Skip to main content
Top
Published in: NeuroMolecular Medicine 2/2014

01-06-2014 | Original Paper

Neuronal and Astroglial TGFβ-Smad3 Signaling Pathways Differentially Regulate Dendrite Growth and Synaptogenesis

Authors: Chuan-Yong Yu, Wei Gui, Hui-Yan He, Xiao-Shan Wang, Jian Zuo, Lin Huang, Nong Zhou, Kai Wang, Yu Wang

Published in: NeuroMolecular Medicine | Issue 2/2014

Login to get access

Abstract

To address the role of the transforming growth factor beta (TGFβ)-Smad3 signaling pathway in dendrite growth and associated synaptogenesis, we used small inhibitory RNA to knockdown the Smad3 gene in either cultured neurons and or primary astrocytes. We found that TGFβ1 treatment of primary neurons increased dendrite extensions and the number of synapsin-1-positive synapses. When Smad3 was knockdown in primary neurons, dendrite growth was inhibited and the number of synapsin-1-positive synapses reduced even with TGFβ1 treatment. When astrocyte-conditioned medium (ACM), collected from TGFβ1-treated astrocytes (TGFβ1-stimulated ACM), was added to cultured neurons, dendritic growth was inhibited and the number of synapsin-1-positive puncta reduced. When TGFβ1-stimulated ACM was collected from astrocytes with Smad3 knocked down, this conditioned media promoted the growth of dendrites and the number of synapsin-1-positive puncta in cultured neurons. We further found that TGFβ1 signaling through Smad3 increased the expression of chondroitin sulfate proteoglycans, neurocan, and phosphacan in ACM. Application of chondroitinase ABC to the TGFβ1-stimulated ACM reversed its inhibitory effects on the dendrite growth and the number of synapsin-1-positive puncta. On the other hand, we found that TGFβ1 treatment caused a facilitation of Smad3 phosphorylation and translocation to the nucleus induced by status epilepticus (SE) in wild-type (Smad3+/+) mice, and this treatment also caused a promotion of γ-aminobutyric acid-ergic synaptogenesis impaired by SE in Smad3+/+ as well as in Smad3−/− mice, but more dramatic promotion in Smad3+/+ mice. Thus, we provide evidence for the first time that TGFβ-Smad3 signaling pathways within neuron and astrocyte differentially regulate dendrite growth and synaptogenesis, and this pathway may be involved in the pathogenesis of some central nervous system diseases, such as epilepsy.
Literature
go back to reference Abe, K., Chu, P. J., Ishihara, A., & Saito, H. (1996). Transforming growth factor-beta 1 promotes re-elongation of injured axons of cultured rat hippocampal neurons. Brain Research, 723, 206–209.PubMedCrossRef Abe, K., Chu, P. J., Ishihara, A., & Saito, H. (1996). Transforming growth factor-beta 1 promotes re-elongation of injured axons of cultured rat hippocampal neurons. Brain Research, 723, 206–209.PubMedCrossRef
go back to reference Adlard, P. A., Bica, L., White, A. R., Nurjono, M., Filiz, G., Crouch, P. J., et al. (2011). Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS One, 6, e17669.PubMedCentralPubMedCrossRef Adlard, P. A., Bica, L., White, A. R., Nurjono, M., Filiz, G., Crouch, P. J., et al. (2011). Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS One, 6, e17669.PubMedCentralPubMedCrossRef
go back to reference Andersson, O., Reissmann, E., & Ibanez, C. F. (2006). Growth differentiation factor 11 signals through the transforming growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis. EMBO Reports, 7, 831–837.PubMedCentralPubMed Andersson, O., Reissmann, E., & Ibanez, C. F. (2006). Growth differentiation factor 11 signals through the transforming growth factor-beta receptor ALK5 to regionalize the anterior-posterior axis. EMBO Reports, 7, 831–837.PubMedCentralPubMed
go back to reference Arimura, N., & Kaibuchi, K. (2007). Neuronal polarity: From extracellular signals to intracellular mechanisms. Nature Reviews Neuroscience, 8, 194–205.PubMedCrossRef Arimura, N., & Kaibuchi, K. (2007). Neuronal polarity: From extracellular signals to intracellular mechanisms. Nature Reviews Neuroscience, 8, 194–205.PubMedCrossRef
go back to reference Attisano, L., Carcamo, J., Ventura, F., Weis, F. M., Massague, J., & Wrana, J. L. (1993). Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell, 75, 671–680.PubMedCrossRef Attisano, L., Carcamo, J., Ventura, F., Weis, F. M., Massague, J., & Wrana, J. L. (1993). Identification of human activin and TGF beta type I receptors that form heteromeric kinase complexes with type II receptors. Cell, 75, 671–680.PubMedCrossRef
go back to reference Bae, J. J., Xiang, Y. Y., Martinez-Canabal, A., Frankland, P. W., Yang, B. B., & Lu, W. Y. (2011). Increased transforming growth factor-beta1 modulates glutamate receptor expression in the hippocampus. International Journal of Physiology, Pathophysiology and Pharmacology, 3, 9–20.PubMedCentralPubMed Bae, J. J., Xiang, Y. Y., Martinez-Canabal, A., Frankland, P. W., Yang, B. B., & Lu, W. Y. (2011). Increased transforming growth factor-beta1 modulates glutamate receptor expression in the hippocampus. International Journal of Physiology, Pathophysiology and Pharmacology, 3, 9–20.PubMedCentralPubMed
go back to reference Baptista, C. A., Hatten, M. E., Blazeski, R., & Mason, C. A. (1994). Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron, 12, 243–260.PubMedCrossRef Baptista, C. A., Hatten, M. E., Blazeski, R., & Mason, C. A. (1994). Cell-cell interactions influence survival and differentiation of purified Purkinje cells in vitro. Neuron, 12, 243–260.PubMedCrossRef
go back to reference Barker, A. J., & Ullian, E. M. (2010). Astrocytes and synaptic plasticity. Neuroscientist, 16, 40–50.PubMedCrossRef Barker, A. J., & Ullian, E. M. (2010). Astrocytes and synaptic plasticity. Neuroscientist, 16, 40–50.PubMedCrossRef
go back to reference Basu, A., Krady, J. K., Enterline, J. R., & Levison, S. W. (2002). Transforming growth factor beta1 prevents IL-1beta-induced microglial activation, whereas TNFalpha- and IL-6-stimulated activation are not antagonized. Glia, 40, 109–120.PubMedCrossRef Basu, A., Krady, J. K., Enterline, J. R., & Levison, S. W. (2002). Transforming growth factor beta1 prevents IL-1beta-induced microglial activation, whereas TNFalpha- and IL-6-stimulated activation are not antagonized. Glia, 40, 109–120.PubMedCrossRef
go back to reference Battaglia, G., Cannella, M., Riozzi, B., Orobello, S., Maat-Schieman, M. L., Aronica, E., et al. (2011). Early defect of transforming growth factor beta1 formation in Huntington’s disease. Journal of Cellular and Molecular Medicine, 15, 555–571.PubMedCrossRef Battaglia, G., Cannella, M., Riozzi, B., Orobello, S., Maat-Schieman, M. L., Aronica, E., et al. (2011). Early defect of transforming growth factor beta1 formation in Huntington’s disease. Journal of Cellular and Molecular Medicine, 15, 555–571.PubMedCrossRef
go back to reference Boche, D., Cunningham, C., Docagne, F., Scott, H., & Perry, V. H. (2006). TGFbeta1 regulates the inflammatory response during chronic neurodegeneration. Neurobiology of Diseases, 22, 638–650.CrossRef Boche, D., Cunningham, C., Docagne, F., Scott, H., & Perry, V. H. (2006). TGFbeta1 regulates the inflammatory response during chronic neurodegeneration. Neurobiology of Diseases, 22, 638–650.CrossRef
go back to reference Boche, D., Cunningham, C., Gauldie, J., & Perry, V. H. (2003). Transforming growth factor-beta 1-mediated neuroprotection against excitotoxic injury in vivo. Journal of Cerebral Blood Flow and Metabolism, 23, 1174–1182.PubMedCrossRef Boche, D., Cunningham, C., Gauldie, J., & Perry, V. H. (2003). Transforming growth factor-beta 1-mediated neuroprotection against excitotoxic injury in vivo. Journal of Cerebral Blood Flow and Metabolism, 23, 1174–1182.PubMedCrossRef
go back to reference Casanova, J. R., Nishimura, M., Owens, J. W., & Swann, J. W. (2012). Impact of seizures on developing dendrites: Implications for intellectual developmental disabilities. Epilepsia, 53(Suppl 1), 116–124.PubMedCrossRef Casanova, J. R., Nishimura, M., Owens, J. W., & Swann, J. W. (2012). Impact of seizures on developing dendrites: Implications for intellectual developmental disabilities. Epilepsia, 53(Suppl 1), 116–124.PubMedCrossRef
go back to reference Chacon, P. J., & Rodriguez-Tebar, A. (2012). Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector. Alzheimer’s Research & Therapy, 4, 31.CrossRef Chacon, P. J., & Rodriguez-Tebar, A. (2012). Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector. Alzheimer’s Research & Therapy, 4, 31.CrossRef
go back to reference Derynck, R., & Zhang, Y. E. (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 425, 577–584.PubMedCrossRef Derynck, R., & Zhang, Y. E. (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 425, 577–584.PubMedCrossRef
go back to reference Derynck, R., Zhang, Y., & Feng, X. H. (1998). Smads: Transcriptional activators of TGF-beta responses. Cell, 95, 737–740.PubMedCrossRef Derynck, R., Zhang, Y., & Feng, X. H. (1998). Smads: Transcriptional activators of TGF-beta responses. Cell, 95, 737–740.PubMedCrossRef
go back to reference Diniz, L. P., Almeida, J. C., Tortelli, V., Vargas Lopes, C., Setti-Perdigao, P., Stipursky, J., et al. (2012). Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of d-serine levels in cerebral cortex neurons. Journal of Biological Chemistry, 287, 41432–41445.PubMedCentralPubMedCrossRef Diniz, L. P., Almeida, J. C., Tortelli, V., Vargas Lopes, C., Setti-Perdigao, P., Stipursky, J., et al. (2012). Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of d-serine levels in cerebral cortex neurons. Journal of Biological Chemistry, 287, 41432–41445.PubMedCentralPubMedCrossRef
go back to reference Dong, H., Martin, M. V., Chambers, S., & Csernansky, J. G. (2007). Spatial relationship between synapse loss and beta-amyloid deposition in Tg2576 mice. Journal of Comparative Neurology, 500, 311–321.PubMedCentralPubMedCrossRef Dong, H., Martin, M. V., Chambers, S., & Csernansky, J. G. (2007). Spatial relationship between synapse loss and beta-amyloid deposition in Tg2576 mice. Journal of Comparative Neurology, 500, 311–321.PubMedCentralPubMedCrossRef
go back to reference Ellis, J. E., Parker, L., Cho, J., & Arora, K. (2010). Activin signaling functions upstream of Gbb to regulate synaptic growth at the Drosophila neuromuscular junction. Development Biology, 342, 121–133.CrossRef Ellis, J. E., Parker, L., Cho, J., & Arora, K. (2010). Activin signaling functions upstream of Gbb to regulate synaptic growth at the Drosophila neuromuscular junction. Development Biology, 342, 121–133.CrossRef
go back to reference Evans, N. A., Facci, L., Owen, D. E., Soden, P. E., Burbidge, S. A., Prinjha, R. K., et al. (2008). Abeta(1-42) reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: A quantitative analysis. Journal of Neuroscience Methods, 175, 96–103.PubMedCrossRef Evans, N. A., Facci, L., Owen, D. E., Soden, P. E., Burbidge, S. A., Prinjha, R. K., et al. (2008). Abeta(1-42) reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: A quantitative analysis. Journal of Neuroscience Methods, 175, 96–103.PubMedCrossRef
go back to reference Fang, L., Wang, Y. N., Cui, X. L., Fang, S. Y., Ge, J. Y., Sun, Y., et al. (2012). The role and mechanism of action of activin A in neurite outgrowth of chicken embryonic dorsal root ganglia. Journal of Cell Science, 125, 1500–1507.PubMedCrossRef Fang, L., Wang, Y. N., Cui, X. L., Fang, S. Y., Ge, J. Y., Sun, Y., et al. (2012). The role and mechanism of action of activin A in neurite outgrowth of chicken embryonic dorsal root ganglia. Journal of Cell Science, 125, 1500–1507.PubMedCrossRef
go back to reference Galtrey, C. M., & Fawcett, J. W. (2007). The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Research Reviews, 54, 1–18.PubMedCrossRef Galtrey, C. M., & Fawcett, J. W. (2007). The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Research Reviews, 54, 1–18.PubMedCrossRef
go back to reference Goldberg, J. L. (2004). Intrinsic neuronal regulation of axon and dendrite growth. Current Opinion in Neurobiology, 14, 551–557.PubMedCrossRef Goldberg, J. L. (2004). Intrinsic neuronal regulation of axon and dendrite growth. Current Opinion in Neurobiology, 14, 551–557.PubMedCrossRef
go back to reference Gomes, F. C., Garcia-Abreu, J., Galou, M., Paulin, D., & Moura Neto, V. (1999). Neurons induce GFAP gene promoter of cultured astrocytes from transgenic mice. Glia, 26, 97–108.PubMedCrossRef Gomes, F. C., Garcia-Abreu, J., Galou, M., Paulin, D., & Moura Neto, V. (1999). Neurons induce GFAP gene promoter of cultured astrocytes from transgenic mice. Glia, 26, 97–108.PubMedCrossRef
go back to reference Gonzalez-Aparicio, R., Flores, J. A., & Fernandez-Espejo, E. (2010). Antiparkinsonian trophic action of glial cell line-derived neurotrophic factor and transforming growth factor beta1 is enhanced after co-infusion in rats. Experimental Neurology, 226, 136–147.PubMedCrossRef Gonzalez-Aparicio, R., Flores, J. A., & Fernandez-Espejo, E. (2010). Antiparkinsonian trophic action of glial cell line-derived neurotrophic factor and transforming growth factor beta1 is enhanced after co-infusion in rats. Experimental Neurology, 226, 136–147.PubMedCrossRef
go back to reference Graciarena, M., Depino, A. M., & Pitossi, F. J. (2010). Prenatal inflammation impairs adult neurogenesis and memory related behavior through persistent hippocampal TGFbeta1 downregulation. Brain, Behavior, and Immunity, 24, 1301–1309.PubMedCrossRef Graciarena, M., Depino, A. M., & Pitossi, F. J. (2010). Prenatal inflammation impairs adult neurogenesis and memory related behavior through persistent hippocampal TGFbeta1 downregulation. Brain, Behavior, and Immunity, 24, 1301–1309.PubMedCrossRef
go back to reference Guan, J., Miller, O. T., Waugh, K. M., McCarthy, D. C., Gluckman, P. D., & Gunn, A. J. (2004). TGF beta-1 and neurological function after hypoxia-ischemia in adult rats. NeuroReport, 15, 961–964.PubMedCrossRef Guan, J., Miller, O. T., Waugh, K. M., McCarthy, D. C., Gluckman, P. D., & Gunn, A. J. (2004). TGF beta-1 and neurological function after hypoxia-ischemia in adult rats. NeuroReport, 15, 961–964.PubMedCrossRef
go back to reference Haraguchi, S., Sasahara, K., Shikimi, H., Honda, S., Harada, N., & Tsutsui, K. (2012). Estradiol promotes purkinje dendritic growth, spinogenesis, and synaptogenesis during neonatal life by inducing the expression of BDNF. Cerebellum, 11, 416–417.PubMedCrossRef Haraguchi, S., Sasahara, K., Shikimi, H., Honda, S., Harada, N., & Tsutsui, K. (2012). Estradiol promotes purkinje dendritic growth, spinogenesis, and synaptogenesis during neonatal life by inducing the expression of BDNF. Cerebellum, 11, 416–417.PubMedCrossRef
go back to reference Heldin, C. H., Miyazono, K., & ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 390, 465–471.PubMedCrossRef Heldin, C. H., Miyazono, K., & ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature, 390, 465–471.PubMedCrossRef
go back to reference Hocking, J. C., Hehr, C. L., Chang, R. Y., Johnston, J., & McFarlane, S. (2008). TGFbeta ligands promote the initiation of retinal ganglion cell dendrites in vitro and in vivo. Molecular and Cellular Neuroscience, 37, 247–260.PubMedCrossRef Hocking, J. C., Hehr, C. L., Chang, R. Y., Johnston, J., & McFarlane, S. (2008). TGFbeta ligands promote the initiation of retinal ganglion cell dendrites in vitro and in vivo. Molecular and Cellular Neuroscience, 37, 247–260.PubMedCrossRef
go back to reference Huang, J., Furuya, A., Hayashi, K., & Furuichi, T. (2011). Interaction between very-KIND Ras guanine exchange factor and microtubule-associated protein 2, and its role in dendrite growth–structure and function of the second kinase noncatalytic C-lobe domain. FEBS Journal, 278, 1651–1661.PubMedCrossRef Huang, J., Furuya, A., Hayashi, K., & Furuichi, T. (2011). Interaction between very-KIND Ras guanine exchange factor and microtubule-associated protein 2, and its role in dendrite growth–structure and function of the second kinase noncatalytic C-lobe domain. FEBS Journal, 278, 1651–1661.PubMedCrossRef
go back to reference Ishihara, A., Saito, H., & Abe, K. (1994). Transforming growth factor-beta 1 and -beta 2 promote neurite sprouting and elongation of cultured rat hippocampal neurons. Brain Research, 639, 21–25.PubMedCrossRef Ishihara, A., Saito, H., & Abe, K. (1994). Transforming growth factor-beta 1 and -beta 2 promote neurite sprouting and elongation of cultured rat hippocampal neurons. Brain Research, 639, 21–25.PubMedCrossRef
go back to reference Katsuno, M., Adachi, H., Banno, H., Suzuki, K., Tanaka, F., & Sobue, G. (2011). Transforming growth factor-beta signaling in motor neuron diseases. Current Molecular Medicine, 11, 48–56.PubMedCrossRef Katsuno, M., Adachi, H., Banno, H., Suzuki, K., Tanaka, F., & Sobue, G. (2011). Transforming growth factor-beta signaling in motor neuron diseases. Current Molecular Medicine, 11, 48–56.PubMedCrossRef
go back to reference Katsuno, M., Adachi, H., Minamiyama, M., Waza, M., Doi, H., Kondo, N., et al. (2010). Disrupted transforming growth factor-beta signaling in spinal and bulbar muscular atrophy. Journal of Neuroscience, 30, 5702–5712.PubMedCrossRef Katsuno, M., Adachi, H., Minamiyama, M., Waza, M., Doi, H., Kondo, N., et al. (2010). Disrupted transforming growth factor-beta signaling in spinal and bulbar muscular atrophy. Journal of Neuroscience, 30, 5702–5712.PubMedCrossRef
go back to reference Kilpatrick, D. L., Wang, W., Gronostajski, R., & Litwack, E. D. (2012). Nuclear factor I and cerebellar granule neuron development: An intrinsic-extrinsic interplay. Cerebellum, 11, 41–49.PubMedCentralPubMedCrossRef Kilpatrick, D. L., Wang, W., Gronostajski, R., & Litwack, E. D. (2012). Nuclear factor I and cerebellar granule neuron development: An intrinsic-extrinsic interplay. Cerebellum, 11, 41–49.PubMedCentralPubMedCrossRef
go back to reference Kimura-Kuroda, J., Teng, X., Komuta, Y., Yoshioka, N., Sango, K., Kawamura, K., et al. (2010). An in vitro model of the inhibition of axon growth in the lesion scar formed after central nervous system injury. Molecular and Cellular Neuroscience, 43, 177–187.PubMedCrossRef Kimura-Kuroda, J., Teng, X., Komuta, Y., Yoshioka, N., Sango, K., Kawamura, K., et al. (2010). An in vitro model of the inhibition of axon growth in the lesion scar formed after central nervous system injury. Molecular and Cellular Neuroscience, 43, 177–187.PubMedCrossRef
go back to reference Knoferle, J., Ramljak, S., Koch, J. C., Tonges, L., Asif, A. R., Michel, U., et al. (2010). TGF-beta 1 enhances neurite outgrowth via regulation of proteasome function and EFABP. Neurobiology of Diseases, 38, 395–404.CrossRef Knoferle, J., Ramljak, S., Koch, J. C., Tonges, L., Asif, A. R., Michel, U., et al. (2010). TGF-beta 1 enhances neurite outgrowth via regulation of proteasome function and EFABP. Neurobiology of Diseases, 38, 395–404.CrossRef
go back to reference Kumar, A., Novoselov, V., Celeste, A. J., Wolfman, N. M., ten Dijke, P., & Kuehn, M. R. (2001). Nodal signaling uses activin and transforming growth factor-beta receptor-regulated Smads. Journal of Biological Chemistry, 276, 656–661.PubMedCrossRef Kumar, A., Novoselov, V., Celeste, A. J., Wolfman, N. M., ten Dijke, P., & Kuehn, M. R. (2001). Nodal signaling uses activin and transforming growth factor-beta receptor-regulated Smads. Journal of Biological Chemistry, 276, 656–661.PubMedCrossRef
go back to reference Labbe, E., Silvestri, C., Hoodless, P. A., Wrana, J. L., & Attisano, L. (1998). Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Molecular Cell, 2, 109–120.PubMedCrossRef Labbe, E., Silvestri, C., Hoodless, P. A., Wrana, J. L., & Attisano, L. (1998). Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Molecular Cell, 2, 109–120.PubMedCrossRef
go back to reference Levin, S. G., & Godukhin, O. V. (2012). Anti-inflammatory cytokines, TGF-beta1 and IL-10, exert anti-hypoxic action and abolish posthypoxic hyperexcitability in hippocampal slice neurons: Comparative aspects. Experimental Neurology, 232, 329–332.CrossRef Levin, S. G., & Godukhin, O. V. (2012). Anti-inflammatory cytokines, TGF-beta1 and IL-10, exert anti-hypoxic action and abolish posthypoxic hyperexcitability in hippocampal slice neurons: Comparative aspects. Experimental Neurology, 232, 329–332.CrossRef
go back to reference Li, L. Y., Li, J. L., Zhang, H. M., Yang, W. M., Wang, K., Fang, Y., et al. (2013). TGFbeta1 treatment reduces hippocampal damage, spontaneous recurrent seizures, and learning memory deficits in pilocarpine-treated rats. Journal of Molecular Neuroscience, 50, 109–123.PubMedCrossRef Li, L. Y., Li, J. L., Zhang, H. M., Yang, W. M., Wang, K., Fang, Y., et al. (2013). TGFbeta1 treatment reduces hippocampal damage, spontaneous recurrent seizures, and learning memory deficits in pilocarpine-treated rats. Journal of Molecular Neuroscience, 50, 109–123.PubMedCrossRef
go back to reference Li, H., Zhong, X., Chau, K. F., Williams, E. C., & Chang, Q. (2011). Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nature Neuroscience, 14, 1001–1008.PubMedCentralPubMedCrossRef Li, H., Zhong, X., Chau, K. F., Williams, E. C., & Chang, Q. (2011). Loss of activity-induced phosphorylation of MeCP2 enhances synaptogenesis, LTP and spatial memory. Nature Neuroscience, 14, 1001–1008.PubMedCentralPubMedCrossRef
go back to reference Livneh, Y., Feinstein, N., Klein, M., & Mizrahi, A. (2009). Sensory input enhances synaptogenesis of adult-born neurons. Journal of Neuroscience, 29, 86–97.PubMedCrossRef Livneh, Y., Feinstein, N., Klein, M., & Mizrahi, A. (2009). Sensory input enhances synaptogenesis of adult-born neurons. Journal of Neuroscience, 29, 86–97.PubMedCrossRef
go back to reference Makwana, M., Jones, L. L., Cuthill, D., Heuer, H., Bohatschek, M., Hristova, M., et al. (2007). Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. Journal of Neuroscience, 27, 11201–11213.PubMedCrossRef Makwana, M., Jones, L. L., Cuthill, D., Heuer, H., Bohatschek, M., Hristova, M., et al. (2007). Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. Journal of Neuroscience, 27, 11201–11213.PubMedCrossRef
go back to reference Martin, J. L., Brown, A. L., & Balkowiec, A. (2012). Glia determine the course of brain-derived neurotrophic factor-mediated dendritogenesis and provide a soluble inhibitory cue to dendritic growth in the brainstem. Neuroscience, 207, 333–346.PubMedCentralPubMedCrossRef Martin, J. L., Brown, A. L., & Balkowiec, A. (2012). Glia determine the course of brain-derived neurotrophic factor-mediated dendritogenesis and provide a soluble inhibitory cue to dendritic growth in the brainstem. Neuroscience, 207, 333–346.PubMedCentralPubMedCrossRef
go back to reference Massague, J., Seoane, J., & Wotton, D. (2005). Smad transcription factors. Genes & Development, 19, 2783–2810.CrossRef Massague, J., Seoane, J., & Wotton, D. (2005). Smad transcription factors. Genes & Development, 19, 2783–2810.CrossRef
go back to reference Mavroudis, I. A., Fotiou, D. F., Manani, M. G., Njaou, S. N., Frangou, D., Costa, V. G., et al. (2011). Dendritic pathology and spinal loss in the visual cortex in Alzheimer’s disease: A Golgi study in pathology. International Journal of Neuroscience, 121, 347–354.PubMedCrossRef Mavroudis, I. A., Fotiou, D. F., Manani, M. G., Njaou, S. N., Frangou, D., Costa, V. G., et al. (2011). Dendritic pathology and spinal loss in the visual cortex in Alzheimer’s disease: A Golgi study in pathology. International Journal of Neuroscience, 121, 347–354.PubMedCrossRef
go back to reference McRae, P. A., & Porter, B. E. (2012). The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochemistry International, 61, 963–972.PubMedCentralPubMedCrossRef McRae, P. A., & Porter, B. E. (2012). The perineuronal net component of the extracellular matrix in plasticity and epilepsy. Neurochemistry International, 61, 963–972.PubMedCentralPubMedCrossRef
go back to reference Misumi, S., Kim, T. S., Jung, C. G., Masuda, T., Urakawa, S., Isobe, Y., et al. (2008). Enhanced neurogenesis from neural progenitor cells with G1/S-phase cell cycle arrest is mediated by transforming growth factor beta1. European Journal of Neuroscience, 28, 1049–1059.PubMedCrossRef Misumi, S., Kim, T. S., Jung, C. G., Masuda, T., Urakawa, S., Isobe, Y., et al. (2008). Enhanced neurogenesis from neural progenitor cells with G1/S-phase cell cycle arrest is mediated by transforming growth factor beta1. European Journal of Neuroscience, 28, 1049–1059.PubMedCrossRef
go back to reference Navarro Mora, G., Bramanti, P., Osculati, F., Chakir, A., Nicolato, E., Marzola, P., et al. (2009). Does pilocarpine-induced epilepsy in adult rats require status epilepticus? PLoS One, 4, e5759.PubMedCentralPubMedCrossRef Navarro Mora, G., Bramanti, P., Osculati, F., Chakir, A., Nicolato, E., Marzola, P., et al. (2009). Does pilocarpine-induced epilepsy in adult rats require status epilepticus? PLoS One, 4, e5759.PubMedCentralPubMedCrossRef
go back to reference Nishimura, M., Gu, X., & Swann, J. W. (2011). Seizures in early life suppress hippocampal dendrite growth while impairing spatial learning. Neurobiology of Diseases, 44, 205–214.CrossRef Nishimura, M., Gu, X., & Swann, J. W. (2011). Seizures in early life suppress hippocampal dendrite growth while impairing spatial learning. Neurobiology of Diseases, 44, 205–214.CrossRef
go back to reference Nishiyama, H., Fukaya, M., Watanabe, M., & Linden, D. J. (2007). Axonal motility and its modulation by activity are branch-type specific in the intact adult cerebellum. Neuron, 56, 472–487.PubMedCentralPubMedCrossRef Nishiyama, H., Fukaya, M., Watanabe, M., & Linden, D. J. (2007). Axonal motility and its modulation by activity are branch-type specific in the intact adult cerebellum. Neuron, 56, 472–487.PubMedCentralPubMedCrossRef
go back to reference Parker, L., Ellis, J. E., Nguyen, M. Q., & Arora, K. (2006). The divergent TGF-beta ligand Dawdle utilizes an activin pathway to influence axon guidance in Drosophila. Development, 133, 4981–4991.PubMedCrossRef Parker, L., Ellis, J. E., Nguyen, M. Q., & Arora, K. (2006). The divergent TGF-beta ligand Dawdle utilizes an activin pathway to influence axon guidance in Drosophila. Development, 133, 4981–4991.PubMedCrossRef
go back to reference Pfrieger, F. W. (2010). Role of glial cells in the formation and maintenance of synapses. Brain Research Reviews, 63, 39–46.PubMedCrossRef Pfrieger, F. W. (2010). Role of glial cells in the formation and maintenance of synapses. Brain Research Reviews, 63, 39–46.PubMedCrossRef
go back to reference Sanchez-Capelo, A. (2005). Dual role for TGF-beta1 in apoptosis. Cytokine & Growth Factor Reviews, 16, 15–34.CrossRef Sanchez-Capelo, A. (2005). Dual role for TGF-beta1 in apoptosis. Cytokine & Growth Factor Reviews, 16, 15–34.CrossRef
go back to reference Scheff, S. W., Price, D. A., Schmitt, F. A., Scheff, M. A., & Mufson, E. J. (2011). Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease, 24, 547–557.PubMedCentralPubMed Scheff, S. W., Price, D. A., Schmitt, F. A., Scheff, M. A., & Mufson, E. J. (2011). Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer’s Disease, 24, 547–557.PubMedCentralPubMed
go back to reference Shimizu, A., Kato, M., Nakao, A., Imamura, T., ten Dijke, P., Heldin, C. H., et al. (1998). Identification of receptors and Smad proteins involved in activin signalling in a human epidermal keratinocyte cell line. Genes to Cells, 3, 125–134.PubMedCrossRef Shimizu, A., Kato, M., Nakao, A., Imamura, T., ten Dijke, P., Heldin, C. H., et al. (1998). Identification of receptors and Smad proteins involved in activin signalling in a human epidermal keratinocyte cell line. Genes to Cells, 3, 125–134.PubMedCrossRef
go back to reference Shoji-Kasai, Y., Ageta, H., Hasegawa, Y., Tsuchida, K., Sugino, H., & Inokuchi, K. (2007). Activin increases the number of synaptic contacts and the length of dendritic spine necks by modulating spinal actin dynamics. Journal of Cell Science, 120, 3830–3837.PubMedCrossRef Shoji-Kasai, Y., Ageta, H., Hasegawa, Y., Tsuchida, K., Sugino, H., & Inokuchi, K. (2007). Activin increases the number of synaptic contacts and the length of dendritic spine necks by modulating spinal actin dynamics. Journal of Cell Science, 120, 3830–3837.PubMedCrossRef
go back to reference Sousa Vde, O., Romao, L., Neto, V. M., & Gomes, F. C. (2004). Glial fibrillary acidic protein gene promoter is differently modulated by transforming growth factor-beta 1 in astrocytes from distinct brain regions. European Journal of Neuroscience, 19, 1721–1730.PubMedCrossRef Sousa Vde, O., Romao, L., Neto, V. M., & Gomes, F. C. (2004). Glial fibrillary acidic protein gene promoter is differently modulated by transforming growth factor-beta 1 in astrocytes from distinct brain regions. European Journal of Neuroscience, 19, 1721–1730.PubMedCrossRef
go back to reference Spires, T. L., Meyer-Luehmann, M., Stern, E. A., McLean, P. J., Skoch, J., Nguyen, P. T., et al. (2005). Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. Journal of Neuroscience, 25, 7278–7287.PubMedCentralPubMedCrossRef Spires, T. L., Meyer-Luehmann, M., Stern, E. A., McLean, P. J., Skoch, J., Nguyen, P. T., et al. (2005). Dendritic spine abnormalities in amyloid precursor protein transgenic mice demonstrated by gene transfer and intravital multiphoton microscopy. Journal of Neuroscience, 25, 7278–7287.PubMedCentralPubMedCrossRef
go back to reference Stipursky, J., Francis, D., & Gomes, F. C. (2012). Activation of MAPK/PI3K/SMAD pathways by TGF-beta(1) controls differentiation of radial glia into astrocytes in vitro. Developmental Neuroscience, 34, 68–81.PubMedCrossRef Stipursky, J., Francis, D., & Gomes, F. C. (2012). Activation of MAPK/PI3K/SMAD pathways by TGF-beta(1) controls differentiation of radial glia into astrocytes in vitro. Developmental Neuroscience, 34, 68–81.PubMedCrossRef
go back to reference Susarla, B. T., Laing, E. D., Yu, P., Katagiri, Y., Geller, H. M., & Symes, A. J. (2011). Smad proteins differentially regulate transforming growth factor-beta-mediated induction of chondroitin sulfate proteoglycans. Journal of Neurochemistry, 119, 868–878.PubMedCentralPubMedCrossRef Susarla, B. T., Laing, E. D., Yu, P., Katagiri, Y., Geller, H. M., & Symes, A. J. (2011). Smad proteins differentially regulate transforming growth factor-beta-mediated induction of chondroitin sulfate proteoglycans. Journal of Neurochemistry, 119, 868–878.PubMedCentralPubMedCrossRef
go back to reference Takahashi, R. H., Capetillo-Zarate, E., Lin, M. T., Milner, T. A., & Gouras, G. K. (2013). Accumulation of intraneuronal beta-amyloid 42 peptides is associated with early changes in microtubule-associated protein 2 in neurites and synapses. PLoS One, 8, e51965.PubMedCentralPubMedCrossRef Takahashi, R. H., Capetillo-Zarate, E., Lin, M. T., Milner, T. A., & Gouras, G. K. (2013). Accumulation of intraneuronal beta-amyloid 42 peptides is associated with early changes in microtubule-associated protein 2 in neurites and synapses. PLoS One, 8, e51965.PubMedCentralPubMedCrossRef
go back to reference Takeuchi, M., Kamei, N., Shinomiya, R., Sunagawa, T., Suzuki, O., Kamoda, H., et al. (2012). Human platelet-rich plasma promotes axon growth in brain-spinal cord coculture. NeuroReport, 23, 712–716.PubMedCrossRef Takeuchi, M., Kamei, N., Shinomiya, R., Sunagawa, T., Suzuki, O., Kamoda, H., et al. (2012). Human platelet-rich plasma promotes axon growth in brain-spinal cord coculture. NeuroReport, 23, 712–716.PubMedCrossRef
go back to reference Taniguchi, T., Tanaka, S., Ishii, A., Watanabe, M., Fujitani, N., Sugeo, A., et al. (2013). A brain-specific Grb2-associated regulator of extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) (GAREM) subtype, GAREM2, contributes to neurite outgrowth of neuroblastoma cells by regulating Erk signaling. Journal of Biological Chemistry, 288, 29934–29942.PubMedCrossRef Taniguchi, T., Tanaka, S., Ishii, A., Watanabe, M., Fujitani, N., Sugeo, A., et al. (2013). A brain-specific Grb2-associated regulator of extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) (GAREM) subtype, GAREM2, contributes to neurite outgrowth of neuroblastoma cells by regulating Erk signaling. Journal of Biological Chemistry, 288, 29934–29942.PubMedCrossRef
go back to reference Thind, K. K., Yamawaki, R., Phanwar, I., Zhang, G., Wen, X., & Buckmaster, P. S. (2010). Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy. Journal of Comparative Neurology, 518, 647–667.PubMedCentralPubMedCrossRef Thind, K. K., Yamawaki, R., Phanwar, I., Zhang, G., Wen, X., & Buckmaster, P. S. (2010). Initial loss but later excess of GABAergic synapses with dentate granule cells in a rat model of temporal lobe epilepsy. Journal of Comparative Neurology, 518, 647–667.PubMedCentralPubMedCrossRef
go back to reference Tohda, C., Nakanishi, R., & Kadowaki, M. (2006). Learning deficits and agenesis of synapses and myelinated axons in phosphoinositide-3 kinase-deficient mice. Neurosignals, 15, 293–306.PubMedCrossRef Tohda, C., Nakanishi, R., & Kadowaki, M. (2006). Learning deficits and agenesis of synapses and myelinated axons in phosphoinositide-3 kinase-deficient mice. Neurosignals, 15, 293–306.PubMedCrossRef
go back to reference Tsai, J., Grutzendler, J., Duff, K., & Gan, W. B. (2004). Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neuroscience, 7, 1181–1183.PubMedCrossRef Tsai, J., Grutzendler, J., Duff, K., & Gan, W. B. (2004). Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nature Neuroscience, 7, 1181–1183.PubMedCrossRef
go back to reference Villapol, S., Wang, Y., Adams, M., & Symes, A. J. (2013). Smad3 deficiency increases cortical and hippocampal neuronal loss following traumatic brain injury. Experimental Neurology, 250C, 353–365.CrossRef Villapol, S., Wang, Y., Adams, M., & Symes, A. J. (2013). Smad3 deficiency increases cortical and hippocampal neuronal loss following traumatic brain injury. Experimental Neurology, 250C, 353–365.CrossRef
go back to reference Walshe, T. E., Leach, L. L., & D’Amore, P. A. (2011). TGF-beta signaling is required for maintenance of retinal ganglion cell differentiation and survival. Neuroscience, 189, 123–131.PubMedCentralPubMedCrossRef Walshe, T. E., Leach, L. L., & D’Amore, P. A. (2011). TGF-beta signaling is required for maintenance of retinal ganglion cell differentiation and survival. Neuroscience, 189, 123–131.PubMedCentralPubMedCrossRef
go back to reference Wang, Y., Moges, H., Bharucha, Y., & Symes, A. (2007). Smad3 null mice display more rapid wound closure and reduced scar formation after a stab wound to the cerebral cortex. Experimental Neurology, 203, 168–184.PubMedCrossRef Wang, Y., Moges, H., Bharucha, Y., & Symes, A. (2007). Smad3 null mice display more rapid wound closure and reduced scar formation after a stab wound to the cerebral cortex. Experimental Neurology, 203, 168–184.PubMedCrossRef
go back to reference Witte, H., & Bradke, F. (2008). The role of the cytoskeleton during neuronal polarization. Current Opinion in Neurobiology, 18, 479–487.PubMedCrossRef Witte, H., & Bradke, F. (2008). The role of the cytoskeleton during neuronal polarization. Current Opinion in Neurobiology, 18, 479–487.PubMedCrossRef
go back to reference Wrana, J. L., Attisano, L., Carcamo, J., Zentella, A., Doody, J., Laiho, M., et al. (1992). TGF beta signals through a heteromeric protein kinase receptor complex. Cell, 71, 1003–1014.PubMedCrossRef Wrana, J. L., Attisano, L., Carcamo, J., Zentella, A., Doody, J., Laiho, M., et al. (1992). TGF beta signals through a heteromeric protein kinase receptor complex. Cell, 71, 1003–1014.PubMedCrossRef
go back to reference Xiao, Z., Lin, L., Liu, Z., Ji, F., Shao, W., Wang, M., et al. (2010). Potential therapeutic effects of curcumin: Relationship to microtubule-associated proteins 2 in Abeta1-42 insult. Brain Research, 1361, 115–123.PubMedCrossRef Xiao, Z., Lin, L., Liu, Z., Ji, F., Shao, W., Wang, M., et al. (2010). Potential therapeutic effects of curcumin: Relationship to microtubule-associated proteins 2 in Abeta1-42 insult. Brain Research, 1361, 115–123.PubMedCrossRef
go back to reference Yoshioka, N., Kimura-Kuroda, J., Saito, T., Kawamura, K., Hisanaga, S., & Kawano, H. (2011). Small molecule inhibitor of type I transforming growth factor-beta receptor kinase ameliorates the inhibitory milieu in injured brain and promotes regeneration of nigrostriatal dopaminergic axons. Journal of Neuroscience Research, 89, 381–393.PubMedCrossRef Yoshioka, N., Kimura-Kuroda, J., Saito, T., Kawamura, K., Hisanaga, S., & Kawano, H. (2011). Small molecule inhibitor of type I transforming growth factor-beta receptor kinase ameliorates the inhibitory milieu in injured brain and promotes regeneration of nigrostriatal dopaminergic axons. Journal of Neuroscience Research, 89, 381–393.PubMedCrossRef
go back to reference Zhu, Y., Culmsee, C., Klumpp, S., & Krieglstein, J. (2004). Neuroprotection by transforming growth factor-beta1 involves activation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways. Neuroscience, 123, 897–906.PubMedCrossRef Zhu, Y., Culmsee, C., Klumpp, S., & Krieglstein, J. (2004). Neuroprotection by transforming growth factor-beta1 involves activation of nuclear factor-kappaB through phosphatidylinositol-3-OH kinase/Akt and mitogen-activated protein kinase-extracellular-signal regulated kinase1,2 signaling pathways. Neuroscience, 123, 897–906.PubMedCrossRef
Metadata
Title
Neuronal and Astroglial TGFβ-Smad3 Signaling Pathways Differentially Regulate Dendrite Growth and Synaptogenesis
Authors
Chuan-Yong Yu
Wei Gui
Hui-Yan He
Xiao-Shan Wang
Jian Zuo
Lin Huang
Nong Zhou
Kai Wang
Yu Wang
Publication date
01-06-2014
Publisher
Springer US
Published in
NeuroMolecular Medicine / Issue 2/2014
Print ISSN: 1535-1084
Electronic ISSN: 1559-1174
DOI
https://doi.org/10.1007/s12017-014-8293-y

Other articles of this Issue 2/2014

NeuroMolecular Medicine 2/2014 Go to the issue