Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3/2020

Open Access 01-09-2020 | Metastasis

Molecular and cellular mechanisms underlying brain metastasis of breast cancer

Authors: Mari Hosonaga, Hideyuki Saya, Yoshimi Arima

Published in: Cancer and Metastasis Reviews | Issue 3/2020

Login to get access

Abstract

Metastasis of cancer cells to the brain occurs frequently in patients with certain subtypes of breast cancer. In particular, patients with HER2-positive or triple-negative breast cancer are at high risk for the development of brain metastases. Despite recent advances in the treatment of primary breast tumors, the prognosis of breast cancer patients with brain metastases remains poor. A better understanding of the molecular and cellular mechanisms underlying brain metastasis might be expected to lead to improvements in the overall survival rate for these patients. Recent studies have revealed complex interactions between metastatic cancer cells and their microenvironment in the brain. Such interactions result in the activation of various signaling pathways related to metastasis in both cancer cells and cells of the microenvironment including astrocytes and microglia. In this review, we focus on such interactions and on their role both in the metastatic process and as potential targets for therapeutic intervention.
Literature
2.
go back to reference Lin, N. U., Bellon, J. R., & Winer, E. P. (2004). CNS metastases in breast cancer. Journal of Clinical Oncology, 22(17), 3608–3617.PubMed Lin, N. U., Bellon, J. R., & Winer, E. P. (2004). CNS metastases in breast cancer. Journal of Clinical Oncology, 22(17), 3608–3617.PubMed
3.
go back to reference Nussbaum, E. S., Djalilian, H. R., Cho, K. H., & Hall, W. A. (1996). Brain metastases: Histology, multiplicity, surgery, and survival. Cancer, 78(8), 1781–1788.PubMed Nussbaum, E. S., Djalilian, H. R., Cho, K. H., & Hall, W. A. (1996). Brain metastases: Histology, multiplicity, surgery, and survival. Cancer, 78(8), 1781–1788.PubMed
4.
go back to reference Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M. C., Voduc, D., Speers, C. H., et al. (2010). Metastatic behavior of breast cancer subtypes. Journal of Clinical Oncology, 28(20), 3271–3277.PubMed Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M. C., Voduc, D., Speers, C. H., et al. (2010). Metastatic behavior of breast cancer subtypes. Journal of Clinical Oncology, 28(20), 3271–3277.PubMed
5.
go back to reference Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406, 747–752.PubMed Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406, 747–752.PubMed
6.
go back to reference Cancer Genome Atlas Network. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70. Cancer Genome Atlas Network. (2012). Comprehensive molecular portraits of human breast tumours. Nature, 490(7418), 61–70.
8.
go back to reference Sperduto, P. W., Kased, N., Roberge, D., Xu, Z., Shanley, R., Luo, X,. et. al. (2012). Summary report on the graded prognostic assessment: An accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. Journal of Clinical Oncology, 30(4), 419–425. Sperduto, P. W., Kased, N., Roberge, D., Xu, Z., Shanley, R., Luo, X,. et. al. (2012). Summary report on the graded prognostic assessment: An accurate and facile diagnosis-specific tool to estimate survival for patients with brain metastases. Journal of Clinical Oncology, 30(4), 419–425.
9.
go back to reference Sperduto, P. W., Kased, N., Roberge, D., Xu, Z., Shanley, R., Luo, X., Sneed, P. K., Chao, S. T., Weil, R. J., Suh, J., Bhatt, A., Jensen, A. W., Brown, P. D., Shih, H. A., Kirkpatrick, J., Gaspar, L. E., Fiveash, J. B., Chiang, V., Knisely, J. P. S., Sperduto, C. M., Lin, N., & Mehta, M. (2012). Effect of tumor subtype on survival and the graded prognostic assessment for patients with breast cancer and brain metastases. International Journal of Radiation Oncology, Biology, Physics, 82(5), 2111–2117.PubMed Sperduto, P. W., Kased, N., Roberge, D., Xu, Z., Shanley, R., Luo, X., Sneed, P. K., Chao, S. T., Weil, R. J., Suh, J., Bhatt, A., Jensen, A. W., Brown, P. D., Shih, H. A., Kirkpatrick, J., Gaspar, L. E., Fiveash, J. B., Chiang, V., Knisely, J. P. S., Sperduto, C. M., Lin, N., & Mehta, M. (2012). Effect of tumor subtype on survival and the graded prognostic assessment for patients with breast cancer and brain metastases. International Journal of Radiation Oncology, Biology, Physics, 82(5), 2111–2117.PubMed
10.
go back to reference Griguolo, G., Jacot, W., Kantelhardt, E., Dieci, M. V., Bourgier, C., Thomssen, C., Bailleux, C., Miglietta, F., Braccini, A. L., Conte, P. F., Ferrero, J. M., Guarneri, V., & Darlix, A. (2018). External validation of modified breast graded prognostic assessment for breast cancer patients with brain metastases: A multicentric European experience. Breast., 37, 36–41.PubMed Griguolo, G., Jacot, W., Kantelhardt, E., Dieci, M. V., Bourgier, C., Thomssen, C., Bailleux, C., Miglietta, F., Braccini, A. L., Conte, P. F., Ferrero, J. M., Guarneri, V., & Darlix, A. (2018). External validation of modified breast graded prognostic assessment for breast cancer patients with brain metastases: A multicentric European experience. Breast., 37, 36–41.PubMed
11.
go back to reference Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.PubMed Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews Cancer, 2(8), 563–572.PubMed
12.
13.
go back to reference Achroll, A. S., Rennert, R. C., Anders, C., Soffietti, R., Ahluwalia, M. S., Nayak, L., et al. (2019). Brain metastases. Nature Reviews Disease Primers, 5(5), 1–26. Achroll, A. S., Rennert, R. C., Anders, C., Soffietti, R., Ahluwalia, M. S., Nayak, L., et al. (2019). Brain metastases. Nature Reviews Disease Primers, 5(5), 1–26.
14.
15.
go back to reference Denkert, C., Loibl, S., Noske, A., Roller, M., Muller, B. M., Komor, M., et al. (2010). Tumor associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. Journal of Clinical Oncology, 28(1), 105–113.PubMed Denkert, C., Loibl, S., Noske, A., Roller, M., Muller, B. M., Komor, M., et al. (2010). Tumor associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. Journal of Clinical Oncology, 28(1), 105–113.PubMed
16.
go back to reference Berghoff, A. S., Fuchs, E., Ricken, G., Mlecnik, B., Bindea, G., Spanberger, T., Hackl, M., Widhalm, G., Dieckmann, K., Prayer, D., Bilocq, A., Heinzl, H., Zielinski, C., Bartsch, R., Birner, P., Galon, J., & Preusser, M. (2016). Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology., 5, e1057388. https://doi.org/10.1080/2162402X.2015.1057388.CrossRefPubMed Berghoff, A. S., Fuchs, E., Ricken, G., Mlecnik, B., Bindea, G., Spanberger, T., Hackl, M., Widhalm, G., Dieckmann, K., Prayer, D., Bilocq, A., Heinzl, H., Zielinski, C., Bartsch, R., Birner, P., Galon, J., & Preusser, M. (2016). Density of tumor-infiltrating lymphocytes correlates with extent of brain edema and overall survival time in patients with brain metastases. Oncoimmunology., 5, e1057388. https://​doi.​org/​10.​1080/​2162402X.​2015.​1057388.CrossRefPubMed
17.
go back to reference Duchnowska, R., Pęksa, R., Radecka, B., Mandat, T., Trojanowski, T., Jarosz, B., et al. (2016). Immune response in breast cancer brain metastases and their microenvironment: The role of the PD-1/PD- L axis. Breast Cancer Research, 18(43), 1–11. Duchnowska, R., Pęksa, R., Radecka, B., Mandat, T., Trojanowski, T., Jarosz, B., et al. (2016). Immune response in breast cancer brain metastases and their microenvironment: The role of the PD-1/PD- L axis. Breast Cancer Research, 18(43), 1–11.
18.
go back to reference Sampson, J. H., Gunn, M. D., Fecci, P. E., & Ashley, D. M. (2019). Brain immunology and immunotherapy in brain tumours. Nature Reviews Cancer, 20, 12–25.PubMedPubMedCentral Sampson, J. H., Gunn, M. D., Fecci, P. E., & Ashley, D. M. (2019). Brain immunology and immunotherapy in brain tumours. Nature Reviews Cancer, 20, 12–25.PubMedPubMedCentral
19.
go back to reference Valiente, M., Obenauf, A. C., Jin, X., Chen, Q., Zhang, X. H., Lee, D. J., et al. (2014). Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 156(5), 1002–1016.PubMedPubMedCentral Valiente, M., Obenauf, A. C., Jin, X., Chen, Q., Zhang, X. H., Lee, D. J., et al. (2014). Serpins promote cancer cell survival and vascular co-option in brain metastasis. Cell, 156(5), 1002–1016.PubMedPubMedCentral
20.
go back to reference Wasilewski, D., Priego, N., Fustero-Torre, C., & Valiente, M. (2017). Reactive astrocytes in brain metastasis. Frontiers in Oncology, 7, 298.PubMedPubMedCentral Wasilewski, D., Priego, N., Fustero-Torre, C., & Valiente, M. (2017). Reactive astrocytes in brain metastasis. Frontiers in Oncology, 7, 298.PubMedPubMedCentral
21.
go back to reference Anderson, M. A., Ao, Y., & Sofroniew, M. V. (2014). Heterogeneity of reactive astrocytes. Neuroscience Letters, 565, 23–29.PubMed Anderson, M. A., Ao, Y., & Sofroniew, M. V. (2014). Heterogeneity of reactive astrocytes. Neuroscience Letters, 565, 23–29.PubMed
22.
go back to reference John Lin, C. C., Yu, K., Hatcher, A., Huang, T. W., Lee, H. K., Carlson, J., Weston, M. C., Chen, F., Zhang, Y., Zhu, W., Mohila, C. A., Ahmed, N., Patel, A. J., Arenkiel, B. R., Noebels, J. L., Creighton, C. J., & Deneen, B. (2017). Identification of diverse astrocyte populations and their malignant analogs. Nature Neuroscience, 20(3), 396–405.PubMed John Lin, C. C., Yu, K., Hatcher, A., Huang, T. W., Lee, H. K., Carlson, J., Weston, M. C., Chen, F., Zhang, Y., Zhu, W., Mohila, C. A., Ahmed, N., Patel, A. J., Arenkiel, B. R., Noebels, J. L., Creighton, C. J., & Deneen, B. (2017). Identification of diverse astrocyte populations and their malignant analogs. Nature Neuroscience, 20(3), 396–405.PubMed
23.
go back to reference Kelley, K. W., Nakao-Inoue, H., Molofsky, A. V., & Oldham, M. C. (2018). Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes. Nature Neuroscience, 21(9), 1171–1184.PubMedPubMedCentral Kelley, K. W., Nakao-Inoue, H., Molofsky, A. V., & Oldham, M. C. (2018). Variation among intact tissue samples reveals the core transcriptional features of human CNS cell classes. Nature Neuroscience, 21(9), 1171–1184.PubMedPubMedCentral
24.
go back to reference Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Münch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B., & Barres, B. A. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 541(7638), 481–487.PubMedPubMedCentral Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Münch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B., & Barres, B. A. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 541(7638), 481–487.PubMedPubMedCentral
25.
go back to reference Liddelow, S. A., & Barres, B. A. (2017). Reactive astrocytes: Production, function, and therapeutic potential. Immunity., 46, 957–967.PubMed Liddelow, S. A., & Barres, B. A. (2017). Reactive astrocytes: Production, function, and therapeutic potential. Immunity., 46, 957–967.PubMed
26.
go back to reference Priego, N., Zhu, L., Monteiro, C., Mulders, M., Wasilewski, D., Bindeman, W., Doglio, L., Martínez, L., Martínez-Saez, E., Ramón y Cajal, S., Megías, D., Hernández-Encinas, E., Blanco-Aparicio, C., Martínez, L., Zarzuela, E., Muñoz, J., Fustero-Torre, C., Piñeiro-Yáñez, E., Hernández-Laín, A., Bertero, L., Poli, V., Sanchez-Martinez, M., Menendez, J. A., Soffietti, R., Bosch-Barrera, J., & Valiente, M. (2018). STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nature Medicine, 24(7), 1024–1035.PubMed Priego, N., Zhu, L., Monteiro, C., Mulders, M., Wasilewski, D., Bindeman, W., Doglio, L., Martínez, L., Martínez-Saez, E., Ramón y Cajal, S., Megías, D., Hernández-Encinas, E., Blanco-Aparicio, C., Martínez, L., Zarzuela, E., Muñoz, J., Fustero-Torre, C., Piñeiro-Yáñez, E., Hernández-Laín, A., Bertero, L., Poli, V., Sanchez-Martinez, M., Menendez, J. A., Soffietti, R., Bosch-Barrera, J., & Valiente, M. (2018). STAT3 labels a subpopulation of reactive astrocytes required for brain metastasis. Nature Medicine, 24(7), 1024–1035.PubMed
27.
go back to reference Anderson, M. A., Burda, J. E., Ren, Y., Ao, Y., O'Shea, T. M., Kawaguchi, R., et. al. (2016). Astrocyte scar formation aids central nervous system axon regeneration. Nature, 532(7598), 195–200. Anderson, M. A., Burda, J. E., Ren, Y., Ao, Y., O'Shea, T. M., Kawaguchi, R., et. al. (2016). Astrocyte scar formation aids central nervous system axon regeneration. Nature, 532(7598), 195–200.
28.
go back to reference Heiland, D., Ravi, V. M., Behringer, S. P., Frenking, J. H., Wurm, J., Joseph, K., et al. (2019). Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nature Communications, 10(1), 2541. Heiland, D., Ravi, V. M., Behringer, S. P., Frenking, J. H., Wurm, J., Joseph, K., et al. (2019). Tumor-associated reactive astrocytes aid the evolution of immunosuppressive environment in glioblastoma. Nature Communications, 10(1), 2541.
29.
go back to reference Ghoochani, A., Schwarz, M. A., Yakubov, E., Engelhorn, T., Doerfler, A., Buchfelder, M., Bucala, R., Savaskan, N. E., & Eyüpoglu, I. Y. (2016). MIF-CD74 signaling impedes microglial M1 polarization and facilitates brain tumorigenesis. Oncogene, 35(48), 6246–6261.PubMed Ghoochani, A., Schwarz, M. A., Yakubov, E., Engelhorn, T., Doerfler, A., Buchfelder, M., Bucala, R., Savaskan, N. E., & Eyüpoglu, I. Y. (2016). MIF-CD74 signaling impedes microglial M1 polarization and facilitates brain tumorigenesis. Oncogene, 35(48), 6246–6261.PubMed
30.
go back to reference Lin, Q., Balasubramanian, K., Fan, D., Kim, S. J., Guo, L., Wang, H., Bar-Eli, M., Aldape, K. D., & Fidler, I. J. (2010). Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia, 12(9), 748–754.PubMedPubMedCentral Lin, Q., Balasubramanian, K., Fan, D., Kim, S. J., Guo, L., Wang, H., Bar-Eli, M., Aldape, K. D., & Fidler, I. J. (2010). Reactive astrocytes protect melanoma cells from chemotherapy by sequestering intracellular calcium through gap junction communication channels. Neoplasia, 12(9), 748–754.PubMedPubMedCentral
31.
go back to reference Kim, S. J., Kim, J. S., Park, E. S., Lee, J. S., Lin, Q., Langley, R. R., Maya, M., He, J., Kim, S. W., Weihua, Z., Balasubramanian, K., Fan, D., Mills, G. B., Hung, M. C., & Fidler, I. J. (2011). Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia, 13(3), 286–298.PubMedPubMedCentral Kim, S. J., Kim, J. S., Park, E. S., Lee, J. S., Lin, Q., Langley, R. R., Maya, M., He, J., Kim, S. W., Weihua, Z., Balasubramanian, K., Fan, D., Mills, G. B., Hung, M. C., & Fidler, I. J. (2011). Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia, 13(3), 286–298.PubMedPubMedCentral
32.
go back to reference Chen, Q., Boire, A., Jin, X., Valiente, M., Er, E. E., Lopez-Soto, A., S. Jacob, L., Patwa, R., Shah, H., Xu, K., Cross, J. R., & Massagué, J. (2016). Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 533(7604), 493–498.PubMedPubMedCentral Chen, Q., Boire, A., Jin, X., Valiente, M., Er, E. E., Lopez-Soto, A., S. Jacob, L., Patwa, R., Shah, H., Xu, K., Cross, J. R., & Massagué, J. (2016). Carcinoma-astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 533(7604), 493–498.PubMedPubMedCentral
33.
go back to reference Blazquez, R., Wlochowitz, D., Wolff, A., Seitz, S., Wachter, A., Perera-Bel, J., Bleckmann, A., Beißbarth, T., Salinas, G., Riemenschneider, M. J., Proescholdt, M., Evert, M., Utpatel, K., Siam, L., Schatlo, B., Balkenhol, M., Stadelmann, C., Schildhaus, H. U., Korf, U., Reinz, E., Wiemann, S., Vollmer, E., Schulz, M., Ritter, U., Hanisch, U. K., & Pukrop, T. (2018). PI3K: A master regulator of brain metastasis-promoting macrophages/microglia. Glia, 66(11), 2438–2455.PubMed Blazquez, R., Wlochowitz, D., Wolff, A., Seitz, S., Wachter, A., Perera-Bel, J., Bleckmann, A., Beißbarth, T., Salinas, G., Riemenschneider, M. J., Proescholdt, M., Evert, M., Utpatel, K., Siam, L., Schatlo, B., Balkenhol, M., Stadelmann, C., Schildhaus, H. U., Korf, U., Reinz, E., Wiemann, S., Vollmer, E., Schulz, M., Ritter, U., Hanisch, U. K., & Pukrop, T. (2018). PI3K: A master regulator of brain metastasis-promoting macrophages/microglia. Glia, 66(11), 2438–2455.PubMed
34.
go back to reference Hohensee, I., Chuang, H. N., Grottke, A., Werner, S., Schulte, A., Horn, S., Lamszus, K., Bartkowiak, K., Witzel, I., Westphal, M., Matschke, J., Glatzel, M., Jücker, M., Pukrop, T., Pantel, K., & Wikman, H. (2017). PTEN mediates the cross talk between breast and glial cells in brain metastases leading to rapid disease progression. Oncotarget, 8(4), 6155–6168.PubMed Hohensee, I., Chuang, H. N., Grottke, A., Werner, S., Schulte, A., Horn, S., Lamszus, K., Bartkowiak, K., Witzel, I., Westphal, M., Matschke, J., Glatzel, M., Jücker, M., Pukrop, T., Pantel, K., & Wikman, H. (2017). PTEN mediates the cross talk between breast and glial cells in brain metastases leading to rapid disease progression. Oncotarget, 8(4), 6155–6168.PubMed
35.
go back to reference Adamo, B., Deal, A. M., Burrows, E., Geradts, J., Hamilton, E., Blackwell, K. L., Livasy, C., Fritchie, K., Prat, A., Harrell, J. C., Ewend, M. G., Carey, L. A., Miller, C. R., & Anders, C. K. (2011). Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases. Breast Cancer Research, 13(6), R125.PubMedPubMedCentral Adamo, B., Deal, A. M., Burrows, E., Geradts, J., Hamilton, E., Blackwell, K. L., Livasy, C., Fritchie, K., Prat, A., Harrell, J. C., Ewend, M. G., Carey, L. A., Miller, C. R., & Anders, C. K. (2011). Phosphatidylinositol 3-kinase pathway activation in breast cancer brain metastases. Breast Cancer Research, 13(6), R125.PubMedPubMedCentral
36.
go back to reference Schmit, F., Utermark, T., Zhang, S., Wang, Q., Von, T., Roberts, T. M., et al. (2014). PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6395–6400.PubMedPubMedCentral Schmit, F., Utermark, T., Zhang, S., Wang, Q., Von, T., Roberts, T. M., et al. (2014). PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6395–6400.PubMedPubMedCentral
37.
go back to reference Okkenhaug, K. (2013). Two birds with one stone: Dual p110delta and p110gamma inhibition. Chemistry & Biology, 20(11), 1309–1310. Okkenhaug, K. (2013). Two birds with one stone: Dual p110delta and p110gamma inhibition. Chemistry & Biology, 20(11), 1309–1310.
38.
go back to reference Kaneda, M. M., Messer, K. S., Ralainirina, N., Li, H., Leem, C. J., Gorjestani, S., Woo, G., Nguyen, A. V., Figueiredo, C. C., Foubert, P., Schmid, M. C., Pink, M., Winkler, D. G., Rausch, M., Palombella, V. J., Kutok, J., McGovern, K., Frazer, K. A., Wu, X., Karin, M., Sasik, R., Cohen, E. E. W., & Varner, J. A. (2016). PI3Kgamma is a molecular switch that controls immune suppression. Nature, 539(7629), 437–442.PubMedPubMedCentral Kaneda, M. M., Messer, K. S., Ralainirina, N., Li, H., Leem, C. J., Gorjestani, S., Woo, G., Nguyen, A. V., Figueiredo, C. C., Foubert, P., Schmid, M. C., Pink, M., Winkler, D. G., Rausch, M., Palombella, V. J., Kutok, J., McGovern, K., Frazer, K. A., Wu, X., Karin, M., Sasik, R., Cohen, E. E. W., & Varner, J. A. (2016). PI3Kgamma is a molecular switch that controls immune suppression. Nature, 539(7629), 437–442.PubMedPubMedCentral
39.
go back to reference Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9(4), 239–252.PubMed Joyce, J. A., & Pollard, J. W. (2009). Microenvironmental regulation of metastasis. Nature Reviews Cancer, 9(4), 239–252.PubMed
40.
go back to reference Strachan, D. C., Ruffell, B., Oei, Y., Bissell, M. J., Coussens, L. M., Pryer, N., & Daniel, D. (2013). CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+T cells. Oncoimmunology, 2(12), e26968.PubMedPubMedCentral Strachan, D. C., Ruffell, B., Oei, Y., Bissell, M. J., Coussens, L. M., Pryer, N., & Daniel, D. (2013). CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumor-associated macrophages and enhancing infiltration by CD8+T cells. Oncoimmunology, 2(12), e26968.PubMedPubMedCentral
41.
go back to reference Zhang, L., Zhang, S., Yao, J., Lowery, F. J., Zhang, Q., Huang, W. C., Li, P., Li, M., Wang, X., Zhang, C., Wang, H., Ellis, K., Cheerathodi, M., McCarty, J. H., Palmieri, D., Saunus, J., Lakhani, S., Huang, S., Sahin, A. A., Aldape, K. D., Steeg, P. S., & Yu, D. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 527(7576), 100–104.PubMedPubMedCentral Zhang, L., Zhang, S., Yao, J., Lowery, F. J., Zhang, Q., Huang, W. C., Li, P., Li, M., Wang, X., Zhang, C., Wang, H., Ellis, K., Cheerathodi, M., McCarty, J. H., Palmieri, D., Saunus, J., Lakhani, S., Huang, S., Sahin, A. A., Aldape, K. D., Steeg, P. S., & Yu, D. (2015). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 527(7576), 100–104.PubMedPubMedCentral
42.
go back to reference Ni, J., Ramkissoon, S. H., Xie, S., Goel, S., Stover, D. G., Guo, H., Luu, V., Marco, E., Ramkissoon, L. A., Kang, Y. J., Hayashi, M., Nguyen, Q. D., Ligon, A. H., du, R., Claus, E. B., Alexander, B. M., Yuan, G. C., Wang, Z. C., Iglehart, J. D., Krop, I. E., Roberts, T. M., Winer, E. P., Lin, N. U., Ligon, K. L., & Zhao, J. J. (2016). Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nature Medicine, 22(7), 723–726.PubMedPubMedCentral Ni, J., Ramkissoon, S. H., Xie, S., Goel, S., Stover, D. G., Guo, H., Luu, V., Marco, E., Ramkissoon, L. A., Kang, Y. J., Hayashi, M., Nguyen, Q. D., Ligon, A. H., du, R., Claus, E. B., Alexander, B. M., Yuan, G. C., Wang, Z. C., Iglehart, J. D., Krop, I. E., Roberts, T. M., Winer, E. P., Lin, N. U., Ligon, K. L., & Zhao, J. J. (2016). Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nature Medicine, 22(7), 723–726.PubMedPubMedCentral
43.
go back to reference Lee-Hoeflich, S. T., Crocker, L., Yao, E., Pham, T., Munroe, X., Hoeflich, K. P., Sliwkowski, M. X., & Stern, H. M. (2008). A central role for HER3 in HER2-amplified breast cancer: Implications for targeted therapy. Cancer Research, 68(14), 5878–5887.PubMed Lee-Hoeflich, S. T., Crocker, L., Yao, E., Pham, T., Munroe, X., Hoeflich, K. P., Sliwkowski, M. X., & Stern, H. M. (2008). A central role for HER3 in HER2-amplified breast cancer: Implications for targeted therapy. Cancer Research, 68(14), 5878–5887.PubMed
44.
go back to reference Kodack, D. P., Chung, E., Yamashita, H., Incio, J., Duyverman, A. M., Song, Y., et al. (2012). Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases. Proceedings of the National Academy of Sciences of the United States of America, 109(45), E3119–E3127.PubMedPubMedCentral Kodack, D. P., Chung, E., Yamashita, H., Incio, J., Duyverman, A. M., Song, Y., et al. (2012). Combined targeting of HER2 and VEGFR2 for effective treatment of HER2-amplified breast cancer brain metastases. Proceedings of the National Academy of Sciences of the United States of America, 109(45), E3119–E3127.PubMedPubMedCentral
45.
go back to reference Da Silva, L., Simpson, P. T., Smart, C. E., Cocciardi, S., Waddell, N., Lane, A., et al. (2010). HER3 and downstream pathways are involved in colonization of brain metastases from breast cancer. Breast Cancer Research, 12(4), R46.PubMedPubMedCentral Da Silva, L., Simpson, P. T., Smart, C. E., Cocciardi, S., Waddell, N., Lane, A., et al. (2010). HER3 and downstream pathways are involved in colonization of brain metastases from breast cancer. Breast Cancer Research, 12(4), R46.PubMedPubMedCentral
46.
go back to reference Saunus, J. M., Quinn, M. C., Patch, A. M., Pearson, J. V., Bailey, P. J., Nones, K., McCart Reed, A. E., Miller, D., Wilson, P. J., al-Ejeh, F., Mariasegaram, M., Lau, Q., Withers, T., Jeffree, R. L., Reid, L. E., da Silva, L., Matsika, A., Niland, C. M., Cummings, M. C., Bruxner, T. J. C., Christ, A. N., Harliwong, I., Idrisoglu, S., Manning, S., Nourse, C., Nourbakhsh, E., Wani, S., Anderson, M. J., Fink, J. L., Holmes, O., Kazakoff, S., Leonard, C., Newell, F., Taylor, D., Waddell, N., Wood, S., Xu, Q., Kassahn, K. S., Narayanan, V., Taib, N. A., Teo, S. H., Chow, Y. P., kConFab, Jat, P. S., Brandner, S., Flanagan, A. M., Khanna, K. K., Chenevix-Trench, G., Grimmond, S. M., Simpson, P. T., Waddell, N., & Lakhani, S. R. (2015). Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. The Journal of Pathology, 237(3), 363–378.PubMed Saunus, J. M., Quinn, M. C., Patch, A. M., Pearson, J. V., Bailey, P. J., Nones, K., McCart Reed, A. E., Miller, D., Wilson, P. J., al-Ejeh, F., Mariasegaram, M., Lau, Q., Withers, T., Jeffree, R. L., Reid, L. E., da Silva, L., Matsika, A., Niland, C. M., Cummings, M. C., Bruxner, T. J. C., Christ, A. N., Harliwong, I., Idrisoglu, S., Manning, S., Nourse, C., Nourbakhsh, E., Wani, S., Anderson, M. J., Fink, J. L., Holmes, O., Kazakoff, S., Leonard, C., Newell, F., Taylor, D., Waddell, N., Wood, S., Xu, Q., Kassahn, K. S., Narayanan, V., Taib, N. A., Teo, S. H., Chow, Y. P., kConFab, Jat, P. S., Brandner, S., Flanagan, A. M., Khanna, K. K., Chenevix-Trench, G., Grimmond, S. M., Simpson, P. T., Waddell, N., & Lakhani, S. R. (2015). Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. The Journal of Pathology, 237(3), 363–378.PubMed
47.
go back to reference Kodack, D. P., Askoxylakis, V., Ferraro, G. B., Sheng, Q., Badeaux, M., Goel, S., Qi, X., Shankaraiah, R., Cao, Z. A., Ramjiawan, R. R., Bezwada, D., Patel, B., Song, Y., Costa, C., Naxerova, K., Wong, C. S. F., Kloepper, J., Das, R., Tam, A., Tanboon, J., Duda, D. G., Miller, C. R., Siegel, M. B., Anders, C. K., Sanders, M., Estrada, M. V., Schlegel, R., Arteaga, C. L., Brachtel, E., Huang, A., Fukumura, D., Engelman, J. A., & Jain, R. K. (2017). The brain microenvironment mediates resistance in luminal breast cancer to PI3K inhibition through HER3 activation. Science Translational Medicine., 9, eaal4682. https://doi.org/10.1126/scitranslmed.aal4682.CrossRefPubMedPubMedCentral Kodack, D. P., Askoxylakis, V., Ferraro, G. B., Sheng, Q., Badeaux, M., Goel, S., Qi, X., Shankaraiah, R., Cao, Z. A., Ramjiawan, R. R., Bezwada, D., Patel, B., Song, Y., Costa, C., Naxerova, K., Wong, C. S. F., Kloepper, J., Das, R., Tam, A., Tanboon, J., Duda, D. G., Miller, C. R., Siegel, M. B., Anders, C. K., Sanders, M., Estrada, M. V., Schlegel, R., Arteaga, C. L., Brachtel, E., Huang, A., Fukumura, D., Engelman, J. A., & Jain, R. K. (2017). The brain microenvironment mediates resistance in luminal breast cancer to PI3K inhibition through HER3 activation. Science Translational Medicine., 9, eaal4682. https://​doi.​org/​10.​1126/​scitranslmed.​aal4682.CrossRefPubMedPubMedCentral
48.
go back to reference Olson, E. M., Abdel-Rasoul, M., Maly, J., Wu, C. S., Lin, N. U., Shapiro, C., et al. (2013). Incidence and risk of central nervous system metastases as site of first recurrence in patients with HER2-positive breast cancer treated with adjuvant trastuzumab. Annals of Oncology, 24(6), 1526–1533.PubMedPubMedCentral Olson, E. M., Abdel-Rasoul, M., Maly, J., Wu, C. S., Lin, N. U., Shapiro, C., et al. (2013). Incidence and risk of central nervous system metastases as site of first recurrence in patients with HER2-positive breast cancer treated with adjuvant trastuzumab. Annals of Oncology, 24(6), 1526–1533.PubMedPubMedCentral
49.
go back to reference von Minckwitz, G., Procter, M., de Azambuja, E., Zardavas, D., Benyunes, M., Viale, G., Suter, T., Arahmani, A., Rouchet, N., Clark, E., Knott, A., Lang, I., Levy, C., Yardley, D. A., Bines, J., Gelber, R. D., Piccart, M., Baselga, J., & APHINITY Steering Committee and Investigators. (2017). Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. The New England Journal of Medicine, 377(2), 122–131. von Minckwitz, G., Procter, M., de Azambuja, E., Zardavas, D., Benyunes, M., Viale, G., Suter, T., Arahmani, A., Rouchet, N., Clark, E., Knott, A., Lang, I., Levy, C., Yardley, D. A., Bines, J., Gelber, R. D., Piccart, M., Baselga, J., & APHINITY Steering Committee and Investigators. (2017). Adjuvant pertuzumab and trastuzumab in early HER2-positive breast cancer. The New England Journal of Medicine, 377(2), 122–131.
50.
go back to reference von Minckwitz, G., Huang, C. S., Mano, M. S., Loibl, S., Mamounas, E. P., Untch, M., Wolmark, N., Rastogi, P., Schneeweiss, A., Redondo, A., Fischer, H. H., Jacot, W., Conlin, A. K., Arce-Salinas, C., Wapnir, I. L., Jackisch, C., DiGiovanna, M., Fasching, P. A., Crown, J. P., Wülfing, P., Shao, Z., Rota Caremoli, E., Wu, H., Lam, L. H., Tesarowski, D., Smitt, M., Douthwaite, H., Singel, S. M., Geyer CE Jr, & KATHERINE Investigators. (2019). Trastuzumab emtansine for residual invasive HER2-positive breast cancer. The New England Journal of Medicine, 380(7), 617–628. von Minckwitz, G., Huang, C. S., Mano, M. S., Loibl, S., Mamounas, E. P., Untch, M., Wolmark, N., Rastogi, P., Schneeweiss, A., Redondo, A., Fischer, H. H., Jacot, W., Conlin, A. K., Arce-Salinas, C., Wapnir, I. L., Jackisch, C., DiGiovanna, M., Fasching, P. A., Crown, J. P., Wülfing, P., Shao, Z., Rota Caremoli, E., Wu, H., Lam, L. H., Tesarowski, D., Smitt, M., Douthwaite, H., Singel, S. M., Geyer CE Jr, & KATHERINE Investigators. (2019). Trastuzumab emtansine for residual invasive HER2-positive breast cancer. The New England Journal of Medicine, 380(7), 617–628.
51.
go back to reference Freedman, R. A., Gelman, R. S., Anders, C. K., Melisko, M. E., Parsons, H. A., Cropp, A. M., Silvestri, K., Cotter, C. M., Componeschi, K. P., Marte, J. M., Connolly, R. M., Moy, B., van Poznak, C. H., Blackwell, K. L., Puhalla, S. L., Jankowitz, R. C., Smith, K. L., Ibrahim, N., Moynihan, T. J., O’Sullivan, C. C., Nangia, J., Niravath, P., Tung, N., Pohlmann, P. R., Burns, R., Rimawi, M. F., Krop, I. E., Wolff, A. C., Winer, E. P., Lin, N. U., & on behalf of the Translational Breast Cancer Research Consortium. (2019). TBCRC 022: A phase II trial of neratinib and capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. Journal of Clinical Oncology, 37(13), 1081–1089.PubMedPubMedCentral Freedman, R. A., Gelman, R. S., Anders, C. K., Melisko, M. E., Parsons, H. A., Cropp, A. M., Silvestri, K., Cotter, C. M., Componeschi, K. P., Marte, J. M., Connolly, R. M., Moy, B., van Poznak, C. H., Blackwell, K. L., Puhalla, S. L., Jankowitz, R. C., Smith, K. L., Ibrahim, N., Moynihan, T. J., O’Sullivan, C. C., Nangia, J., Niravath, P., Tung, N., Pohlmann, P. R., Burns, R., Rimawi, M. F., Krop, I. E., Wolff, A. C., Winer, E. P., Lin, N. U., & on behalf of the Translational Breast Cancer Research Consortium. (2019). TBCRC 022: A phase II trial of neratinib and capecitabine for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. Journal of Clinical Oncology, 37(13), 1081–1089.PubMedPubMedCentral
52.
go back to reference Murthy, R. K., Loi, S., Okines, A., Paplomata, E., Hamilton, E., Hurvitz, S. A., Lin, N. U., Borges, V., Abramson, V., Anders, C., Bedard, P. L., Oliveira, M., Jakobsen, E., Bachelot, T., Shachar, S. S., Müller, V., Braga, S., Duhoux, F. P., Greil, R., Cameron, D., Carey, L. A., Curigliano, G., Gelmon, K., Hortobagyi, G., Krop, I., Loibl, S., Pegram, M., Slamon, D., Palanca-Wessels, M. C., Walker, L., Feng, W., & Winer, E. P. (2020). Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. The New England Journal of Medicine, 382(7), 597–609.PubMed Murthy, R. K., Loi, S., Okines, A., Paplomata, E., Hamilton, E., Hurvitz, S. A., Lin, N. U., Borges, V., Abramson, V., Anders, C., Bedard, P. L., Oliveira, M., Jakobsen, E., Bachelot, T., Shachar, S. S., Müller, V., Braga, S., Duhoux, F. P., Greil, R., Cameron, D., Carey, L. A., Curigliano, G., Gelmon, K., Hortobagyi, G., Krop, I., Loibl, S., Pegram, M., Slamon, D., Palanca-Wessels, M. C., Walker, L., Feng, W., & Winer, E. P. (2020). Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. The New England Journal of Medicine, 382(7), 597–609.PubMed
54.
go back to reference Lee, Y., Park, H. R., Chun, H. J., & Lee, J. (2015). Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. Journal of Neuroscience Research, 93, 755–765.PubMed Lee, Y., Park, H. R., Chun, H. J., & Lee, J. (2015). Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease via mitochondrial stabilization. Journal of Neuroscience Research, 93, 755–765.PubMed
55.
go back to reference Francisco, L. M., Sage, P. T., & Sharpe, A. H. (2010). The PD-1 pathway in tolerance and autoimmunity. Immunological Reviews, 236, 219–242.PubMedPubMedCentral Francisco, L. M., Sage, P. T., & Sharpe, A. H. (2010). The PD-1 pathway in tolerance and autoimmunity. Immunological Reviews, 236, 219–242.PubMedPubMedCentral
56.
go back to reference Goldberg, S. B., Gettinger, S. N., Mahajan, A., Chiang, A. C., Herbst, R. S., Sznol, M., Tsiouris, A. J., Cohen, J., Vortmeyer, A., Jilaveanu, L., Yu, J., Hegde, U., Speaker, S., Madura, M., Ralabate, A., Rivera, A., Rowen, E., Gerrish, H., Yao, X., Chiang, V., & Kluger, H. M. (2016). Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: Early analysis of a nonrandomised, open-label, phase 2 trial. Lancet Oncology, 17, 976–983.PubMed Goldberg, S. B., Gettinger, S. N., Mahajan, A., Chiang, A. C., Herbst, R. S., Sznol, M., Tsiouris, A. J., Cohen, J., Vortmeyer, A., Jilaveanu, L., Yu, J., Hegde, U., Speaker, S., Madura, M., Ralabate, A., Rivera, A., Rowen, E., Gerrish, H., Yao, X., Chiang, V., & Kluger, H. M. (2016). Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: Early analysis of a nonrandomised, open-label, phase 2 trial. Lancet Oncology, 17, 976–983.PubMed
57.
go back to reference Long, G. V., Atkinson, V., Lo, S., Sandhu, S., Guminski, A. D., Brown, M. P., Wilmott, J. S., Edwards, J., Gonzalez, M., Scolyer, R. A., Menzies, A. M., & McArthur, G. A. (2018). Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncology, 19, 672–681.PubMed Long, G. V., Atkinson, V., Lo, S., Sandhu, S., Guminski, A. D., Brown, M. P., Wilmott, J. S., Edwards, J., Gonzalez, M., Scolyer, R. A., Menzies, A. M., & McArthur, G. A. (2018). Combination nivolumab and ipilimumab or nivolumab alone in melanoma brain metastases: A multicentre randomised phase 2 study. Lancet Oncology, 19, 672–681.PubMed
58.
go back to reference Tawbi, H. A., Forsyth, P. A., Algazi, A., Hamid, O., Hodi, F. S., Moschos, S. J., Khushalani, N. I., Lewis, K., Lao, C. D., Postow, M. A., Atkins, M. B., Ernstoff, M. S., Reardon, D. A., Puzanov, I., Kudchadkar, R. R., Thomas, R. P., Tarhini, A., Pavlick, A. C., Jiang, J., Avila, A., Demelo, S., & Margolin, K. (2018). Combined nivolumab and ipilimumab in melanoma metastatic to the brain. The New England Journal of Medicine, 379, 722–730.PubMedPubMedCentral Tawbi, H. A., Forsyth, P. A., Algazi, A., Hamid, O., Hodi, F. S., Moschos, S. J., Khushalani, N. I., Lewis, K., Lao, C. D., Postow, M. A., Atkins, M. B., Ernstoff, M. S., Reardon, D. A., Puzanov, I., Kudchadkar, R. R., Thomas, R. P., Tarhini, A., Pavlick, A. C., Jiang, J., Avila, A., Demelo, S., & Margolin, K. (2018). Combined nivolumab and ipilimumab in melanoma metastatic to the brain. The New England Journal of Medicine, 379, 722–730.PubMedPubMedCentral
59.
go back to reference Sugihara, A. Q., Rolle, C. E., & Lesniak, M. S. (2009). Regulatory T cells actively infiltrate metastatic brain tumors. International Journal of Oncology, 34(6), 1533–1540.PubMed Sugihara, A. Q., Rolle, C. E., & Lesniak, M. S. (2009). Regulatory T cells actively infiltrate metastatic brain tumors. International Journal of Oncology, 34(6), 1533–1540.PubMed
60.
go back to reference Hellmann, M. D., Friedman, C. F., & Wolchok, J. D. (2016). Combinatorial cancer immunotherapies. Advances in Immunology., 130, 251–277.PubMed Hellmann, M. D., Friedman, C. F., & Wolchok, J. D. (2016). Combinatorial cancer immunotherapies. Advances in Immunology., 130, 251–277.PubMed
61.
go back to reference Sato, R., Nakano, T., Hosonaga, M., Sampetrean, O., Harigai, R., Sasaki, T., Koya, I., Okano, H., Kudoh, J., Saya, H., & Arima, Y. (2017). RNA sequencing analysis reveals interactions between breast cancer or melanoma cells and the tissue microenvironment during brain metastasis. BioMed Research International., 2017, 1–10. https://doi.org/10.1155/2017/8032910.CrossRef Sato, R., Nakano, T., Hosonaga, M., Sampetrean, O., Harigai, R., Sasaki, T., Koya, I., Okano, H., Kudoh, J., Saya, H., & Arima, Y. (2017). RNA sequencing analysis reveals interactions between breast cancer or melanoma cells and the tissue microenvironment during brain metastasis. BioMed Research International., 2017, 1–10. https://​doi.​org/​10.​1155/​2017/​8032910.CrossRef
62.
go back to reference Sato, H., Shiiya, A., Kimata, M., Maebara, K., Tamba, M., Sakakura, Y., Makino, N., Sugiyama, F., Yagami, K. I., Moriguchi, T., Takahashi, S., & Bannai, S. (2005). Redox imbalance in cystine/glutamate transporter-deficient mice. Journal of Biological Chemistry, 280, 37423–37429.PubMed Sato, H., Shiiya, A., Kimata, M., Maebara, K., Tamba, M., Sakakura, Y., Makino, N., Sugiyama, F., Yagami, K. I., Moriguchi, T., Takahashi, S., & Bannai, S. (2005). Redox imbalance in cystine/glutamate transporter-deficient mice. Journal of Biological Chemistry, 280, 37423–37429.PubMed
63.
go back to reference Lo, M., Wang, Y. Z., & Gout, P. W. (2008). The x(c)- cystine/glutamate antiporter: A potential target for therapy of cancer and other diseases. Journal of Cellular Physiology, 215, 593–602.PubMed Lo, M., Wang, Y. Z., & Gout, P. W. (2008). The x(c)- cystine/glutamate antiporter: A potential target for therapy of cancer and other diseases. Journal of Cellular Physiology, 215, 593–602.PubMed
64.
go back to reference Ishimoto, T., Nagano, O., Yae, T., Tamada, M., Motohara, T., Oshima, H., Oshima, M., Ikeda, T., Asaba, R., Yagi, H., Masuko, T., Shimizu, T., Ishikawa, T., Kai, K., Takahashi, E., Imamura, Y., Baba, Y., Ohmura, M., Suematsu, M., Baba, H., & Saya, H. (2011). CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell, 19, 387–400.PubMed Ishimoto, T., Nagano, O., Yae, T., Tamada, M., Motohara, T., Oshima, H., Oshima, M., Ikeda, T., Asaba, R., Yagi, H., Masuko, T., Shimizu, T., Ishikawa, T., Kai, K., Takahashi, E., Imamura, Y., Baba, Y., Ohmura, M., Suematsu, M., Baba, H., & Saya, H. (2011). CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell, 19, 387–400.PubMed
65.
go back to reference Yoshikawa, M., Tsuchihashi, K., Ishimoto, T., Yae, T., Motohara, T., Sugihara, E., Onishi, N., Masuko, T., Yoshizawa, K., Kawashiri, S., Mukai, M., Asoda, S., Kawana, H., Nakagawa, T., Saya, H., & Nagano, O. (2013). xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Research, 73, 1855–1866.PubMed Yoshikawa, M., Tsuchihashi, K., Ishimoto, T., Yae, T., Motohara, T., Sugihara, E., Onishi, N., Masuko, T., Yoshizawa, K., Kawashiri, S., Mukai, M., Asoda, S., Kawana, H., Nakagawa, T., Saya, H., & Nagano, O. (2013). xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Research, 73, 1855–1866.PubMed
66.
go back to reference Yae, T., Tsuchihashi, K., Ishimoto, T., Motohara, T., Yoshikawa, M., Yoshida, G. J., Wada, T., Masuko, T., Mogushi, K., Tanaka, H., Osawa, T., Kanki, Y., Minami, T., Aburatani, H., Ohmura, M., Kubo, A., Suematsu, M., Takahashi, K., Saya, H., & Nagano, O. (2012). Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nature Communications, 3, 883.PubMed Yae, T., Tsuchihashi, K., Ishimoto, T., Motohara, T., Yoshikawa, M., Yoshida, G. J., Wada, T., Masuko, T., Mogushi, K., Tanaka, H., Osawa, T., Kanki, Y., Minami, T., Aburatani, H., Ohmura, M., Kubo, A., Suematsu, M., Takahashi, K., Saya, H., & Nagano, O. (2012). Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nature Communications, 3, 883.PubMed
67.
go back to reference Klotz, U., Maier, K., Fischer, C., & Heinkel, K. (1980). Therapeutic efficacy of sulfasalazine and its metabolites in patients with ulcerative colitis and Crohn’s disease. The New England Journal of Medicine, 303, 1499–1502.PubMed Klotz, U., Maier, K., Fischer, C., & Heinkel, K. (1980). Therapeutic efficacy of sulfasalazine and its metabolites in patients with ulcerative colitis and Crohn’s disease. The New England Journal of Medicine, 303, 1499–1502.PubMed
68.
go back to reference Gout, P. W., Buckley, A. R., Simms, C. R., & Bruchovsky, N. (2001). Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: A new action for an old drug. Leukemia., 15, 1633–1640.PubMed Gout, P. W., Buckley, A. R., Simms, C. R., & Bruchovsky, N. (2001). Sulfasalazine, a potent suppressor of lymphoma growth by inhibition of the x(c)- cystine transporter: A new action for an old drug. Leukemia., 15, 1633–1640.PubMed
69.
go back to reference Shitara, K., Doi, T., Nagano, O., Imamura, C. K., Ozeki, T., Ishii, Y., Tsuchihashi, K., Takahashi, S., Nakajima, T. E., Hironaka, S., Fukutani, M., Hasegawa, H., Nomura, S., Sato, A., Einaga, Y., Kuwata, T., Saya, H., & Ohtsu, A. (2017). Dose-escalation study for the targeting of CD44v+ cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205). Gastric Cancer, 20, 341–349.PubMed Shitara, K., Doi, T., Nagano, O., Imamura, C. K., Ozeki, T., Ishii, Y., Tsuchihashi, K., Takahashi, S., Nakajima, T. E., Hironaka, S., Fukutani, M., Hasegawa, H., Nomura, S., Sato, A., Einaga, Y., Kuwata, T., Saya, H., & Ohtsu, A. (2017). Dose-escalation study for the targeting of CD44v+ cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205). Gastric Cancer, 20, 341–349.PubMed
70.
go back to reference Otsubo, K., Nosaki, K., Imamura, C. K., Ogata, H., Fujita, A., Sakata, S., Hirai, F., Toyokawa, G., Iwama, E., Harada, T., Seto, T., Takenoyama, M., Ozeki, T., Mushiroda, T., Inada, M., Kishimoto, J., Tsuchihashi, K., Suina, K., Nagano, O., Saya, H., Nakanishi, Y., & Okamoto, I. (2017). Phase I study of salazosulfapyridine in combination with cisplatin and pemetrexed for advanced non-small cell lung cancer. Cancer Science, 108, 1843–1849.PubMedPubMedCentral Otsubo, K., Nosaki, K., Imamura, C. K., Ogata, H., Fujita, A., Sakata, S., Hirai, F., Toyokawa, G., Iwama, E., Harada, T., Seto, T., Takenoyama, M., Ozeki, T., Mushiroda, T., Inada, M., Kishimoto, J., Tsuchihashi, K., Suina, K., Nagano, O., Saya, H., Nakanishi, Y., & Okamoto, I. (2017). Phase I study of salazosulfapyridine in combination with cisplatin and pemetrexed for advanced non-small cell lung cancer. Cancer Science, 108, 1843–1849.PubMedPubMedCentral
71.
go back to reference Boral, D., Vishnoi, M., Liu, H. N., Yin, W., Sprouse, M. L., Scamardo, A., et al. (2017). Molecular characterization of breast cancer CTCs associated with brain metastasis. Nature Communications, 8(196), 1–10. Boral, D., Vishnoi, M., Liu, H. N., Yin, W., Sprouse, M. L., Scamardo, A., et al. (2017). Molecular characterization of breast cancer CTCs associated with brain metastasis. Nature Communications, 8(196), 1–10.
72.
go back to reference Boire, A., Brandsma, D., Brastianos, P. K., Le Rhun, E., Ahluwalia, M., Junck, L., et al. (2019). Liquid biopsy in central nervous system metastases: A RANO review and proposals for clinical applications. Neuro oncology, 21(5), 571–584.PubMedPubMedCentral Boire, A., Brandsma, D., Brastianos, P. K., Le Rhun, E., Ahluwalia, M., Junck, L., et al. (2019). Liquid biopsy in central nervous system metastases: A RANO review and proposals for clinical applications. Neuro oncology, 21(5), 571–584.PubMedPubMedCentral
73.
go back to reference Bousquet, G., Darrouzain, F., de Bazelaire, C., Ternant, D., Barranger, E., Winterman, S. J., et al. (2016). Intrathecal trastuzumab halts progression of CNS metastases in breast cancer. Journal of Clinical Oncology, 34(16), e151–e155.PubMed Bousquet, G., Darrouzain, F., de Bazelaire, C., Ternant, D., Barranger, E., Winterman, S. J., et al. (2016). Intrathecal trastuzumab halts progression of CNS metastases in breast cancer. Journal of Clinical Oncology, 34(16), e151–e155.PubMed
74.
go back to reference Hosonaga, M., Arima, Y., Sampetrean, O., Komura, D., Koya, I., Sasaki, T., Sato, E., Okano, H., Kudoh, J., Ishikawa, S., Saya, H., & Ishikawa, T. (2018). HER2 heterogeneity is associated with poor survival in HER2-positive breast cancer. International Journal of Molecular Science., 19. https://doi.org/10.3390/ijms19082158. Hosonaga, M., Arima, Y., Sampetrean, O., Komura, D., Koya, I., Sasaki, T., Sato, E., Okano, H., Kudoh, J., Ishikawa, S., Saya, H., & Ishikawa, T. (2018). HER2 heterogeneity is associated with poor survival in HER2-positive breast cancer. International Journal of Molecular Science., 19. https://​doi.​org/​10.​3390/​ijms19082158.
75.
go back to reference Duchnowska, R., Dziadziuszko, R., Trojanowski, T., Mandat, T., Och, W., Czartoryska-Arłukowicz, B., et al. (2012). Conversion of epidermal growth factor receptor 2 and hormone receptor expression in breast cancer metastases to the brain. Breast Cancer Research, 14(4), R119.PubMedPubMedCentral Duchnowska, R., Dziadziuszko, R., Trojanowski, T., Mandat, T., Och, W., Czartoryska-Arłukowicz, B., et al. (2012). Conversion of epidermal growth factor receptor 2 and hormone receptor expression in breast cancer metastases to the brain. Breast Cancer Research, 14(4), R119.PubMedPubMedCentral
76.
go back to reference Suteu, P., Fekete, Z., Todor, N., & Nagy, V. (2019). Survival and quality of life after whole brain radiotherapy with 3D conformal boost in the treatment of brain metastases. Medicine and Pharmacy Reports, 92(1), 43–51.PubMedPubMedCentral Suteu, P., Fekete, Z., Todor, N., & Nagy, V. (2019). Survival and quality of life after whole brain radiotherapy with 3D conformal boost in the treatment of brain metastases. Medicine and Pharmacy Reports, 92(1), 43–51.PubMedPubMedCentral
Metadata
Title
Molecular and cellular mechanisms underlying brain metastasis of breast cancer
Authors
Mari Hosonaga
Hideyuki Saya
Yoshimi Arima
Publication date
01-09-2020
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3/2020
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-020-09881-y

Other articles of this Issue 3/2020

Cancer and Metastasis Reviews 3/2020 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine