Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2014

Open Access 01-06-2014 | Original Paper

MiR-21 is an Ngf-Modulated MicroRNA That Supports Ngf Signaling and Regulates Neuronal Degeneration in PC12 Cells

Authors: Enrica Montalban, Nicola Mattugini, Roberta Ciarapica, Claudia Provenzano, Mauro Savino, Fiorella Scagnoli, Gianluca Prosperini, Claudia Carissimi, Valerio Fulci, Carmela Matrone, Pietro Calissano, Sergio Nasi

Published in: NeuroMolecular Medicine | Issue 2/2014

Login to get access

Abstract

The neurotrophins Ngf, Bdnf, NT-3, NT4–5 have key roles in development, survival, and plasticity of neuronal cells. Their action involves broad gene expression changes at the level of transcription and translation. MicroRNAs (miRs)—small RNA molecules that control gene expression post-transcriptionally—are increasingly implicated in regulating development and plasticity of neural cells. Using PC12 cells as a model system, we show that Ngf modulates changes in expression of a variety of microRNAs, including miRs known to be modulated by neurotrophins—such as the miR-212/132 cluster—and several others, such as miR-21, miR-29c, miR-30c, miR-93, miR-103, miR-207, miR-691, and miR-709. Pathway analysis indicates that Ngf-modulated miRs may regulate many protein components of signaling pathways involved in neuronal development and disease. In particular, we show that miR-21 enhances neurotrophin signaling and controls neuronal differentiation induced by Ngf. Notably, in a situation mimicking neurodegeneration—differentiated neurons deprived of Ngf—this microRNA is able to preserve the neurite network and to support viability of the neurons. These findings uncover a broad role of microRNAs in regulating neurotrophin signaling and suggest that aberrant expression of one or more Ngf-modulated miRs may be involved in neurodegenerative diseases.
Appendix
Available only for authorised users
Literature
go back to reference Adilakshmi, T., Sudol, I., & Tapinos, N. (2012). Combinatorial action of miRNAs regulates transcriptional and post-transcriptional gene silencing following in vivo PNS injury. PLoS ONE, 7(7), e39674.PubMedCentralPubMedCrossRef Adilakshmi, T., Sudol, I., & Tapinos, N. (2012). Combinatorial action of miRNAs regulates transcriptional and post-transcriptional gene silencing following in vivo PNS injury. PLoS ONE, 7(7), e39674.PubMedCentralPubMedCrossRef
go back to reference Alsina, F. C., Irala, D., Fontanet, P. A., Hita, F. J., Ledda, F., & Paratcha, G. (2012). Sprouty4 is an endogenous negative modulator of TrkA signaling and neuronal differentiation induced by Ngf. PLoS ONE, 7(2), e32087.PubMedCentralPubMedCrossRef Alsina, F. C., Irala, D., Fontanet, P. A., Hita, F. J., Ledda, F., & Paratcha, G. (2012). Sprouty4 is an endogenous negative modulator of TrkA signaling and neuronal differentiation induced by Ngf. PLoS ONE, 7(2), e32087.PubMedCentralPubMedCrossRef
go back to reference Annibali, D., Gioia, U., Savino, M., Laneve, P., Caffarelli, E., & Nasi, S. (2012). A new module in neural differentiation control: Two microRNA upregulated by Retinoic Acid, miR-9 and-103, target the differentiation inhibitor ID2. PLoS ONE, 7(7), e40269.PubMedCentralPubMedCrossRef Annibali, D., Gioia, U., Savino, M., Laneve, P., Caffarelli, E., & Nasi, S. (2012). A new module in neural differentiation control: Two microRNA upregulated by Retinoic Acid, miR-9 and-103, target the differentiation inhibitor ID2. PLoS ONE, 7(7), e40269.PubMedCentralPubMedCrossRef
go back to reference Babenko, O., Golubov, A., Ilnytskyy, Y., Kovalchuk, I., & Metz, G. A. (2012). Genomic and epigenomic responses to chronic stress involve miRNA-mediated programming. PLoS ONE, 7(1), e29441.PubMedCentralPubMedCrossRef Babenko, O., Golubov, A., Ilnytskyy, Y., Kovalchuk, I., & Metz, G. A. (2012). Genomic and epigenomic responses to chronic stress involve miRNA-mediated programming. PLoS ONE, 7(1), e29441.PubMedCentralPubMedCrossRef
go back to reference Bhalala, O. G., Pan, L., Sahni, V., McGuire, T. L., Gruner, K., Tourtellotte, W. G., et al. (2012). MicroRNA-21 regulates astrocytic response following spinal cord injury. The Journal of Neuroscience, 32(50), 17935–17947.PubMedCentralPubMedCrossRef Bhalala, O. G., Pan, L., Sahni, V., McGuire, T. L., Gruner, K., Tourtellotte, W. G., et al. (2012). MicroRNA-21 regulates astrocytic response following spinal cord injury. The Journal of Neuroscience, 32(50), 17935–17947.PubMedCentralPubMedCrossRef
go back to reference Brett, J. O., Renault, V. M., Rafalski, V. A., Webb, A. E., & Brunet, A. (2008). The microRNA cluster miR-106b–25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY), 3(2), 108–124. Brett, J. O., Renault, V. M., Rafalski, V. A., Webb, A. E., & Brunet, A. (2008). The microRNA cluster miR-106b–25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY), 3(2), 108–124.
go back to reference Buller, B., Liu, X., Wang, X., Zhang, R. L., Zhang, L., Hozeska-Solgot, A., et al. (2010). miR-21 protects neurons from ischemic death. FEBS Journal, 277(20), 4299–4307.PubMedCentralPubMedCrossRef Buller, B., Liu, X., Wang, X., Zhang, R. L., Zhang, L., Hozeska-Solgot, A., et al. (2010). miR-21 protects neurons from ischemic death. FEBS Journal, 277(20), 4299–4307.PubMedCentralPubMedCrossRef
go back to reference Calissano, P., Matrone, C., & Amadoro, G. (2010). Nerve growth factor as a paradigm of neurotrophins related to Alzheimer’s disease. Developmental Neurobiology, 70(5), 372–383.PubMed Calissano, P., Matrone, C., & Amadoro, G. (2010). Nerve growth factor as a paradigm of neurotrophins related to Alzheimer’s disease. Developmental Neurobiology, 70(5), 372–383.PubMed
go back to reference Chao, M. V., Rajagopal, R., & Lee, F. S. (2006). Neurotrophin signaling in health and disease. Clinical Science, 110(2), 167–173.PubMedCrossRef Chao, M. V., Rajagopal, R., & Lee, F. S. (2006). Neurotrophin signaling in health and disease. Clinical Science, 110(2), 167–173.PubMedCrossRef
go back to reference Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4(9), 721–726.PubMedCrossRef Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4(9), 721–726.PubMedCrossRef
go back to reference Gentner, B., Schira, G., Giustacchini, A., Amendola, M., Brown, B. D., Ponzoni, M., et al. (2009). Stable knockdown of microRNA in vivo by lentiviral vectors. Nature Methods, 6(1), 63–66.PubMedCrossRef Gentner, B., Schira, G., Giustacchini, A., Amendola, M., Brown, B. D., Ponzoni, M., et al. (2009). Stable knockdown of microRNA in vivo by lentiviral vectors. Nature Methods, 6(1), 63–66.PubMedCrossRef
go back to reference Greene, L. A. (1978). Nerve growth factor prevents the death and stimulates the neural differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. The Journal of Cell Biology, 78(3), 747–755.PubMedCentralPubMedCrossRef Greene, L. A. (1978). Nerve growth factor prevents the death and stimulates the neural differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. The Journal of Cell Biology, 78(3), 747–755.PubMedCentralPubMedCrossRef
go back to reference Greene, L. A., & Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 73(7), 2424–2428.PubMedCentralPubMedCrossRef Greene, L. A., & Tischler, A. S. (1976). Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proceedings of the National Academy of Sciences of the United States of America, 73(7), 2424–2428.PubMedCentralPubMedCrossRef
go back to reference Hatley, M. E., Patrick, D. M., Garcia, M. R., Richardson, J. A., Bassel-Duby, R., van Rooij, E., et al. (2010). Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell, 18(3), 282–293.PubMedCentralPubMedCrossRef Hatley, M. E., Patrick, D. M., Garcia, M. R., Richardson, J. A., Bassel-Duby, R., van Rooij, E., et al. (2010). Modulation of K-Ras-dependent lung tumorigenesis by microRNA-21. Cancer Cell, 18(3), 282–293.PubMedCentralPubMedCrossRef
go back to reference Hausott, B., Vallant, N., Auer, M., Yang, L., Dai, F., Brand-Saberi, B., et al. (2009). Sprouty2 down-regulation promotes axon growth by adult sensory neurons. Molecular and Cellular Neuroscience, 42(4), 328–340.PubMedCrossRef Hausott, B., Vallant, N., Auer, M., Yang, L., Dai, F., Brand-Saberi, B., et al. (2009). Sprouty2 down-regulation promotes axon growth by adult sensory neurons. Molecular and Cellular Neuroscience, 42(4), 328–340.PubMedCrossRef
go back to reference Im, H. I., Hollander, J. A., Bali, P., Kenny, P. J., et al. (2010). MeCP2 controls Bdnf expression and cocaine intake through homeostatic interactions with microRNA-212. Nature Neuroscience, 13(9), 1120–1127.PubMedCentralPubMedCrossRef Im, H. I., Hollander, J. A., Bali, P., Kenny, P. J., et al. (2010). MeCP2 controls Bdnf expression and cocaine intake through homeostatic interactions with microRNA-212. Nature Neuroscience, 13(9), 1120–1127.PubMedCentralPubMedCrossRef
go back to reference Impey, S., Davare, M., Lesiak, A., Fortin, D., Ando, H., Varlamova, O., et al. (2010). An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Molecular and Cellular Neuroscience, 43(1), 146–156.PubMedCentralPubMedCrossRef Impey, S., Davare, M., Lesiak, A., Fortin, D., Ando, H., Varlamova, O., et al. (2010). An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Molecular and Cellular Neuroscience, 43(1), 146–156.PubMedCentralPubMedCrossRef
go back to reference Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 10(3), 381–391.PubMedCrossRef Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 10(3), 381–391.PubMedCrossRef
go back to reference Krichevsky, A. M., & Gabriely, G. (2009). miR-21 a small multi-faceted RNA. Journal of Cellular and Molecular Medicine, 13(1), 39–53.PubMedCrossRef Krichevsky, A. M., & Gabriely, G. (2009). miR-21 a small multi-faceted RNA. Journal of Cellular and Molecular Medicine, 13(1), 39–53.PubMedCrossRef
go back to reference Lee, S. T., Chu, K., Im, W. S., Yoon, H. J., Im, J. Y., Park, J. E., et al. (2011). Altered microRNA regulation in Huntington’s disease models. Experimental Neurology, 227(1), 172–179.PubMedCrossRef Lee, S. T., Chu, K., Im, W. S., Yoon, H. J., Im, J. Y., Park, J. E., et al. (2011). Altered microRNA regulation in Huntington’s disease models. Experimental Neurology, 227(1), 172–179.PubMedCrossRef
go back to reference Levi, A., Ferri, G. L., Watson, E., Possenti, R., & Salton, S. R. (2004). Processing, distribution, and function of VGF, a neuronal and endocrine peptide precursor. Cellular and Molecular Neurobiology, 24(4), 517–533.PubMedCrossRef Levi, A., Ferri, G. L., Watson, E., Possenti, R., & Salton, S. R. (2004). Processing, distribution, and function of VGF, a neuronal and endocrine peptide precursor. Cellular and Molecular Neurobiology, 24(4), 517–533.PubMedCrossRef
go back to reference Loscher, C. J., Hokamp, K., Kenna, P. F., Ivens, A. C., Humphries, P., Palfi, A., et al. (2008). Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa. Genome Biology, 8(11), R248.CrossRef Loscher, C. J., Hokamp, K., Kenna, P. F., Ivens, A. C., Humphries, P., Palfi, A., et al. (2008). Altered retinal microRNA expression profile in a mouse model of retinitis pigmentosa. Genome Biology, 8(11), R248.CrossRef
go back to reference Luikart, B. W., Bensen, A. L., Washburn, E. K., Perederiy, J. V., Su, K. G., Li, Y., et al. (2011). miR-132 mediates the integration of newborn neurons into the adult dentate gyrus. PLoS ONE, 6(5), e19077.PubMedCentralPubMedCrossRef Luikart, B. W., Bensen, A. L., Washburn, E. K., Perederiy, J. V., Su, K. G., Li, Y., et al. (2011). miR-132 mediates the integration of newborn neurons into the adult dentate gyrus. PLoS ONE, 6(5), e19077.PubMedCentralPubMedCrossRef
go back to reference Maes, O. C., Chertkow, H. M., Wang, E., & Schipper, H. M. (2009). MicroRNA: Implications for Alzheimer disease and other human CNS disorders. Current Genomics, 10(3), 154–168.PubMedCentralPubMedCrossRef Maes, O. C., Chertkow, H. M., Wang, E., & Schipper, H. M. (2009). MicroRNA: Implications for Alzheimer disease and other human CNS disorders. Current Genomics, 10(3), 154–168.PubMedCentralPubMedCrossRef
go back to reference Mandolesi, G., Gargano, S., Pennuto, M., Illi, B., Molfetta, R., Soucek, L., et al. (2002). Ngf-dependent and tissue-specific transcription of Vgf is regulated by a Creb-p300 and bHLH factor interaction. FEBS Letter, 510(1–2), 50–56.CrossRef Mandolesi, G., Gargano, S., Pennuto, M., Illi, B., Molfetta, R., Soucek, L., et al. (2002). Ngf-dependent and tissue-specific transcription of Vgf is regulated by a Creb-p300 and bHLH factor interaction. FEBS Letter, 510(1–2), 50–56.CrossRef
go back to reference Marson, A., Levine, S. S., Cole, M. F., Frampton, G. M., Brambrink, T., Johnstone, S., et al. (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134(3), 521–533.PubMedCentralPubMedCrossRef Marson, A., Levine, S. S., Cole, M. F., Frampton, G. M., Brambrink, T., Johnstone, S., et al. (2008). Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134(3), 521–533.PubMedCentralPubMedCrossRef
go back to reference Matrone, C., Ciotti, M. T., Mercanti, D., Marolda, R., & Calissano, P. (2008a). Ngf and Bdnf signaling control amyloidogenic route and Aβ production in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13139–13144. Epub 2008 Aug 26.PubMedCentralPubMedCrossRef Matrone, C., Ciotti, M. T., Mercanti, D., Marolda, R., & Calissano, P. (2008a). Ngf and Bdnf signaling control amyloidogenic route and Aβ production in hippocampal neurons. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13139–13144. Epub 2008 Aug 26.PubMedCentralPubMedCrossRef
go back to reference Matrone, C., Di Luzio, A., Meli, G., D’Aguanno, S., Severini, C., Ciotti, M. T., et al. (2008b). Activation of the amyloidogenic route by Ngf deprivation induces apoptotic death in PC12 cells. Journal of Alzheimers Disease, 13(1), 81–96. Matrone, C., Di Luzio, A., Meli, G., D’Aguanno, S., Severini, C., Ciotti, M. T., et al. (2008b). Activation of the amyloidogenic route by Ngf deprivation induces apoptotic death in PC12 cells. Journal of Alzheimers Disease, 13(1), 81–96.
go back to reference Mei, Y., Bian, C., Li, J., Du, Z., Zhou, H., Yang, Z., et al. (2012). miR-21 modulates the Erk-MapK signaling pathway by regulating Spry2 expression during human mesenchymal stem cell differentiation. Journal of Cellular Biochemistry, 114(6), 1374–1384.CrossRef Mei, Y., Bian, C., Li, J., Du, Z., Zhou, H., Yang, Z., et al. (2012). miR-21 modulates the Erk-MapK signaling pathway by regulating Spry2 expression during human mesenchymal stem cell differentiation. Journal of Cellular Biochemistry, 114(6), 1374–1384.CrossRef
go back to reference Mellios, N., Huang, H. S., Grigorenko, A., Rogaev, E., & Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of Bdnf in prefrontal cortex. Human Molecular Genetics, 17(19), 3030–3042.PubMedCentralPubMedCrossRef Mellios, N., Huang, H. S., Grigorenko, A., Rogaev, E., & Akbarian, S. (2008). A set of differentially expressed miRNAs, including miR-30a-5p, act as post-transcriptional inhibitors of Bdnf in prefrontal cortex. Human Molecular Genetics, 17(19), 3030–3042.PubMedCentralPubMedCrossRef
go back to reference Mesner, P. W., Epting, C. L., Hegarty, J. L., & Green, S. H. (1995). A timetable of events during programmed cell death induced by trophic factor withdrawal from neuronal PC12 cells. The Journal of Neuroscience, 15(11), 7357–7366.PubMed Mesner, P. W., Epting, C. L., Hegarty, J. L., & Green, S. H. (1995). A timetable of events during programmed cell death induced by trophic factor withdrawal from neuronal PC12 cells. The Journal of Neuroscience, 15(11), 7357–7366.PubMed
go back to reference Miller, B. H., & Wahlestedt, C. (2012). MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 3125–3130.PubMedCentralPubMedCrossRef Miller, B. H., & Wahlestedt, C. (2012). MicroRNA-132 dysregulation in schizophrenia has implications for both neurodevelopment and adult brain function. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 3125–3130.PubMedCentralPubMedCrossRef
go back to reference Mullenbrock, S., Shah, J., & Cooper, G. M. (2012). Global expression analysis identified a preferentially nerve growth factor-induced transcriptional program regulated by sustained mitogen-activated protein kinase/extracellular signal-regulated kinase (Erk) and AP-1 protein activation during PC12 cell differentiation. The Journal of biological chemistry, 286(52), 45131–45145.CrossRef Mullenbrock, S., Shah, J., & Cooper, G. M. (2012). Global expression analysis identified a preferentially nerve growth factor-induced transcriptional program regulated by sustained mitogen-activated protein kinase/extracellular signal-regulated kinase (Erk) and AP-1 protein activation during PC12 cell differentiation. The Journal of biological chemistry, 286(52), 45131–45145.CrossRef
go back to reference Papagiannakopoulos, T., Shapiro, A., & Kosik, K. S. (2008). MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Research, 68, 8164–8172.PubMedCrossRef Papagiannakopoulos, T., Shapiro, A., & Kosik, K. S. (2008). MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Research, 68, 8164–8172.PubMedCrossRef
go back to reference Paschou, M., Paraskevopoulou, M. D., Vlachos, I. S., Koukouraki, P., Hatzigeorgiou, A. G., & Doxakis, E. (2012). miRNA regulons associated with synaptic function. PLoS ONE, 7(10), e46189.PubMedCentralPubMedCrossRef Paschou, M., Paraskevopoulou, M. D., Vlachos, I. S., Koukouraki, P., Hatzigeorgiou, A. G., & Doxakis, E. (2012). miRNA regulons associated with synaptic function. PLoS ONE, 7(10), e46189.PubMedCentralPubMedCrossRef
go back to reference Remenyi, J., Hunter, C. J., Cole, C., Ando, H., Impey, S., Monk, C. E., et al. (2010). Regulation of the miR-212/132 locus by MSK1 and Creb in response to neurotrophins. Biochemical Journal, 428(2), 281–289.PubMedCrossRef Remenyi, J., Hunter, C. J., Cole, C., Ando, H., Impey, S., Monk, C. E., et al. (2010). Regulation of the miR-212/132 locus by MSK1 and Creb in response to neurotrophins. Biochemical Journal, 428(2), 281–289.PubMedCrossRef
go back to reference Strickland, I. T., Richards, L., Holmes, F. E., Wynick, D., Uney, J. B., & Wong, L. F. (2011). Axotomy-Induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS ONE, 6(8), e23423.PubMedCentralPubMedCrossRef Strickland, I. T., Richards, L., Holmes, F. E., Wynick, D., Uney, J. B., & Wong, L. F. (2011). Axotomy-Induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS ONE, 6(8), e23423.PubMedCentralPubMedCrossRef
go back to reference Talotta, F., Cimmino, A., Matarazzo, M. R., Casalino, L., De Vita, G., D’Esposito, M., et al. (2009). An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene, 28(1), 73–84.PubMedCrossRef Talotta, F., Cimmino, A., Matarazzo, M. R., Casalino, L., De Vita, G., D’Esposito, M., et al. (2009). An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene, 28(1), 73–84.PubMedCrossRef
go back to reference Terasawa, K., Ichimura, A., Sato, F., Shimizu, K., & Tsujimoto, G. (2006). Sustained activation of Erk1/2 by Ngf induces microRNA-221 and 222 in PC12 cells. FEBS Journal, 276(12), 3269–3276.CrossRef Terasawa, K., Ichimura, A., Sato, F., Shimizu, K., & Tsujimoto, G. (2006). Sustained activation of Erk1/2 by Ngf induces microRNA-221 and 222 in PC12 cells. FEBS Journal, 276(12), 3269–3276.CrossRef
go back to reference Tognini, P., Putignano, E., Coatti, A., & Pizzorusso, T. (2011). Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nature Neuroscience, 14(10), 1237–1239.PubMedCentralPubMedCrossRef Tognini, P., Putignano, E., Coatti, A., & Pizzorusso, T. (2011). Experience-dependent expression of miR-132 regulates ocular dominance plasticity. Nature Neuroscience, 14(10), 1237–1239.PubMedCentralPubMedCrossRef
go back to reference Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102(45), 16426–16431.PubMedCentralPubMedCrossRef Vo, N., Klein, M. E., Varlamova, O., Keller, D. M., Yamamoto, T., Goodman, R. H., et al. (2005). cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102(45), 16426–16431.PubMedCentralPubMedCrossRef
go back to reference Wanet, A., Tacheny, A., Arnould, T., & Renard, P. (2012). miR-212/132 expression and functions: Within and beyond the neuronal compartment. Nucleic Acids Research, 40(11), 4742–4753.PubMedCentralPubMedCrossRef Wanet, A., Tacheny, A., Arnould, T., & Renard, P. (2012). miR-212/132 expression and functions: Within and beyond the neuronal compartment. Nucleic Acids Research, 40(11), 4742–4753.PubMedCentralPubMedCrossRef
go back to reference Wang, P., Zou, F., Zhang, X., Li, H., Dulak, A., Tomko, R. J., Jr, et al. (2009). MicroRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Research, 69, 8157–8165.PubMedCentralPubMedCrossRef Wang, P., Zou, F., Zhang, X., Li, H., Dulak, A., Tomko, R. J., Jr, et al. (2009). MicroRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Research, 69, 8157–8165.PubMedCentralPubMedCrossRef
go back to reference Yao, J., Hennessey, T., Flynt, A., Lai, E., Beal, M. F., & Lin, M. T. (2010). MicroRNA-related cofilin abnormality in Alzheimer’s disease. PLoS ONE, 5(12), e15546.PubMedCentralPubMedCrossRef Yao, J., Hennessey, T., Flynt, A., Lai, E., Beal, M. F., & Lin, M. T. (2010). MicroRNA-related cofilin abnormality in Alzheimer’s disease. PLoS ONE, 5(12), e15546.PubMedCentralPubMedCrossRef
go back to reference Zhang, L., Dong, L. Y., Li, Y. J., Hong, Z., & Wei, W. S. (2012). miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia, 60(12), 1888–1895.PubMedCrossRef Zhang, L., Dong, L. Y., Li, Y. J., Hong, Z., & Wei, W. S. (2012). miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia, 60(12), 1888–1895.PubMedCrossRef
go back to reference Zong, Y., Wang, H., Dong, W., Quan, X., Zhu, H., Xu, Y., et al. (2011). miR-29c regulates Bace1 protein expression. Brain Research, 1395, 108–115.PubMedCrossRef Zong, Y., Wang, H., Dong, W., Quan, X., Zhu, H., Xu, Y., et al. (2011). miR-29c regulates Bace1 protein expression. Brain Research, 1395, 108–115.PubMedCrossRef
Metadata
Title
MiR-21 is an Ngf-Modulated MicroRNA That Supports Ngf Signaling and Regulates Neuronal Degeneration in PC12 Cells
Authors
Enrica Montalban
Nicola Mattugini
Roberta Ciarapica
Claudia Provenzano
Mauro Savino
Fiorella Scagnoli
Gianluca Prosperini
Claudia Carissimi
Valerio Fulci
Carmela Matrone
Pietro Calissano
Sergio Nasi
Publication date
01-06-2014
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2/2014
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-014-8292-z

Other articles of this Issue 2/2014

NeuroMolecular Medicine 2/2014 Go to the issue