Skip to main content
Top
Published in: Acta Neurologica Belgica 1/2024

06-01-2023 | Review article

Brain tissue segmentation in neurosurgery: a systematic analysis for quantitative tractography approaches

Authors: Puranam Revanth Kumar, Rajesh Kumar Jha, Amogh Katti

Published in: Acta Neurologica Belgica | Issue 1/2024

Login to get access

Abstract

Diffusion magnetic resonance imaging (dMRI) is a cutting-edge imaging method that provides a macro-scale in vivo map of the white matter pathways in the brain. The measurement of brain microstructure and the enhancement of tractography rely heavily on dMRI tissue segmentation. Anatomical MRI technique (e.g., T1- and T2-weighted imaging) is the most widely used method for segmentation in dMRI. In comparison to anatomical MRI, dMRI suffers from higher image distortions, lower image quality, and making inter-modality registration more difficult. The dMRI tractography study of brain connectivity has become a major part of the neuroimaging landscape in recent years. In this research, we provide a high-level overview of the methods used to segment several brain tissues types, including grey and white matter and cerebrospinal fluid, to enable quantitative studies of structural connectivity in the brain in health and illness. In the first part of our review, we discuss the three main phases in the quantitative analysis of tractography, which are correction, segmentation, and quantification. Methodological possibilities are described for each phase, along with their popularity and potential benefits and drawbacks. After that, we will look at research that used quantitative tractography approaches to examine the white and grey matter of the brain, with an emphasis on neurodevelopment, ageing, neurological illnesses, mental disorders, and neurosurgery as possible applications. Even though there have been substantial advancements in methodological technology and the spectrum of applications, there is still no consensus regarding the "optimal" approach in the quantitative analysis of tractography. As a result, researchers should tread carefully when interpreting the findings of quantitative analysis of tractography.
Literature
1.
go back to reference Hasan A, Meziane F, Aspin R, Jalab H (2016) Segmentation of brain tumors in MRI images using three-dimensional active contour without edge. Symmetry 8(11):132ADSMathSciNetCrossRef Hasan A, Meziane F, Aspin R, Jalab H (2016) Segmentation of brain tumors in MRI images using three-dimensional active contour without edge. Symmetry 8(11):132ADSMathSciNetCrossRef
2.
go back to reference Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438PubMedCrossRef Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging 31(8):1426–1438PubMedCrossRef
3.
go back to reference Bahadure N, Kumar Ray A, Pal TH (2017) Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. Int J Biomed Imaging 2017:1–12CrossRef Bahadure N, Kumar Ray A, Pal TH (2017) Image analysis for MRI based brain tumor detection and feature extraction using biologically inspired BWT and SVM. Int J Biomed Imaging 2017:1–12CrossRef
5.
go back to reference Jeurissen B, Tournier J-D, Sijbers J (2015) Tissue-type segmentation using non-negative matrix factorization of multi-shell diffusion-weighted MRI images. In: ISMRM 23th Annual Meeting, Toronto, Ontario, Canada, volume 23, p. 349 Jeurissen B, Tournier J-D, Sijbers J (2015) Tissue-type segmentation using non-negative matrix factorization of multi-shell diffusion-weighted MRI images. In: ISMRM 23th Annual Meeting, Toronto, Ontario, Canada, volume 23, p. 349
6.
go back to reference Kumazawa S, Yoshiura T, Honda H, Toyofuku F, Higashida Y (2010) Partial volume estimation and segmentation of brain tissue based on diffusion tensor MRI. Med Phys 37(4):1482–1490PubMedCrossRef Kumazawa S, Yoshiura T, Honda H, Toyofuku F, Higashida Y (2010) Partial volume estimation and segmentation of brain tissue based on diffusion tensor MRI. Med Phys 37(4):1482–1490PubMedCrossRef
7.
go back to reference LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324CrossRef
9.
go back to reference Mah Y-H, Jager R, Kennard C, Husain M, Nachev P (2014) A new method for auto- mated high-dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital lobe. Cortex 56:51–63PubMedPubMedCentralCrossRef Mah Y-H, Jager R, Kennard C, Husain M, Nachev P (2014) A new method for auto- mated high-dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital lobe. Cortex 56:51–63PubMedPubMedCentralCrossRef
10.
go back to reference Kumar R, Rani S, Sarkar A, Talukdar FA (2017) GPU-based level set method for MRI brain tumor segmentation using modified probabilistic clustering. IGI Global, pp 1053–1078 Kumar R, Rani S, Sarkar A, Talukdar FA (2017) GPU-based level set method for MRI brain tumor segmentation using modified probabilistic clustering. IGI Global, pp 1053–1078
11.
go back to reference Ilunga-Mbuyamba E, Avina-Cervantes JG, Garcia-Perez A, de Jesus-Romero-Troncoso R, Aguirre-Ramos H, Cruz-Aceves I (2017) Localized active contour model with background intensity compensation applied on automatic MR brain tumor segmentation. Neurocomputing 220:84–97CrossRef Ilunga-Mbuyamba E, Avina-Cervantes JG, Garcia-Perez A, de Jesus-Romero-Troncoso R, Aguirre-Ramos H, Cruz-Aceves I (2017) Localized active contour model with background intensity compensation applied on automatic MR brain tumor segmentation. Neurocomputing 220:84–97CrossRef
12.
go back to reference Soltaninejad M, Zhang L, Lambrou T, Yang G, Allinson N, Ye X (2017) MRI brain tumor segmentation and patient survival prediction using random forests and fully convolutional networks. In: Int. MICCAI Brain lesion Workshop. Springer. pp 204–15 Soltaninejad M, Zhang L, Lambrou T, Yang G, Allinson N, Ye X (2017) MRI brain tumor segmentation and patient survival prediction using random forests and fully convolutional networks. In: Int. MICCAI Brain lesion Workshop. Springer. pp 204–15
13.
go back to reference Parveen SA (2015) Detection of brain tumor in MRI images, using combination of fuzzy C-means and SVM. In: 2nd Int. Conf. Signal Processing and Integrated Networks (SPIN), pp 98–102 Parveen SA (2015) Detection of brain tumor in MRI images, using combination of fuzzy C-means and SVM. In: 2nd Int. Conf. Signal Processing and Integrated Networks (SPIN), pp 98–102
14.
go back to reference Soltaninejad M, Zhang L, Lambrou T, Yang G, Allinson N, Ye X (2017) MRI brain tumor segmentation using random forests and fully convolutional networks. In: International MICCAI Brain lesion Workshop, pp 279–83 Soltaninejad M, Zhang L, Lambrou T, Yang G, Allinson N, Ye X (2017) MRI brain tumor segmentation using random forests and fully convolutional networks. In: International MICCAI Brain lesion Workshop, pp 279–83
15.
go back to reference Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats’ challenge. arXiv preprint https://arXiv.org/181102629 Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats’ challenge. arXiv preprint https://​arXiv.​org/​181102629
16.
go back to reference Steven AJ, Zhuo J, Melhem ER (2014) Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. Am J Roentgenol 202(1):26–33CrossRef Steven AJ, Zhuo J, Melhem ER (2014) Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain. Am J Roentgenol 202(1):26–33CrossRef
17.
go back to reference Sun P, Wu Y, Chen G, Wu J, Shen D, Yap P-T (2019) Tissue segmentation using sparse non-negative matrix factorization of spherical mean diffusion MRI data. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 69–76 Sun P, Wu Y, Chen G, Wu J, Shen D, Yap P-T (2019) Tissue segmentation using sparse non-negative matrix factorization of spherical mean diffusion MRI data. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp 69–76
18.
go back to reference Tabesh A, Jensen JH, Ardekani BA, Helpern JA (2011) Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn R83eson Med 65(3):823–836CrossRef Tabesh A, Jensen JH, Ardekani BA, Helpern JA (2011) Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn R83eson Med 65(3):823–836CrossRef
19.
go back to reference Tong Q, He H, Gong T, Li C, Liang P, Qian T, Sun Y, Ding Q, Li K, Zhong J (2020) Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings. Sci Data 7(1):1–7CrossRef Tong Q, He H, Gong T, Li C, Liang P, Qian T, Sun Y, Ding Q, Li K, Zhong J (2020) Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings. Sci Data 7(1):1–7CrossRef
20.
go back to reference Tournier J-D, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4):1459–1472PubMedCrossRef Tournier J-D, Calamante F, Connelly A (2007) Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage 35(4):1459–1472PubMedCrossRef
21.
go back to reference Veraart J, Fieremans E, Jelescu IO, Knoll F, Novikov DS (2016) Gibbs ringing in diffusion MRI. Magn Reson Med 76(1):301–314PubMedCrossRef Veraart J, Fieremans E, Jelescu IO, Knoll F, Novikov DS (2016) Gibbs ringing in diffusion MRI. Magn Reson Med 76(1):301–314PubMedCrossRef
22.
go back to reference Wasserthal J, Neher P, Maier-Hein KH (2018) Tractseg-fast and accurate white matter tract segmentation. Neuroimage 183:239–253PubMedCrossRef Wasserthal J, Neher P, Maier-Hein KH (2018) Tractseg-fast and accurate white matter tract segmentation. Neuroimage 183:239–253PubMedCrossRef
23.
go back to reference Wen Y, He L, von Deneen KM, Lu Y (2013) Brain tissue classification based on DTI using an improved fuzzy C-means algorithm with spatial constraints. Magn Reson Imaging 31(9):1623–1630PubMedCrossRef Wen Y, He L, von Deneen KM, Lu Y (2013) Brain tissue classification based on DTI using an improved fuzzy C-means algorithm with spatial constraints. Magn Reson Imaging 31(9):1623–1630PubMedCrossRef
24.
go back to reference Wu M, Chang L-C, Walker L, Lemaitre H, Barnett AS, Marenco S, Pierpaoli C (2008) Comparison of EPI distortion correction methods in diffusion tensor mri using a novel framework. Medical image computing and computer-assisted intervention. Springer, pp 321–329 Wu M, Chang L-C, Walker L, Lemaitre H, Barnett AS, Marenco S, Pierpaoli C (2008) Comparison of EPI distortion correction methods in diffusion tensor mri using a novel framework. Medical image computing and computer-assisted intervention. Springer, pp 321–329
25.
go back to reference Yap P-T, Zhang Y, Shen D (2015) Brain tissue segmentation based on diffusion MRI using L0 sparse-group representation classification. Medical image computing and computer-assisted intervention. Springer, pp 132–139 Yap P-T, Zhang Y, Shen D (2015) Brain tissue segmentation based on diffusion MRI using L0 sparse-group representation classification. Medical image computing and computer-assisted intervention. Springer, pp 132–139
26.
go back to reference Zhang F, Cho KIK, Tang Y, Zhang T, Kelly S, Di Biase M, Xu L, Li H, Matcheri K, Whitfield-Gabrieli S et al (2020) MK-curve improves sensitivity to identify white matter alterations in clinical high risk for psychosis. Neuroimage 226:117564PubMedCrossRef Zhang F, Cho KIK, Tang Y, Zhang T, Kelly S, Di Biase M, Xu L, Li H, Matcheri K, Whitfield-Gabrieli S et al (2020) MK-curve improves sensitivity to identify white matter alterations in clinical high risk for psychosis. Neuroimage 226:117564PubMedCrossRef
27.
go back to reference Zhang F, Ning L, O’Donnell LJ, Pasternak O (2019) MK-curve—characterizing the relation between mean kurtosis and alterations in the diffusion MRI signal. Neuroimage 196:68–80PubMedCrossRef Zhang F, Ning L, O’Donnell LJ, Pasternak O (2019) MK-curve—characterizing the relation between mean kurtosis and alterations in the diffusion MRI signal. Neuroimage 196:68–80PubMedCrossRef
28.
go back to reference Zhang F, Noh T, Juvekar P, Frisken SF, Rigolo L, Norton I, Kapur T, Pujol S, Wells W, Yarmarkovich A, Kindlmann G, Wassermann D, San-Jose-Estepar R, Rathi Y, Kikinis R, Johnson HJ, Westin C-F, Pieper S, Golby AJ, O’Donnell LJ (2020) SlicerDMRI: diffusion MRI and tractography research software for brain cancer surgery planning and visualization. JCO Clin Cancer Inform. 4:299–309PubMedCrossRef Zhang F, Noh T, Juvekar P, Frisken SF, Rigolo L, Norton I, Kapur T, Pujol S, Wells W, Yarmarkovich A, Kindlmann G, Wassermann D, San-Jose-Estepar R, Rathi Y, Kikinis R, Johnson HJ, Westin C-F, Pieper S, Golby AJ, O’Donnell LJ (2020) SlicerDMRI: diffusion MRI and tractography research software for brain cancer surgery planning and visualization. JCO Clin Cancer Inform. 4:299–309PubMedCrossRef
29.
go back to reference Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41:1110–1117PubMedCrossRef Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41:1110–1117PubMedCrossRef
30.
go back to reference Gatys LA, Ecker AS, Bethge M (2016) Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2414 – 2423 Gatys LA, Ecker AS, Bethge M (2016) Image style transfer using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp 2414 – 2423
31.
go back to reference Sarubbo S, Tate M, De Benedictis A, Merler S, Moritz-Gasser S, Herbet G, Duau H (2020) Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. Neuroimage 205:116237PubMedCrossRef Sarubbo S, Tate M, De Benedictis A, Merler S, Moritz-Gasser S, Herbet G, Duau H (2020) Mapping critical cortical hubs and white matter pathways by direct electrical stimulation: an original functional atlas of the human brain. Neuroimage 205:116237PubMedCrossRef
32.
go back to reference Sarwar T, Seguin C, Ramamohanarao K, Zalesky A (2020) Towards deep learning for connectome mapping: a block decomposition framework. Neuroimage 212:116654PubMedCrossRef Sarwar T, Seguin C, Ramamohanarao K, Zalesky A (2020) Towards deep learning for connectome mapping: a block decomposition framework. Neuroimage 212:116654PubMedCrossRef
33.
go back to reference Sbardella E, Tona F, Petsas N, Pantano P (2013) Dti measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Mult Scler Int 2013(2013):671730PubMedPubMedCentral Sbardella E, Tona F, Petsas N, Pantano P (2013) Dti measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Mult Scler Int 2013(2013):671730PubMedPubMedCentral
34.
go back to reference Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, Eickho SB, Yeo BT (2018) Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex 28:3095–3114PubMedCrossRef Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo XN, Holmes AJ, Eickho SB, Yeo BT (2018) Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb Cortex 28:3095–3114PubMedCrossRef
35.
go back to reference Devi CN, Chandrasekharan A, Sundararaman VK, Alex ZC (2015) Neonatal brain MRI segmentation: a review. Comput Biol Med 64:163–178PubMedCrossRef Devi CN, Chandrasekharan A, Sundararaman VK, Alex ZC (2015) Neonatal brain MRI segmentation: a review. Comput Biol Med 64:163–178PubMedCrossRef
36.
go back to reference Schurr R, Filo S, Mezer AA (2019) Tractography delineation of the vertical occipital fasciculus using quantitative t1 mapping. Neuroimage 202:116121PubMedCrossRef Schurr R, Filo S, Mezer AA (2019) Tractography delineation of the vertical occipital fasciculus using quantitative t1 mapping. Neuroimage 202:116121PubMedCrossRef
39.
go back to reference Seguin C, Tian Y, Zalesky A (2020) Network communication models improve the behavioral and functional predictive utility of the human structural connectome. Netw Neurosci 4:980–1006PubMedPubMedCentralCrossRef Seguin C, Tian Y, Zalesky A (2020) Network communication models improve the behavioral and functional predictive utility of the human structural connectome. Netw Neurosci 4:980–1006PubMedPubMedCentralCrossRef
40.
go back to reference Sepasian N, ten Thije Boonkkamp J, Ter Haar Romeny B, Vilanova Bartroli A (2012) Multivalued geodesic ray-tracing for computing brain connections using diffusion tensor imaging. SIAM J Imag Sci 5:483–504MathSciNetCrossRef Sepasian N, ten Thije Boonkkamp J, Ter Haar Romeny B, Vilanova Bartroli A (2012) Multivalued geodesic ray-tracing for computing brain connections using diffusion tensor imaging. SIAM J Imag Sci 5:483–504MathSciNetCrossRef
41.
go back to reference Shahab S, Stefanik L, Foussias G, Lai MC, Anderson KK, Voineskos AN (2018) Sex and diffusion tensor imaging of white matter in schizophrenia: a systematic review plus meta-analysis of the corpus callosum. Schizophr Bull 44:203–221PubMedCrossRef Shahab S, Stefanik L, Foussias G, Lai MC, Anderson KK, Voineskos AN (2018) Sex and diffusion tensor imaging of white matter in schizophrenia: a systematic review plus meta-analysis of the corpus callosum. Schizophr Bull 44:203–221PubMedCrossRef
42.
go back to reference Pecheva D, Yushkevich P, Batalle D, Hughes E, Aljabar P, Wurie J, Hajnal JV, Edwards AD, Alexander DC, Counsell SJ et al (2017) A tract-specific approach to assessing white matter in preterm infants. Neuroimage 157:675–694PubMedCrossRef Pecheva D, Yushkevich P, Batalle D, Hughes E, Aljabar P, Wurie J, Hajnal JV, Edwards AD, Alexander DC, Counsell SJ et al (2017) A tract-specific approach to assessing white matter in preterm infants. Neuroimage 157:675–694PubMedCrossRef
43.
go back to reference Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, Fobbs AJ, Sousa AM, Sestan N, Wildman DE et al (2012) Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci 109:16480–16485ADSPubMedPubMedCentralCrossRef Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, Fobbs AJ, Sousa AM, Sestan N, Wildman DE et al (2012) Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci 109:16480–16485ADSPubMedPubMedCentralCrossRef
44.
go back to reference Gottlieb D, Shu CW, Solomonoff A, Vandeven H (1992) On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J Comp Appl Math 43:81–98MathSciNetCrossRef Gottlieb D, Shu CW, Solomonoff A, Vandeven H (1992) On the Gibbs phenomenon I: recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J Comp Appl Math 43:81–98MathSciNetCrossRef
45.
go back to reference Misic B, Betzel RF, Nematzadeh A, Goni J, Gria A, Hagmann P, Flammini A, Ahn YY, Sporns O (2015) Cooperative and competitive spreading dynamics on the human connectome. Neuron 86:1518–1529PubMedCrossRef Misic B, Betzel RF, Nematzadeh A, Goni J, Gria A, Hagmann P, Flammini A, Ahn YY, Sporns O (2015) Cooperative and competitive spreading dynamics on the human connectome. Neuron 86:1518–1529PubMedCrossRef
46.
go back to reference Mito R, Raelt D, Dhollander T, Vaughan DN, Tournier JD, Salvado O, Brodtmann A, Rowe CC, Villemagne VL, Connelly A (2018) Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain 141:888–902PubMedCrossRef Mito R, Raelt D, Dhollander T, Vaughan DN, Tournier JD, Salvado O, Brodtmann A, Rowe CC, Villemagne VL, Connelly A (2018) Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain 141:888–902PubMedCrossRef
47.
go back to reference Cui LB, Wei Y, Xi YB, Gria A, De Lange SC, Kahn RS, Yin H, Van den Heuvel MP (2019) Connectome-based patterns of first episode medication-naive patients with schizophrenia. Schizophr Bull 45:1291–1299PubMedPubMedCentralCrossRef Cui LB, Wei Y, Xi YB, Gria A, De Lange SC, Kahn RS, Yin H, Van den Heuvel MP (2019) Connectome-based patterns of first episode medication-naive patients with schizophrenia. Schizophr Bull 45:1291–1299PubMedPubMedCentralCrossRef
49.
50.
go back to reference Daducci A, Dal Palu A, Lemkaddem A, Thiran JP (2013) A convex optimization framework for global tractography. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, IEEE. pp 524–527 Daducci A, Dal Palu A, Lemkaddem A, Thiran JP (2013) A convex optimization framework for global tractography. In: 2013 IEEE 10th International Symposium on Biomedical Imaging, IEEE. pp 524–527
51.
go back to reference Daducci A, Dal Palu A, Lemkaddem A, Thiran JP (2014) COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans Med Imaging 34:246–257PubMedCrossRef Daducci A, Dal Palu A, Lemkaddem A, Thiran JP (2014) COMMIT: convex optimization modeling for microstructure informed tractography. IEEE Trans Med Imaging 34:246–257PubMedCrossRef
52.
go back to reference Damatac CG, Chauvin RJ, Zwiers MP, van Rooij D, Akkermans SE, Naaijen J, Hoekstra PJ, Hartman CA, Oosterlaan J, Franke B et al (2020) White matter microstructure in attention deficit/hyperactivity disorder: a systematic tractography study in 654 individuals. Biol Psychiatry Cogn Neurosci Neuroimaging 7:979–988PubMed Damatac CG, Chauvin RJ, Zwiers MP, van Rooij D, Akkermans SE, Naaijen J, Hoekstra PJ, Hartman CA, Oosterlaan J, Franke B et al (2020) White matter microstructure in attention deficit/hyperactivity disorder: a systematic tractography study in 654 individuals. Biol Psychiatry Cogn Neurosci Neuroimaging 7:979–988PubMed
53.
go back to reference Zhanga F, Daduccib A, Yong H, Schiavib S, Seguing C, Smithi R, Yeh C-H, Zhao T, O’Donnell LJ (2021) Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. arXiv, pp 1–29 Zhanga F, Daduccib A, Yong H, Schiavib S, Seguing C, Smithi R, Yeh C-H, Zhao T, O’Donnell LJ (2021) Quantitative mapping of the brain’s structural connectivity using diffusion MRI tractography: a review. arXiv, pp 1–29
54.
go back to reference Davis SW, Dennis NA, Buchler NG, White LE, Madden DJ, Cabeza R (2009) Assessing the effects of age on long white matter tracts using diffusion tensor tractography. Neuroimage 46:530–541PubMedCrossRef Davis SW, Dennis NA, Buchler NG, White LE, Madden DJ, Cabeza R (2009) Assessing the effects of age on long white matter tracts using diffusion tensor tractography. Neuroimage 46:530–541PubMedCrossRef
55.
go back to reference De Witte NA, Mueller SC (2017) White matter integrity in brain networks relevant to anxiety and depression: evidence from the human connectome project dataset. Brain Imaging Behav 11:1604–1615PubMedCrossRef De Witte NA, Mueller SC (2017) White matter integrity in brain networks relevant to anxiety and depression: evidence from the human connectome project dataset. Brain Imaging Behav 11:1604–1615PubMedCrossRef
56.
go back to reference Zhang W, Olivi A, Hertig SJ, Van Zijl P, Mori S (2008) Automated fiber tracking of human brain white matter using diffusion tensor imaging. Neuroimage 42:771–777PubMedCrossRef Zhang W, Olivi A, Hertig SJ, Van Zijl P, Mori S (2008) Automated fiber tracking of human brain white matter using diffusion tensor imaging. Neuroimage 42:771–777PubMedCrossRef
57.
go back to reference Zhang Y, Zhang J, Oishi K, Faria AV, Jiang H, Li X, Akhter K, Rosa-Neto P, Pike GB, Evans A et al (2010) Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage 52:1289–1301PubMedCrossRef Zhang Y, Zhang J, Oishi K, Faria AV, Jiang H, Li X, Akhter K, Rosa-Neto P, Pike GB, Evans A et al (2010) Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. Neuroimage 52:1289–1301PubMedCrossRef
58.
go back to reference Zhang Z, Descoteaux M, Zhang J, Girard G, Chamberland M, Dunson D, Srivastava A, Zhu H (2018) Mapping population-based structural connectomes. Neuroimage 172:130–145PubMedCrossRef Zhang Z, Descoteaux M, Zhang J, Girard G, Chamberland M, Dunson D, Srivastava A, Zhu H (2018) Mapping population-based structural connectomes. Neuroimage 172:130–145PubMedCrossRef
59.
go back to reference Zhao T, Cao M, Niu H, Zuo XN, Evans A, He Y, Dong Q, Shu N (2015) Age-related changes in the topological organization of the white matter structural connectome across the human lifespan. Hum Brain Mapp 36:3777–3792PubMedPubMedCentralCrossRef Zhao T, Cao M, Niu H, Zuo XN, Evans A, He Y, Dong Q, Shu N (2015) Age-related changes in the topological organization of the white matter structural connectome across the human lifespan. Hum Brain Mapp 36:3777–3792PubMedPubMedCentralCrossRef
60.
go back to reference Zhao T, Mishra V, Jeon T, Ouyang M, Peng Q, Chalak L, Wisnowski JL, Heyne R, Rollins N, Shu N et al (2019) Structural network maturation of the preterm human brain. Neuroimage 185:699–710PubMedCrossRef Zhao T, Mishra V, Jeon T, Ouyang M, Peng Q, Chalak L, Wisnowski JL, Heyne R, Rollins N, Shu N et al (2019) Structural network maturation of the preterm human brain. Neuroimage 185:699–710PubMedCrossRef
61.
go back to reference Zhao T, Sheng C, Bi Q, Niu W, Shu N, Han Y (2017) Age-related differences in the topological efficiency of the brain structural connectome in amnestic mild cognitive impairment. Neurobiol Aging 59:144–155PubMedCrossRef Zhao T, Sheng C, Bi Q, Niu W, Shu N, Han Y (2017) Age-related differences in the topological efficiency of the brain structural connectome in amnestic mild cognitive impairment. Neurobiol Aging 59:144–155PubMedCrossRef
62.
go back to reference Zhao T, Xu Y, He Y (2019) Graph theoretical modeling of baby brain networks. Neuroimage 185:711–727PubMedCrossRef Zhao T, Xu Y, He Y (2019) Graph theoretical modeling of baby brain networks. Neuroimage 185:711–727PubMedCrossRef
63.
go back to reference Zhao X, Tian L, Yan J, Yue W, Yan H, Zhang D (2017) Abnormal rich-club organization associated with compromised cognitive function in patients with schizophrenia and their unaffected parents. Neurosci Bull 33:445–454PubMedPubMedCentralCrossRef Zhao X, Tian L, Yan J, Yue W, Yan H, Zhang D (2017) Abnormal rich-club organization associated with compromised cognitive function in patients with schizophrenia and their unaffected parents. Neurosci Bull 33:445–454PubMedPubMedCentralCrossRef
64.
go back to reference Ziyan U, Sabuncu MR, Grimson WEL, Westin CF (2009) Consistency clustering: a robust algorithm for group-wise registration, segmentation and automatic atlas construction in diffusion MRI. Int J Comput Vision 85:279–290CrossRef Ziyan U, Sabuncu MR, Grimson WEL, Westin CF (2009) Consistency clustering: a robust algorithm for group-wise registration, segmentation and automatic atlas construction in diffusion MRI. Int J Comput Vision 85:279–290CrossRef
65.
go back to reference Zollei L, Jaimes C, Saliba E, Grant PE, Yendiki A (2019) Tracts constrained by underlying infant anatomy (traculina): an automated probabilistic tractography tool with anatomical priors for use in the newborn brain. Neuroimage 199:1–17PubMedCrossRef Zollei L, Jaimes C, Saliba E, Grant PE, Yendiki A (2019) Tracts constrained by underlying infant anatomy (traculina): an automated probabilistic tractography tool with anatomical priors for use in the newborn brain. Neuroimage 199:1–17PubMedCrossRef
66.
go back to reference Yeh CH, Smith RE, Dhollander T, Connelly A (2017) Mesh-based anatomically-constrained tractography for effective tracking termination and structural connectome construction. In: Proceedings of the ISMRM, no. 0058 Yeh CH, Smith RE, Dhollander T, Connelly A (2017) Mesh-based anatomically-constrained tractography for effective tracking termination and structural connectome construction. In: Proceedings of the ISMRM, no. 0058
67.
go back to reference Yeh CH, Smith RE, Liang X, Calamante F, Connelly A (2016) Correction for diffusion MRI fibre tracking biases: the consequences for structural connectomic metrics. Neuroimage 142:150–162PubMedCrossRef Yeh CH, Smith RE, Liang X, Calamante F, Connelly A (2016) Correction for diffusion MRI fibre tracking biases: the consequences for structural connectomic metrics. Neuroimage 142:150–162PubMedCrossRef
68.
go back to reference Yeh FC, Badre D, Verstynen T (2016) Connectometry: a statistical approach harnessing the analytical potential of the local connectome. Neuroimage 125:162–171PubMedCrossRef Yeh FC, Badre D, Verstynen T (2016) Connectometry: a statistical approach harnessing the analytical potential of the local connectome. Neuroimage 125:162–171PubMedCrossRef
69.
go back to reference Yeh FC, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC, Vettel JM, Verstynen T (2018) Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage 178:57–68PubMedCrossRef Yeh FC, Panesar S, Fernandes D, Meola A, Yoshino M, Fernandez-Miranda JC, Vettel JM, Verstynen T (2018) Population-averaged atlas of the macroscale human structural connectome and its network topology. Neuroimage 178:57–68PubMedCrossRef
70.
go back to reference Urban G, Bendszus M, Hamprecht F, Kleesiek J (2014) Multimodal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumour Segmentation) Challenge. Proceedings, Winning Contribution, pp 31–35 Urban G, Bendszus M, Hamprecht F, Kleesiek J (2014) Multimodal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumour Segmentation) Challenge. Proceedings, Winning Contribution, pp 31–35
71.
go back to reference Vijayakumar C, Gharpure DC (2011) Development of image-processing software for automatic segmentation of brain tumors in MRI images. J Med Phys/Assoc Med Phys India 36(3):147 Vijayakumar C, Gharpure DC (2011) Development of image-processing software for automatic segmentation of brain tumors in MRI images. J Med Phys/Assoc Med Phys India 36(3):147
72.
go back to reference Wang SH, Phillips P, Sui Y, Liu B, Yang M, Cheng H (2018) Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst 42(5):85PubMedCrossRef Wang SH, Phillips P, Sui Y, Liu B, Yang M, Cheng H (2018) Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling. J Med Syst 42(5):85PubMedCrossRef
73.
go back to reference Rondina JM, Ferreira LK, de Souza Duran FL, Kubo R, Ono CR, Leite CC et al (2018) Selecting the most relevant brain regions to discriminate Alzheimer’s disease patients from healthy controls using multiple kernel learning: a comparison across functional and structural imaging modalities and atlases. Neuroimage Clin 17:628–641PubMedCrossRef Rondina JM, Ferreira LK, de Souza Duran FL, Kubo R, Ono CR, Leite CC et al (2018) Selecting the most relevant brain regions to discriminate Alzheimer’s disease patients from healthy controls using multiple kernel learning: a comparison across functional and structural imaging modalities and atlases. Neuroimage Clin 17:628–641PubMedCrossRef
74.
go back to reference Saha P, Udupa J (2001) Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans Pattern Anal Mach Intell 12(7):689–706CrossRef Saha P, Udupa J (2001) Optimum image thresholding via class uncertainty and region homogeneity. IEEE Trans Pattern Anal Mach Intell 12(7):689–706CrossRef
75.
go back to reference Salman Y (2009) Modified technique for volumetric brain tumour measurements. J Biomed Sci Eng 2:16–19CrossRef Salman Y (2009) Modified technique for volumetric brain tumour measurements. J Biomed Sci Eng 2:16–19CrossRef
76.
go back to reference Salman Y, Badawi A, Assal M, Alian S (2005) New automatic technique for tracking brain tumor response. In: International conference on biological and medical physics, pp 1–4 Salman Y, Badawi A, Assal M, Alian S (2005) New automatic technique for tracking brain tumor response. In: International conference on biological and medical physics, pp 1–4
77.
go back to reference Sanchez A, Mammone N, Morabito FC, Marino S, Adeli H (2019) A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J Neurosci Methods 322:88–95CrossRef Sanchez A, Mammone N, Morabito FC, Marino S, Adeli H (2019) A novel methodology for automated differential diagnosis of mild cognitive impairment and the Alzheimer’s disease using EEG signals. J Neurosci Methods 322:88–95CrossRef
78.
go back to reference Oxtoby NP, Garbarino S, Firth NC et al (2017) Data-driven sequence of changes to anatomical brain connectivity in sporadic Alzheimer’s disease. Front Neurol 8:580PubMedPubMedCentralCrossRef Oxtoby NP, Garbarino S, Firth NC et al (2017) Data-driven sequence of changes to anatomical brain connectivity in sporadic Alzheimer’s disease. Front Neurol 8:580PubMedPubMedCentralCrossRef
79.
go back to reference Betzel RF, Bassett DS (2018) Specificity and robustness of long-distance connections in weighted, interareal connectomes. Proc Natl Acad Sci U S A 115:E4880–E4889ADSPubMedPubMedCentralCrossRef Betzel RF, Bassett DS (2018) Specificity and robustness of long-distance connections in weighted, interareal connectomes. Proc Natl Acad Sci U S A 115:E4880–E4889ADSPubMedPubMedCentralCrossRef
80.
go back to reference Raffelt D, Sadeghian F, Connor H. Connelly A (2015) Decreased apparent fiber density in the optic pathways correlates with glaucoma disease severity. In: Proc ISMRM, p 2213 Raffelt D, Sadeghian F, Connor H. Connelly A (2015) Decreased apparent fiber density in the optic pathways correlates with glaucoma disease severity. In: Proc ISMRM, p 2213
81.
go back to reference Vaughan DN, Raffelt D, Curwood E et al (2017) Tract-specific atrophy in focal epilepsy: disease, genetics, or seizures? Ann Neurol 81:240–250PubMedCrossRef Vaughan DN, Raffelt D, Curwood E et al (2017) Tract-specific atrophy in focal epilepsy: disease, genetics, or seizures? Ann Neurol 81:240–250PubMedCrossRef
82.
go back to reference Mito R, Raffelt D, Dhollander T et al (2018) Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain 141:888–902PubMedCrossRef Mito R, Raffelt D, Dhollander T et al (2018) Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain 141:888–902PubMedCrossRef
83.
go back to reference Liang X, Yeh C-H, Connelly A, Calamante F (2019) Robust identification of rich-club organization in weighted and dense structural connectomes. Brain Topogr 32:1–16PubMedCrossRef Liang X, Yeh C-H, Connelly A, Calamante F (2019) Robust identification of rich-club organization in weighted and dense structural connectomes. Brain Topogr 32:1–16PubMedCrossRef
84.
go back to reference Xing X-X, Zuo X-N (2018) The anatomy of reliability: a must read for future human brain mapping. Sci Bull 63:1606–1607CrossRef Xing X-X, Zuo X-N (2018) The anatomy of reliability: a must read for future human brain mapping. Sci Bull 63:1606–1607CrossRef
85.
go back to reference Zuo X-N, Xu T, Milham MP (2019) Harnessing reliability for neuroscience research. Nat Hum Behav 3:768–771PubMedCrossRef Zuo X-N, Xu T, Milham MP (2019) Harnessing reliability for neuroscience research. Nat Hum Behav 3:768–771PubMedCrossRef
86.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289PubMedCrossRef
89.
go back to reference Gelb A, Tadmor E (2000) Detection of edges in spectral data II: nonlinear enhancement. SIAM J Numer Anal 38:1389–1408MathSciNetCrossRef Gelb A, Tadmor E (2000) Detection of edges in spectral data II: nonlinear enhancement. SIAM J Numer Anal 38:1389–1408MathSciNetCrossRef
90.
go back to reference Archibald R, Gelb A (2002) A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity. IEEE Trans Med Imaging 21:305–319PubMedCrossRef Archibald R, Gelb A (2002) A method to reduce the Gibbs ringing artifact in MRI scans while keeping tissue boundary integrity. IEEE Trans Med Imaging 21:305–319PubMedCrossRef
91.
go back to reference Archibald R, Chen K, Gelb A, Renautc R (2003) Improving tissue segmentation of human brain MRI through preprocessing by the Gegenbauer reconstruction method. Neuroimage 20:489–502PubMedCrossRef Archibald R, Chen K, Gelb A, Renautc R (2003) Improving tissue segmentation of human brain MRI through preprocessing by the Gegenbauer reconstruction method. Neuroimage 20:489–502PubMedCrossRef
92.
go back to reference Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87PubMedCrossRef Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S (2004) Fiber tract-based atlas of human white matter anatomy. Radiology 230:77–87PubMedCrossRef
Metadata
Title
Brain tissue segmentation in neurosurgery: a systematic analysis for quantitative tractography approaches
Authors
Puranam Revanth Kumar
Rajesh Kumar Jha
Amogh Katti
Publication date
06-01-2023
Publisher
Springer International Publishing
Published in
Acta Neurologica Belgica / Issue 1/2024
Print ISSN: 0300-9009
Electronic ISSN: 2240-2993
DOI
https://doi.org/10.1007/s13760-023-02170-9

Other articles of this Issue 1/2024

Acta Neurologica Belgica 1/2024 Go to the issue