C., Jackson, S. P., & Kouzarides, T. (2018). Phosphorylation of histone H4T80 triggers DNA damage checkpoint recovery. Molecular Cell, 72(4), 625–635.e4.PubMedPubMedCentral Millan-Zambrano, G., Santos-Rosa, H., Puddu, F., Robson, S. C., Jackson, S. P., & Kouzarides, T. (2018). Phosphorylation of histone H4T80 triggers DNA damage checkpoint recovery. Molecular Cell, 72(4), 625–635.e4.PubMedPubMedCentral
132.
go back to reference Tsai, C.-F., Wang, Y.-T., Yen, H.-Y., Tsou, C.-C., Ku, W.-C., Lin, P.-Y., et al. (2015). Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nature Communications, 6, 6622.PubMedPubMedCentral Tsai, C.-F., Wang, Y.-T., Yen, H.-Y., Tsou, C.-C., Ku, W.-C., Lin, P.-Y., et al. (2015). Large-scale determination of absolute phosphorylation stoichiometries in human cells by motif-targeting quantitative proteomics. Nature Communications, 6, 6622.PubMedPubMedCentral
134.
go back to reference Chen, T., Wang, T., Liang, W., Zhao, Q., Yu, Q., Ma, C.-M., et al. (2019). PAK4 phosphorylates fumarase and blocks TGFβ-induced cell growth arrest in lung cancer cells. Cancer Research, 79(7), 1383–1397.PubMed Chen, T., Wang, T., Liang, W., Zhao, Q., Yu, Q., Ma, C.-M., et al. (2019). PAK4 phosphorylates fumarase and blocks TGFβ-induced cell growth arrest in lung cancer cells. Cancer Research, 79(7), 1383–1397.PubMed
135.
go back to reference Jiang, Y., Qian, X., Shen, J., Wang, Y., Li, X., Liu, R., et al. (2015). Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nature Cell Biology, 17(9), 1158–1168.PubMedPubMedCentral Jiang, Y., Qian, X., Shen, J., Wang, Y., Li, X., Liu, R., et al. (2015). Local generation of fumarate promotes DNA repair through inhibition of histone H3 demethylation. Nature Cell Biology, 17(9), 1158–1168.PubMedPubMedCentral
136.
go back to reference Sedelnikova, O. A., & Bonner, W. M. (2006). GammaH2AX in cancer cells: a potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle (Georgetown, Texas), 5(24), 2909–2913. Sedelnikova, O. A., & Bonner, W. M. (2006). GammaH2AX in cancer cells: a potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle (Georgetown, Texas), 5(24), 2909–2913.
137.
go back to reference Brustmann, H., Hinterholzer, S., & Brunner, A. (2011). Expression of phosphorylated histone H2AX (γ-H2AX) in normal and neoplastic squamous epithelia of the uterine cervix: An immunohistochemical study with epidermal growth factor receptor. International Journal of Gynecological Pathology : Official Journal of the International Society of Gynecological Pathologists, 30(1), 76–83. Brustmann, H., Hinterholzer, S., & Brunner, A. (2011). Expression of phosphorylated histone H2AX (γ-H2AX) in normal and neoplastic squamous epithelia of the uterine cervix: An immunohistochemical study with epidermal growth factor receptor. International Journal of Gynecological Pathology : Official Journal of the International Society of Gynecological Pathologists, 30(1), 76–83.
138.
go back to reference Matthaios, D., Foukas, P. G., Kefala, M., Hountis, P., Trypsianis, G., Panayiotides, I. G., et al. (2012). γ-H2AX expression detected by immunohistochemistry correlates with prognosis in early operable non-small cell lung cancer. Oncotargets and Therapy, 5, 309–314.PubMedPubMedCentral Matthaios, D., Foukas, P. G., Kefala, M., Hountis, P., Trypsianis, G., Panayiotides, I. G., et al. (2012). γ-H2AX expression detected by immunohistochemistry correlates with prognosis in early operable non-small cell lung cancer. Oncotargets and Therapy, 5, 309–314.PubMedPubMedCentral
139.
go back to reference Brunner, A. H., Hinterholzer, S., Riss, P., Heinze, G., Weiss, K., & Brustmann, H. (2011). Expression of γ-H2AX in endometrial carcinomas: An immunohistochemical study with p53. Gynecologic Oncology, 121(1), 206–211.PubMed Brunner, A. H., Hinterholzer, S., Riss, P., Heinze, G., Weiss, K., & Brustmann, H. (2011). Expression of γ-H2AX in endometrial carcinomas: An immunohistochemical study with p53. Gynecologic Oncology, 121(1), 206–211.PubMed
140.
go back to reference Nagelkerke, A., van Kuijk, S. J. A., Sweep, F. C. G. J., Nagtegaal, I. D., Hoogerbrugge, N., Martens, J. W. M., et al. (2011). Constitutive expression of γ-H2AX has prognostic relevance in triple negative breast cancer. Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology, 101(1), 39–45. Nagelkerke, A., van Kuijk, S. J. A., Sweep, F. C. G. J., Nagtegaal, I. D., Hoogerbrugge, N., Martens, J. W. M., et al. (2011). Constitutive expression of γ-H2AX has prognostic relevance in triple negative breast cancer. Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology, 101(1), 39–45.
141.
go back to reference Gan, J., Zhang, Y., Ke, X., Tan, C., Ren, H., Dong, H., et al. (2015). Dysregulation of PAK1 is associated with DNA damage and is of prognostic importance in primary esophageal small cell carcinoma. International Journal of Molecular Sciences, 16(6), 12035–12050.PubMedPubMedCentral Gan, J., Zhang, Y., Ke, X., Tan, C., Ren, H., Dong, H., et al. (2015). Dysregulation of PAK1 is associated with DNA damage and is of prognostic importance in primary esophageal small cell carcinoma. International Journal of Molecular Sciences, 16(6), 12035–12050.PubMedPubMedCentral
142.
go back to reference Qing, H., Gong, W., Che, Y., Wang, X., Peng, L., Liang, Y., et al. (2012). PAK1-dependent MAPK pathway activation is required for colorectal cancer cell proliferation. Tumour Biology : the Journal of the International Society for Oncodevelopmental Biology and Medicine, 33(4), 985–994. Qing, H., Gong, W., Che, Y., Wang, X., Peng, L., Liang, Y., et al. (2012). PAK1-dependent MAPK pathway activation is required for colorectal cancer cell proliferation. Tumour Biology : the Journal of the International Society for Oncodevelopmental Biology and Medicine, 33(4), 985–994.
143.
go back to reference Walsh, K., McKinney, M. S., Love, C., Liu, Q., Fan, A., Patel, A., et al. (2013). PAK1 mediates resistance to PI3K inhibition in lymphomas. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19(5), 1106–1115. Walsh, K., McKinney, M. S., Love, C., Liu, Q., Fan, A., Patel, A., et al. (2013). PAK1 mediates resistance to PI3K inhibition in lymphomas. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 19(5), 1106–1115.
144.
go back to reference Zhou, W., Jubb, A. M., Lyle, K., Xiao, Q., Ong, C. C., Desai, R., et al. (2014). PAK1 mediates pancreatic cancer cell migration and resistance to MET inhibition. The Journal of Pathology, 234(4), 502–513.PubMedPubMedCentral Zhou, W., Jubb, A. M., Lyle, K., Xiao, Q., Ong, C. C., Desai, R., et al. (2014). PAK1 mediates pancreatic cancer cell migration and resistance to MET inhibition. The Journal of Pathology, 234(4), 502–513.PubMedPubMedCentral
145.
go back to reference Villamar Cruz, O., Prudnikova, T. Y., Araiza-Olivera, D., Perez-Plasencia, C., Johnson, N., Bernhardy, A. J., et al. (2016). Reduced PAK1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition. Oncotarget, 7(47), 76590–76603.PubMed Villamar Cruz, O., Prudnikova, T. Y., Araiza-Olivera, D., Perez-Plasencia, C., Johnson, N., Bernhardy, A. J., et al. (2016). Reduced PAK1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition. Oncotarget, 7(47), 76590–76603.PubMed
147.
go back to reference Moon, S.-U., Kim, J. W., Sung, J. H., Kang, M. H., Kim, S.-H., Chang, H., et al. (2015). p21-activated kinase 4 (PAK4) as a predictive marker of gemcitabine sensitivity in pancreatic cancer cell lines. Cancer Research and Treatment : Official Journal of Korean Cancer Association, 47(3), 501–508. Moon, S.-U., Kim, J. W., Sung, J. H., Kang, M. H., Kim, S.-H., Chang, H., et al. (2015). p21-activated kinase 4 (PAK4) as a predictive marker of gemcitabine sensitivity in pancreatic cancer cell lines. Cancer Research and Treatment : Official Journal of Korean Cancer Association, 47(3), 501–508.
148.
go back to reference Li, D., Yao, X., & Zhang, P. (2013). The overexpression of P21-activated kinase 5 (PAK5) promotes paclitaxel-chemoresistance of epithelial ovarian cancer. Molecular and Cellular Biochemistry, 383(1–2), 191–199.PubMed Li, D., Yao, X., & Zhang, P. (2013). The overexpression of P21-activated kinase 5 (PAK5) promotes paclitaxel-chemoresistance of epithelial ovarian cancer. Molecular and Cellular Biochemistry, 383(1–2), 191–199.PubMed
149.
go back to reference He, S., Feng, M., Liu, M., Yang, S., Yan, S., Zhang, W., et al. (2014). P21-activated kinase 7 mediates cisplatin-resistance of esophageal squamous carcinoma cells with Aurora-A overexpression. PLoS One, 9(12), e113989.PubMedPubMedCentral He, S., Feng, M., Liu, M., Yang, S., Yan, S., Zhang, W., et al. (2014). P21-activated kinase 7 mediates cisplatin-resistance of esophageal squamous carcinoma cells with Aurora-A overexpression. PLoS One, 9(12), e113989.PubMedPubMedCentral
150.
go back to reference Chen, J., Lu, H., Yan, D., Cui, F., Wang, X., Yu, F., et al. (2015). PAK6 increase chemoresistance and is a prognostic marker for stage II and III colon cancer patients undergoing 5-FU based chemotherapy. Oncotarget, 6(1), 355–367.PubMed Chen, J., Lu, H., Yan, D., Cui, F., Wang, X., Yu, F., et al. (2015). PAK6 increase chemoresistance and is a prognostic marker for stage II and III colon cancer patients undergoing 5-FU based chemotherapy. Oncotarget, 6(1), 355–367.PubMed
151.
go back to reference Huynh, N., Shulkes, A., Baldwin, G., & He, H. (2016). Up-regulation of stem cell markers by P21-activated kinase 1 contributes to 5-fluorouracil resistance of colorectal cancer. Cancer Biology & Therapy, 17(8), 813–823. Huynh, N., Shulkes, A., Baldwin, G., & He, H. (2016). Up-regulation of stem cell markers by P21-activated kinase 1 contributes to 5-fluorouracil resistance of colorectal cancer. Cancer Biology & Therapy, 17(8), 813–823.
152.
go back to reference Yeo, D., He, H., Patel, O., Lowy, A. M., Baldwin, G. S., & Nikfarjam, M. (2016). FRAX597, a PAK1 inhibitor, synergistically reduces pancreatic cancer growth when combined with gemcitabine. BMC Cancer, 16, 24.PubMedPubMedCentral Yeo, D., He, H., Patel, O., Lowy, A. M., Baldwin, G. S., & Nikfarjam, M. (2016). FRAX597, a PAK1 inhibitor, synergistically reduces pancreatic cancer growth when combined with gemcitabine. BMC Cancer, 16, 24.PubMedPubMedCentral
153.
go back to reference Chang, Y., Park, K. H., Lee, J. E., & Han, K.-C. (2018). Phosphoproteomic analysis reveals PAK2 as a therapeutic target for lapatinib resistance in HER2-positive breast cancer cells. Biochemical and Biophysical Research Communications, 505(1), 187–193.PubMed Chang, Y., Park, K. H., Lee, J. E., & Han, K.-C. (2018). Phosphoproteomic analysis reveals PAK2 as a therapeutic target for lapatinib resistance in HER2-positive breast cancer cells. Biochemical and Biophysical Research Communications, 505(1), 187–193.PubMed
154.
go back to reference Flis, S., Bratek, E., Chojnacki, T., Piskorek, M., & Skorski, T. (2019). Simultaneous inhibition of BCR-ABL1 tyrosine kinase and PAK1/2 serine/threonine kinase exerts synergistic effect against chronic myeloid leukemia cells. Cancers, 11(10). https://doi.org/10.3390/cancers11101544. Flis, S., Bratek, E., Chojnacki, T., Piskorek, M., & Skorski, T. (2019). Simultaneous inhibition of BCR-ABL1 tyrosine kinase and PAK1/2 serine/threonine kinase exerts synergistic effect against chronic myeloid leukemia cells. Cancers, 11(10). https://​doi.​org/​10.​3390/​cancers11101544.
155.
go back to reference Korobeynikov, V., Borakove, M., Feng, Y., Wuest, W. M., Koval, A. B., Nikonova, A. S., et al. (2019). Combined inhibition of Aurora A and p21-activated kinase 1 as a new treatment strategy in breast cancer. Breast Cancer Research and Treatment, 177(2), 369–382.PubMedPubMedCentral Korobeynikov, V., Borakove, M., Feng, Y., Wuest, W. M., Koval, A. B., Nikonova, A. S., et al. (2019). Combined inhibition of Aurora A and p21-activated kinase 1 as a new treatment strategy in breast cancer. Breast Cancer Research and Treatment, 177(2), 369–382.PubMedPubMedCentral
156.
go back to reference Khan, H. Y., Ge, J., Nagasaka, M., Aboukameel, A., Mpilla, G., Muqbil, I., et al. (2019). Targeting XPO1 and PAK4 in 8505C anaplastic thyroid cancer cells: Putative implications for overcoming lenvatinib therapy resistance. International Journal of Molecular Sciences, 21(1). https://doi.org/10.3390/ijms21010237. Khan, H. Y., Ge, J., Nagasaka, M., Aboukameel, A., Mpilla, G., Muqbil, I., et al. (2019). Targeting XPO1 and PAK4 in 8505C anaplastic thyroid cancer cells: Putative implications for overcoming lenvatinib therapy resistance. International Journal of Molecular Sciences, 21(1). https://​doi.​org/​10.​3390/​ijms21010237.
158.
go back to reference Li, N., Lopez, M. A., Linares, M., Kumar, S., Oliva, S., Martinez-Lopez, J., et al. (2019). Dual PAK4-NAMPT inhibition impacts growth and survival, and increases sensitivity to DNA-damaging agents in Waldenström Macroglobulinemia. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 25(1), 369–377. Li, N., Lopez, M. A., Linares, M., Kumar, S., Oliva, S., Martinez-Lopez, J., et al. (2019). Dual PAK4-NAMPT inhibition impacts growth and survival, and increases sensitivity to DNA-damaging agents in Waldenström Macroglobulinemia. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 25(1), 369–377.
159.
go back to reference Zhang, M., Siedow, M., Saia, G., & Chakravarti, A. (2010). Inhibition of p21-activated kinase 6 (PAK6) increases radiosensitivity of prostate cancer cells. The Prostate, 70(8), 807–816.PubMedPubMedCentral Zhang, M., Siedow, M., Saia, G., & Chakravarti, A. (2010). Inhibition of p21-activated kinase 6 (PAK6) increases radiosensitivity of prostate cancer cells. The Prostate, 70(8), 807–816.PubMedPubMedCentral
160.
go back to reference Wang, K., Huynh, N., Wang, X., Pajic, M., Parkin, A., Man, J., et al. (2019). PAK inhibition by PF-3758309 enhanced the sensitivity of multiple chemotherapeutic reagents in patient-derived pancreatic cancer cell lines. American Journal of Translational Research, 11(6), 3353–3364.PubMedPubMedCentral Wang, K., Huynh, N., Wang, X., Pajic, M., Parkin, A., Man, J., et al. (2019). PAK inhibition by PF-3758309 enhanced the sensitivity of multiple chemotherapeutic reagents in patient-derived pancreatic cancer cell lines. American Journal of Translational Research, 11(6), 3353–3364.PubMedPubMedCentral
161.
go back to reference Abril-Rodriguez, G., Torrejon, D. Y., Liu, W., et al. (2020). PAK4 inhibition improves PD-1 blockade immunotherapy. Nature Cancer, 1(1), 46–58. Abril-Rodriguez, G., Torrejon, D. Y., Liu, W., et al. (2020). PAK4 inhibition improves PD-1 blockade immunotherapy. Nature Cancer, 1(1), 46–58.
162.
go back to reference Ong, C. C., Jubb, A. M., Jakubiak, D., Zhou, W., Rudolph, J., Haverty, P. M., et al. (2013). P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. Journal of the National Cancer Institute, 105(9), 606–607.PubMed Ong, C. C., Jubb, A. M., Jakubiak, D., Zhou, W., Rudolph, J., Haverty, P. M., et al. (2013). P21-activated kinase 1 (PAK1) as a therapeutic target in BRAF wild-type melanoma. Journal of the National Cancer Institute, 105(9), 606–607.PubMed
163.
go back to reference Babagana, M., Johnson, S., Slabodkin, H., Bshara, W., Morrison, C., & Kandel, E. S. (2017). P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Molecular Carcinogenesis, 56(5), 1515–1525.PubMedPubMedCentral Babagana, M., Johnson, S., Slabodkin, H., Bshara, W., Morrison, C., & Kandel, E. S. (2017). P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Molecular Carcinogenesis, 56(5), 1515–1525.PubMedPubMedCentral
164.
go back to reference Araiza-Olivera, D., Feng, Y., Semenova, G., Prudnikova, T. Y., Rhodes, J., & Chernoff, J. (2018). Suppression of RAC1-driven malignant melanoma by group A PAK inhibitors. Oncogene, 37(7), 944–952.PubMed Araiza-Olivera, D., Feng, Y., Semenova, G., Prudnikova, T. Y., Rhodes, J., & Chernoff, J. (2018). Suppression of RAC1-driven malignant melanoma by group A PAK inhibitors. Oncogene, 37(7), 944–952.PubMed
165.
go back to reference Montero-Conde, C., Ruiz-Llorente, S., Dominguez, J. M., Knauf, J. A., Viale, A., Sherman, E. J., et al. (2013). Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discovery, 3(5), 520–533.PubMedPubMedCentral Montero-Conde, C., Ruiz-Llorente, S., Dominguez, J. M., Knauf, J. A., Viale, A., Sherman, E. J., et al. (2013). Relief of feedback inhibition of HER3 transcription by RAF and MEK inhibitors attenuates their antitumor effects in BRAF-mutant thyroid carcinomas. Cancer Discovery, 3(5), 520–533.PubMedPubMedCentral
166.
go back to reference Kugel 3rd, C. H., Hartsough, E. J., Davies, M. A., Setiady, Y. Y., & Aplin, A. E. (2014). Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor. Cancer Research, 74(15), 4122–4132.PubMedPubMedCentral Kugel 3rd, C. H., Hartsough, E. J., Davies, M. A., Setiady, Y. Y., & Aplin, A. E. (2014). Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor. Cancer Research, 74(15), 4122–4132.PubMedPubMedCentral
167.
go back to reference Kaneko, M., Saito, Y., Saito, H., Matsumoto, T., Matsuda, Y., Vaught, J. L., et al. (1997). Neurotrophic 3,9-bis[(alkylthio)methyl]-and-bis(alkoxymethyl)-K-252a derivatives. Journal of Medicinal Chemistry, 40(12), 1863–1869.PubMed Kaneko, M., Saito, Y., Saito, H., Matsumoto, T., Matsuda, Y., Vaught, J. L., et al. (1997). Neurotrophic 3,9-bis[(alkylthio)methyl]-and-bis(alkoxymethyl)-K-252a derivatives. Journal of Medicinal Chemistry, 40(12), 1863–1869.PubMed
168.
go back to reference Zhu, J., Huang, J.-W., Tseng, P.-H., Yang, Y.-T., Fowble, J., Shiau, C.-W., et al. (2004). From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Research, 64(12), 4309–4318.PubMed Zhu, J., Huang, J.-W., Tseng, P.-H., Yang, Y.-T., Fowble, J., Shiau, C.-W., et al. (2004). From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Research, 64(12), 4309–4318.PubMed
170.
go back to reference Ndubaku, C., & Tsui, V. (2015). Inhibiting the deubiquitinating enzymes (DUBs). Journal of Medicinal Chemistry, 58(4), 1581–1595.PubMed Ndubaku, C., & Tsui, V. (2015). Inhibiting the deubiquitinating enzymes (DUBs). Journal of Medicinal Chemistry, 58(4), 1581–1595.PubMed
171.
go back to reference Rudolph, J., Murray, L. J., Ndubaku, C. O., O’Brien, T., Blackwood, E., Wang, W., et al. (2016). Chemically diverse group I p21-activated kinase (PAK) inhibitors impart acute cardiovascular toxicity with a narrow therapeutic window. Journal of Medicinal Chemistry, 59(11), 5520–5541.PubMed Rudolph, J., Murray, L. J., Ndubaku, C. O., O’Brien, T., Blackwood, E., Wang, W., et al. (2016). Chemically diverse group I p21-activated kinase (PAK) inhibitors impart acute cardiovascular toxicity with a narrow therapeutic window. Journal of Medicinal Chemistry, 59(11), 5520–5541.PubMed
172.
go back to reference Kim, D.-J., Choi, C.-K., Lee, C.-S., Park, M.-H., Tian, X., Kim, N. D., et al. (2016). Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain. Experimental & Molecular Medicine, 48(4), e229. https://doi.org/10.1038/emm.2016.13.CrossRef Kim, D.-J., Choi, C.-K., Lee, C.-S., Park, M.-H., Tian, X., Kim, N. D., et al. (2016). Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain. Experimental & Molecular Medicine, 48(4), e229. https://​doi.​org/​10.​1038/​emm.​2016.​13.CrossRef
173.
go back to reference Fattore, L., Marra, E., Pisanu, M. E., Noto, A., de Vitis, C., Belleudi, F., et al. (2013). Activation of an early feedback survival loop involving phospho-ErbB3 is a general response of melanoma cells to RAF/MEK inhibition and is abrogated by anti-ErbB3 antibodies. Journal of Translational Medicine, 11, 180.PubMedPubMedCentral Fattore, L., Marra, E., Pisanu, M. E., Noto, A., de Vitis, C., Belleudi, F., et al. (2013). Activation of an early feedback survival loop involving phospho-ErbB3 is a general response of melanoma cells to RAF/MEK inhibition and is abrogated by anti-ErbB3 antibodies. Journal of Translational Medicine, 11, 180.PubMedPubMedCentral
174.
go back to reference Herr, R., Halbach, S., Heizmann, M., Busch, H., Boerries, M., & Brummer, T. (2018). BRAF inhibition upregulates a variety of receptor tyrosine kinases and their downstream effector Gab2 in colorectal cancer cell lines. Oncogene, 37(12), 1576–1593.PubMed Herr, R., Halbach, S., Heizmann, M., Busch, H., Boerries, M., & Brummer, T. (2018). BRAF inhibition upregulates a variety of receptor tyrosine kinases and their downstream effector Gab2 in colorectal cancer cell lines. Oncogene, 37(12), 1576–1593.PubMed
175.
go back to reference Cruz, O. V., Prudnikova, T. Y., Araiza-Olivera, D., Perez-Plasencia, C., Johnson, N., Bernhardy, A. J., et al. (2016). Reduced PAK1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition. Oncotarget, 7(47), 76590–76603.PubMedCentral Cruz, O. V., Prudnikova, T. Y., Araiza-Olivera, D., Perez-Plasencia, C., Johnson, N., Bernhardy, A. J., et al. (2016). Reduced PAK1 activity sensitizes FA/BRCA-proficient breast cancer cells to PARP inhibition. Oncotarget, 7(47), 76590–76603.PubMedCentral
176.
go back to reference Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404.PubMed Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O., Aksoy, B. A., et al. (2012). The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discovery, 2(5), 401–404.PubMed
177.
go back to reference Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6, l1. Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O., et al. (2013). Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Science Signaling, 6, l1.
Metadata
Title
Coordinated dysregulation of cancer progression by the HER family and p21-activated kinases
Authors
Rakesh Kumar
Aswathy Mary Paul
Ravikumar Amjesh
Bijesh George
M. Radhakrishna Pillai
Publication date
01-09-2020
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3/2020
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-020-09922-6

Other articles of this Issue 3/2020

Cancer and Metastasis Reviews 3/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine