Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Review

Biomimetic approaches and materials in restorative and regenerative dentistry: review article

Authors: Lamia Singer, Ahmed Fouda, Christoph Bourauel

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Biomimetics is a branch of science that explores the technical beauty of nature. The concept of biomimetics has been brilliantly applied in famous applications such as the design of the Eiffel Tower that has been inspired from the trabecular structure of bone. In dentistry, the purpose of using biomimetic concepts and protocols is to conserve tooth structure and vitality, increase the longevity of restorative dental treatments, and eliminate future retreatment cycles. Biomimetic dental materials are inherently biocompatible with excellent physico-chemical properties. They have been successfully applied in different dental fields with the advantages of enhanced strength, sealing, regenerative and antibacterial abilities. Moreover, many biomimetic materials were proven to overcome significant limitations of earlier available generation counterpart. Therefore, this review aims to spot the light on some recent developments in the emerging field of biomimetics especially in restorative and regenerative dentistry. Different approaches of restoration, remineralisation and regeneration of teeth are also discussed in this review. In addition, various biomimetic dental restorative materials and tissue engineering materials are discussed.
Literature
1.
go back to reference Eldafrawy M, Nguyen JF, Mainjot AK, Sadoun MJ. A functionally graded PICN material for biomimetic CAD-CAM blocks. J Dent Res. 2018;97(12):1324–30.PubMedCrossRef Eldafrawy M, Nguyen JF, Mainjot AK, Sadoun MJ. A functionally graded PICN material for biomimetic CAD-CAM blocks. J Dent Res. 2018;97(12):1324–30.PubMedCrossRef
2.
3.
go back to reference Hwang J, Jeong Y, Park JM, Lee KH, Hong JW, Choi J. Biomimetics: forecasting the future of science, engineering, and medicine. Int J Nanomedicine. 2015;10:5701–13.PubMedPubMedCentral Hwang J, Jeong Y, Park JM, Lee KH, Hong JW, Choi J. Biomimetics: forecasting the future of science, engineering, and medicine. Int J Nanomedicine. 2015;10:5701–13.PubMedPubMedCentral
4.
go back to reference Fayemi PE, Wanieck K, Zollfrank C, Maranzana N, Aoussat A. Biomimetics: process, tools and practice. Bioinspir Biomim. 2017;12(1): 011002.PubMedCrossRef Fayemi PE, Wanieck K, Zollfrank C, Maranzana N, Aoussat A. Biomimetics: process, tools and practice. Bioinspir Biomim. 2017;12(1): 011002.PubMedCrossRef
5.
go back to reference Cramer MD. Biomimicry: innovation inspired by nature—Benyus. JM Libr J. 1997;122(11):92–92. Cramer MD. Biomimicry: innovation inspired by nature—Benyus. JM Libr J. 1997;122(11):92–92.
6.
go back to reference Bazos P, Magne P. Bio-emulation: biomimetically emulating nature utilizing a histo-anatomic approach; structural analysis. Eur J Esthet Dent. 2011;6(1):8–19.PubMed Bazos P, Magne P. Bio-emulation: biomimetically emulating nature utilizing a histo-anatomic approach; structural analysis. Eur J Esthet Dent. 2011;6(1):8–19.PubMed
7.
go back to reference Slavkin HC. Biomimetics: replacing body parts is no longer science fiction. J Am Dent Assoc. 1996;127(8):1254–7.PubMedCrossRef Slavkin HC. Biomimetics: replacing body parts is no longer science fiction. J Am Dent Assoc. 1996;127(8):1254–7.PubMedCrossRef
8.
go back to reference Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics (Basel). 2020;5(3):34.PubMedCrossRef Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics (Basel). 2020;5(3):34.PubMedCrossRef
9.
go back to reference Burke FJ. From extension for prevention to prevention of extension: (minimal intervention dentistry). Dent Update. 2003;30(9):492–8.PubMedCrossRef Burke FJ. From extension for prevention to prevention of extension: (minimal intervention dentistry). Dent Update. 2003;30(9):492–8.PubMedCrossRef
10.
go back to reference Malhotra S, Hegde M. Analysis of marginal seal of ProRoot MTA, MTA Angelus biodentine, and glass ionomer cement as root-end filling materials: An in vitro study. J Oral Res Rev. 2015;7(2):44–9.CrossRef Malhotra S, Hegde M. Analysis of marginal seal of ProRoot MTA, MTA Angelus biodentine, and glass ionomer cement as root-end filling materials: An in vitro study. J Oral Res Rev. 2015;7(2):44–9.CrossRef
11.
go back to reference Furtos G, Cosma V, Prejmerean C, Moldovan M, Brie M, Colceriu A, Vezsenyi L, Silaghi-Dumitrescu L, Sirbu C. Fluoride release from dental resin composites. Mater Sci Eng C-Biomim Supramol Syst. 2005;25(2):231–6.CrossRef Furtos G, Cosma V, Prejmerean C, Moldovan M, Brie M, Colceriu A, Vezsenyi L, Silaghi-Dumitrescu L, Sirbu C. Fluoride release from dental resin composites. Mater Sci Eng C-Biomim Supramol Syst. 2005;25(2):231–6.CrossRef
12.
go back to reference Nicholson JW, Croll TP. Glass-ionomer cements in restorative dentistry. Quintessence Int. 1997;28(11):705–14.PubMed Nicholson JW, Croll TP. Glass-ionomer cements in restorative dentistry. Quintessence Int. 1997;28(11):705–14.PubMed
13.
go back to reference Alatawi RAS, Elsayed NH, Mohamed WS. Influence of hydroxyapatite nanoparticles on the properties of glass ionomer cement. J Mater Res Technol. 2019;8(1):344–9.CrossRef Alatawi RAS, Elsayed NH, Mohamed WS. Influence of hydroxyapatite nanoparticles on the properties of glass ionomer cement. J Mater Res Technol. 2019;8(1):344–9.CrossRef
14.
go back to reference Garoushi S, Vallittu P, Lassila L. Hollow glass fibers in reinforcing glass ionomer cements. Dent Mater. 2017;33(2):e86–93.PubMedCrossRef Garoushi S, Vallittu P, Lassila L. Hollow glass fibers in reinforcing glass ionomer cements. Dent Mater. 2017;33(2):e86–93.PubMedCrossRef
15.
go back to reference Singer L, Bierbaum G, Kehl K, Bourauel C. Evaluation of the antimicrobial activity and compressive strength of a dental cement modified using plant extract mixture. J Mater Sci Mater Med. 2020;31(12):116.PubMedPubMedCentralCrossRef Singer L, Bierbaum G, Kehl K, Bourauel C. Evaluation of the antimicrobial activity and compressive strength of a dental cement modified using plant extract mixture. J Mater Sci Mater Med. 2020;31(12):116.PubMedPubMedCentralCrossRef
16.
go back to reference Katiyar NK, Goel G, Hawi S, Goel S. Nature-inspired materials: emerging trends and prospects. Npg Asia Materials. 2021;13(1):1–16.CrossRef Katiyar NK, Goel G, Hawi S, Goel S. Nature-inspired materials: emerging trends and prospects. Npg Asia Materials. 2021;13(1):1–16.CrossRef
17.
go back to reference Ravi RK, Alla RK, Shammas M, Devarhubli A. Dental composites-A versatile restorative material: an overview. Indian J Dent Sci. 2013;5(5):111–5. Ravi RK, Alla RK, Shammas M, Devarhubli A. Dental composites-A versatile restorative material: an overview. Indian J Dent Sci. 2013;5(5):111–5.
18.
go back to reference Yeli M, Kidiyoor K, Nain B, Kumar P. Recent advances in composite resins-a review. J Oral Res Rev. 2010;2(3):134–6. Yeli M, Kidiyoor K, Nain B, Kumar P. Recent advances in composite resins-a review. J Oral Res Rev. 2010;2(3):134–6.
20.
go back to reference Diesendruck CE, Sottos NR, Moore JS, White SR. Biomimetic self-healing. Angew Chem Int Ed Engl. 2015;54(36):10428–47.PubMedCrossRef Diesendruck CE, Sottos NR, Moore JS, White SR. Biomimetic self-healing. Angew Chem Int Ed Engl. 2015;54(36):10428–47.PubMedCrossRef
21.
go back to reference Trask RS, Williams HR, Bond IP. Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomim. 2007;2(1):P1-9.PubMedCrossRef Trask RS, Williams HR, Bond IP. Self-healing polymer composites: mimicking nature to enhance performance. Bioinspir Biomim. 2007;2(1):P1-9.PubMedCrossRef
22.
go back to reference Wertzberger BE, Steere JT, Pfeifer RM, Nensel MA, Latta MA, Gross SM. Physical characterization of a self-healing dental restorative material. J Appl Polym Sci. 2010;118(1):428–34.CrossRef Wertzberger BE, Steere JT, Pfeifer RM, Nensel MA, Latta MA, Gross SM. Physical characterization of a self-healing dental restorative material. J Appl Polym Sci. 2010;118(1):428–34.CrossRef
23.
go back to reference Bijelic-Donova J, Keulemans F, Vallittu PK, Lassila LVJ. Direct bilayered biomimetic composite restoration: the effect of a cusp-supporting short fiber-reinforced base design on the chewing fracture resistance and failure mode of molars with or without endodontic treatment. J Mech Behav Biomed. 2020;103: 103554.CrossRef Bijelic-Donova J, Keulemans F, Vallittu PK, Lassila LVJ. Direct bilayered biomimetic composite restoration: the effect of a cusp-supporting short fiber-reinforced base design on the chewing fracture resistance and failure mode of molars with or without endodontic treatment. J Mech Behav Biomed. 2020;103: 103554.CrossRef
24.
go back to reference Lassila L, Sailynoja E, Prinssi R, Vallittu PK, Garoushi S. Bilayered composite restoration: the effect of layer thickness on fracture behavior. Biomater Investig Dent. 2020;7(1):80–5.PubMedPubMedCentral Lassila L, Sailynoja E, Prinssi R, Vallittu PK, Garoushi S. Bilayered composite restoration: the effect of layer thickness on fracture behavior. Biomater Investig Dent. 2020;7(1):80–5.PubMedPubMedCentral
25.
go back to reference Magne P. Composite resins and bonded porcelain: The postamalgam era? J Calif Dent Assoc. 2006;34(2):135–47.PubMed Magne P. Composite resins and bonded porcelain: The postamalgam era? J Calif Dent Assoc. 2006;34(2):135–47.PubMed
26.
go back to reference Cattell MJ, Chadwick TC, Knowles JC, Clarke RL, Samarawickrama DY. The nucleation and crystallization of fine grained leucite glass-ceramics for dental applications. Dent Mater. 2006;22(10):925–33.PubMedCrossRef Cattell MJ, Chadwick TC, Knowles JC, Clarke RL, Samarawickrama DY. The nucleation and crystallization of fine grained leucite glass-ceramics for dental applications. Dent Mater. 2006;22(10):925–33.PubMedCrossRef
27.
go back to reference Fouda AM, Atta O, Kassem AS, Desoky M, Bourauel C. Wear behavior and abrasiveness of monolithic CAD/CAM ceramics after simulated mastication. Clin Oral Investig. 2022;26(11):6593–605.PubMedPubMedCentralCrossRef Fouda AM, Atta O, Kassem AS, Desoky M, Bourauel C. Wear behavior and abrasiveness of monolithic CAD/CAM ceramics after simulated mastication. Clin Oral Investig. 2022;26(11):6593–605.PubMedPubMedCentralCrossRef
28.
go back to reference Holand W, Rheinberger V, Wegner S, Frank M. Needle-like apatite-leucite glass-ceramic as a base material for the veneering of metal restorations in dentistry. J Mater Sci Mater Med. 2000;11(1):11–7.PubMedCrossRef Holand W, Rheinberger V, Wegner S, Frank M. Needle-like apatite-leucite glass-ceramic as a base material for the veneering of metal restorations in dentistry. J Mater Sci Mater Med. 2000;11(1):11–7.PubMedCrossRef
29.
go back to reference Goudouri OM, Kontonasaki E, Papadopoulou L, Kantiranis N, Lazaridis NK, Chrissafis K, Chatzistavrou X, Koidis P, Paraskevopoulos KM. Towards the synthesis of an experimental bioactive dental ceramic. Part I: crystallinity characterization and bioactive behavior evaluation. Mater Chem Phys. 2014;145(1–2):125–34.CrossRef Goudouri OM, Kontonasaki E, Papadopoulou L, Kantiranis N, Lazaridis NK, Chrissafis K, Chatzistavrou X, Koidis P, Paraskevopoulos KM. Towards the synthesis of an experimental bioactive dental ceramic. Part I: crystallinity characterization and bioactive behavior evaluation. Mater Chem Phys. 2014;145(1–2):125–34.CrossRef
30.
go back to reference Goudouri OM, Kontonasaki E, Papadopoulou L, Manda M, Kavouras P, Triantafyllidis KS, Stefanidou M, Koidis P, Paraskevopoulos KM. An experimental bioactive dental ceramic for metal-ceramic restorations: textural characteristics and investigation of the mechanical properties. J Mech Behav Biomed. 2017;66:95–103.CrossRef Goudouri OM, Kontonasaki E, Papadopoulou L, Manda M, Kavouras P, Triantafyllidis KS, Stefanidou M, Koidis P, Paraskevopoulos KM. An experimental bioactive dental ceramic for metal-ceramic restorations: textural characteristics and investigation of the mechanical properties. J Mech Behav Biomed. 2017;66:95–103.CrossRef
31.
go back to reference Ferraris M, Verne E, Appendino P, Moisescu C, Krajewski A, Ravaglioli A, Piancastelli A. Coatings on zirconia for medical applications. Biomaterials. 2000;21(8):765–73.PubMedCrossRef Ferraris M, Verne E, Appendino P, Moisescu C, Krajewski A, Ravaglioli A, Piancastelli A. Coatings on zirconia for medical applications. Biomaterials. 2000;21(8):765–73.PubMedCrossRef
33.
go back to reference Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent. 2015;7(4):e495-500.PubMedPubMedCentralCrossRef Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent. 2015;7(4):e495-500.PubMedPubMedCentralCrossRef
34.
go back to reference Michailova M, Elsayed A, Fabel G, Edelhoff D, Zylla IM, Stawarczyk B. Comparison between novel strength-gradient and color-gradient multilayered zirconia using conventional and high-speed sintering. J Mech Behav Biomed. 2020;111: 103977.CrossRef Michailova M, Elsayed A, Fabel G, Edelhoff D, Zylla IM, Stawarczyk B. Comparison between novel strength-gradient and color-gradient multilayered zirconia using conventional and high-speed sintering. J Mech Behav Biomed. 2020;111: 103977.CrossRef
35.
go back to reference Sauro S, Osorio R, Osorio E, Watson TF, Toledano M. Novel light-curable materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces. J Biomater Sci Polym Ed. 2013;24(8):940–56.PubMedCrossRef Sauro S, Osorio R, Osorio E, Watson TF, Toledano M. Novel light-curable materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces. J Biomater Sci Polym Ed. 2013;24(8):940–56.PubMedCrossRef
37.
go back to reference Nancollas GH, Wu WJ. Biomineralization mechanisms: a kinetics and interfacial energy approach. J Cryst Growth. 2000;211(1–4):137–42.CrossRef Nancollas GH, Wu WJ. Biomineralization mechanisms: a kinetics and interfacial energy approach. J Cryst Growth. 2000;211(1–4):137–42.CrossRef
38.
go back to reference Niu LN, Zhang W, Pashley DH, Breschi L, Mao J, Chen JH, Tay FR. Biomimetic remineralization of dentin. Dent Mater. 2014;30(1):77–96.PubMedCrossRef Niu LN, Zhang W, Pashley DH, Breschi L, Mao J, Chen JH, Tay FR. Biomimetic remineralization of dentin. Dent Mater. 2014;30(1):77–96.PubMedCrossRef
39.
go back to reference Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials. 2008;29(8):1127–37.PubMedCrossRef Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials. 2008;29(8):1127–37.PubMedCrossRef
40.
go back to reference Liu Y, Mai S, Li N, Yiu CK, Mao J, Pashley DH, Tay FR. Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds. Acta Biomater. 2011;7(4):1742–51.PubMedCrossRef Liu Y, Mai S, Li N, Yiu CK, Mao J, Pashley DH, Tay FR. Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds. Acta Biomater. 2011;7(4):1742–51.PubMedCrossRef
42.
go back to reference Hench LL. Chronology of bioactive glass development and clinical applications. New J Glass Ceram. 2013;03(02):67–73.CrossRef Hench LL. Chronology of bioactive glass development and clinical applications. New J Glass Ceram. 2013;03(02):67–73.CrossRef
43.
go back to reference van Gestel NA, Geurts J, Hulsen DJ, van Rietbergen B, Hofmann S, Arts JJ. Clinical applications of S53P4 bioactive glass in bone healing and osteomyelitic treatment: a literature review. Biomed Res Int. 2015;2015: 684826.PubMedPubMedCentral van Gestel NA, Geurts J, Hulsen DJ, van Rietbergen B, Hofmann S, Arts JJ. Clinical applications of S53P4 bioactive glass in bone healing and osteomyelitic treatment: a literature review. Biomed Res Int. 2015;2015: 684826.PubMedPubMedCentral
45.
go back to reference Fernando D, Attik N, Pradelle-Plasse N, Jackson P, Grosgogeat B, Colon P. Bioactive glass for dentin remineralization: a systematic review. Mater Sci Eng C Mater Biol Appl. 2017;76:1369–77.PubMedCrossRef Fernando D, Attik N, Pradelle-Plasse N, Jackson P, Grosgogeat B, Colon P. Bioactive glass for dentin remineralization: a systematic review. Mater Sci Eng C Mater Biol Appl. 2017;76:1369–77.PubMedCrossRef
46.
go back to reference Reema SD, Lahiri PK, Roy SS. Review of casein phosphopeptides-amorphous calcium phosphate. Chin J Dent Res. 2014;17(1):7–14.PubMed Reema SD, Lahiri PK, Roy SS. Review of casein phosphopeptides-amorphous calcium phosphate. Chin J Dent Res. 2014;17(1):7–14.PubMed
47.
go back to reference Marovic D, Sariri K, Demoli N, Ristic M, Hiller KA, Skrtic D, Rosentritt M, Schmalz G, Tarle Z. Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness. Croat Med J. 2016;57(5):465–73.PubMedPubMedCentralCrossRef Marovic D, Sariri K, Demoli N, Ristic M, Hiller KA, Skrtic D, Rosentritt M, Schmalz G, Tarle Z. Remineralizing amorphous calcium phosphate based composite resins: the influence of inert fillers on monomer conversion, polymerization shrinkage, and microhardness. Croat Med J. 2016;57(5):465–73.PubMedPubMedCentralCrossRef
48.
go back to reference Mazzaoui SA, Burrow MF, Tyas MJ, Dashper SG, Eakins D, Reynolds EC. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement. J Dent Res. 2003;82(11):914–8.PubMedCrossRef Mazzaoui SA, Burrow MF, Tyas MJ, Dashper SG, Eakins D, Reynolds EC. Incorporation of casein phosphopeptide-amorphous calcium phosphate into a glass-ionomer cement. J Dent Res. 2003;82(11):914–8.PubMedCrossRef
49.
go back to reference Yassin O, Milly H. Effect of CPP-ACP on efficacy and postoperative sensitivity associated with at-home vital tooth bleaching using 20% carbamide peroxide. Clin Oral Investig. 2019;23(4):1555–9.PubMedCrossRef Yassin O, Milly H. Effect of CPP-ACP on efficacy and postoperative sensitivity associated with at-home vital tooth bleaching using 20% carbamide peroxide. Clin Oral Investig. 2019;23(4):1555–9.PubMedCrossRef
50.
go back to reference Bayram M, Kusgoz A, Yesilyurt C, Nur M. Effects of casein phosphopeptide-amorphous calcium phosphate application after interproximal stripping on enamel surface: an in-vivo study. Am J Orthod Dentofacial Orthop. 2017;151(1):167–73.PubMedCrossRef Bayram M, Kusgoz A, Yesilyurt C, Nur M. Effects of casein phosphopeptide-amorphous calcium phosphate application after interproximal stripping on enamel surface: an in-vivo study. Am J Orthod Dentofacial Orthop. 2017;151(1):167–73.PubMedCrossRef
51.
go back to reference Wang CP, Huang SB, Liu Y, Li JY, Yu HY. The CPP-ACP relieved enamel erosion from a carbonated soft beverage: an in vitro AFM and XRD study. Arch Oral Biol. 2014;59(3):277–82.PubMedCrossRef Wang CP, Huang SB, Liu Y, Li JY, Yu HY. The CPP-ACP relieved enamel erosion from a carbonated soft beverage: an in vitro AFM and XRD study. Arch Oral Biol. 2014;59(3):277–82.PubMedCrossRef
52.
go back to reference Farooq I, Moheet IA, AlShwaimi E. In vitro dentin tubule occlusion and remineralization competence of various toothpastes. Arch Oral Biol. 2015;60(9):1246–53.PubMedCrossRef Farooq I, Moheet IA, AlShwaimi E. In vitro dentin tubule occlusion and remineralization competence of various toothpastes. Arch Oral Biol. 2015;60(9):1246–53.PubMedCrossRef
53.
go back to reference Cardoso Cde A, Lacerda B, Mangueira DF, Charone S, Olympio KP, Magalhaes AC, Pessan JP, Vilhena FV, Sampaio FC, Buzalaf MA. Mechanisms of action of fluoridated acidic liquid dentifrices against dental caries. Arch Oral Biol. 2015;60(1):23–8.PubMedCrossRef Cardoso Cde A, Lacerda B, Mangueira DF, Charone S, Olympio KP, Magalhaes AC, Pessan JP, Vilhena FV, Sampaio FC, Buzalaf MA. Mechanisms of action of fluoridated acidic liquid dentifrices against dental caries. Arch Oral Biol. 2015;60(1):23–8.PubMedCrossRef
54.
go back to reference Vilhena FV, de Oliveira SML, Matochek MHM, Tomaz PLS, Oliveira TS, D’Alpino PHP. Biomimetic mechanism of action of fluoridated toothpaste containing proprietary REFIX technology on the remineralization and repair of demineralized dental tissues: an in vitro study. Eur J Dent. 2021;15(2):236–41.PubMedCrossRef Vilhena FV, de Oliveira SML, Matochek MHM, Tomaz PLS, Oliveira TS, D’Alpino PHP. Biomimetic mechanism of action of fluoridated toothpaste containing proprietary REFIX technology on the remineralization and repair of demineralized dental tissues: an in vitro study. Eur J Dent. 2021;15(2):236–41.PubMedCrossRef
55.
go back to reference Guentsch A, Seidler K, Nietzsche S, Hefti AF, Preshaw PM, Watts DC, Jandt KD, Sigusch BW. Biomimetic mineralization: long-term observations in patients with dentin sensitivity. Dent Mater. 2012;28(4):457–64.PubMedCrossRef Guentsch A, Seidler K, Nietzsche S, Hefti AF, Preshaw PM, Watts DC, Jandt KD, Sigusch BW. Biomimetic mineralization: long-term observations in patients with dentin sensitivity. Dent Mater. 2012;28(4):457–64.PubMedCrossRef
56.
go back to reference Osorio R, Osorio E, Cabello I, Toledano M. Zinc induces apatite and scholzite formation during dentin remineralization. Caries Res. 2014;48(4):276–90.PubMedCrossRef Osorio R, Osorio E, Cabello I, Toledano M. Zinc induces apatite and scholzite formation during dentin remineralization. Caries Res. 2014;48(4):276–90.PubMedCrossRef
57.
go back to reference Toledano M, Vallecillo-Rivas M, Aguilera FS, Osorio MT, Osorio E, Osorio R. Polymeric zinc-doped nanoparticles for high performance in restorative dentistry. J Dent. 2021;107: 103616.PubMedCrossRef Toledano M, Vallecillo-Rivas M, Aguilera FS, Osorio MT, Osorio E, Osorio R. Polymeric zinc-doped nanoparticles for high performance in restorative dentistry. J Dent. 2021;107: 103616.PubMedCrossRef
58.
go back to reference Wu H, Zhao C, Lin K, Wang X. Mussel-inspired polydopamine-based multilayered coatings for enhanced bone formation. Front Bioeng Biotechnol. 2022;10: 952500.PubMedPubMedCentralCrossRef Wu H, Zhao C, Lin K, Wang X. Mussel-inspired polydopamine-based multilayered coatings for enhanced bone formation. Front Bioeng Biotechnol. 2022;10: 952500.PubMedPubMedCentralCrossRef
59.
go back to reference Liu C, Liu J, Ning X, Chen S, Liu Z, Jiang S, Miao D. The effect of polydopamine on an Ag-coated polypropylene nonwoven fabric. Polymers (Basel). 2019;11(4):627.PubMedCrossRef Liu C, Liu J, Ning X, Chen S, Liu Z, Jiang S, Miao D. The effect of polydopamine on an Ag-coated polypropylene nonwoven fabric. Polymers (Basel). 2019;11(4):627.PubMedCrossRef
60.
go back to reference Zhang J, He X, Yu S, Zhu J, Wang H, Tian Z, Zhu S, Cui Z. A novel dental adhesive containing Ag/polydopamine-modified HA fillers with both antibacterial and mineralization properties. J Dent. 2021;111: 103710.PubMedCrossRef Zhang J, He X, Yu S, Zhu J, Wang H, Tian Z, Zhu S, Cui Z. A novel dental adhesive containing Ag/polydopamine-modified HA fillers with both antibacterial and mineralization properties. J Dent. 2021;111: 103710.PubMedCrossRef
61.
go back to reference Zhou YZ, Cao Y, Liu W, Chu CH, Li QL. Polydopamine-induced tooth remineralization. ACS Appl Mater Interfaces. 2012;4(12):6901–10.PubMedCrossRef Zhou YZ, Cao Y, Liu W, Chu CH, Li QL. Polydopamine-induced tooth remineralization. ACS Appl Mater Interfaces. 2012;4(12):6901–10.PubMedCrossRef
62.
go back to reference Lu ZQ, Zhang LL, Yan YK, Wang W. Polyelectrolytes of inorganic polyoxometalates: acids, salts, and complexes. Macromolecules. 2021;54(14):6891–900.CrossRef Lu ZQ, Zhang LL, Yan YK, Wang W. Polyelectrolytes of inorganic polyoxometalates: acids, salts, and complexes. Macromolecules. 2021;54(14):6891–900.CrossRef
63.
go back to reference Xie Y, He E, Cao Z, Ou Q, Wang Y. Effect of polyvinylphosphonic acid on resin-dentin bonds and the cytotoxicity of mouse dental papilla cell-23. J Prosthet Dent. 2019;122(5):492 e1-592.PubMedCrossRef Xie Y, He E, Cao Z, Ou Q, Wang Y. Effect of polyvinylphosphonic acid on resin-dentin bonds and the cytotoxicity of mouse dental papilla cell-23. J Prosthet Dent. 2019;122(5):492 e1-592.PubMedCrossRef
64.
go back to reference Louis H, Berman KMH. Cohen’s pathways of the pulp. 12th ed. Amsterdam: Elsevier; 2020. Louis H, Berman KMH. Cohen’s pathways of the pulp. 12th ed. Amsterdam: Elsevier; 2020.
65.
go back to reference Cao CY, Mei ML, Li QL, Lo EC, Chu CH. Methods for biomimetic remineralization of human dentine: a systematic review. Int J Mol Sci. 2015;16(3):4615–27.PubMedPubMedCentralCrossRef Cao CY, Mei ML, Li QL, Lo EC, Chu CH. Methods for biomimetic remineralization of human dentine: a systematic review. Int J Mol Sci. 2015;16(3):4615–27.PubMedPubMedCentralCrossRef
66.
go back to reference Gu L, Kim YK, Liu Y, Ryou H, Wimmer CE, Dai L, Arola DD, Looney SW, Pashley DH, Tay FR. Biomimetic analogs for collagen biomineralization. J Dent Res. 2011;90(1):82–7.PubMedPubMedCentralCrossRef Gu L, Kim YK, Liu Y, Ryou H, Wimmer CE, Dai L, Arola DD, Looney SW, Pashley DH, Tay FR. Biomimetic analogs for collagen biomineralization. J Dent Res. 2011;90(1):82–7.PubMedPubMedCentralCrossRef
67.
go back to reference Liang K, Wang S, Tao S, Xiao S, Zhou H, Wang P, Cheng L, Zhou X, Weir MD, Oates TW, Li J, Xu HHK. Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles. Int J Oral Sci. 2019;11(2):15.PubMedPubMedCentralCrossRef Liang K, Wang S, Tao S, Xiao S, Zhou H, Wang P, Cheng L, Zhou X, Weir MD, Oates TW, Li J, Xu HHK. Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles. Int J Oral Sci. 2019;11(2):15.PubMedPubMedCentralCrossRef
68.
go back to reference Bae J, Son WS, Yoo KH, Yoon SY, Bae MK, Lee DJ, Ko CC, Choi YK, Kim YI. Effects of poly(amidoamine) dendrimer-coated mesoporous bioactive glass nanoparticles on dentin remineralization. Nanomaterials (Basel). 2019;9(4):591.PubMedCrossRef Bae J, Son WS, Yoo KH, Yoon SY, Bae MK, Lee DJ, Ko CC, Choi YK, Kim YI. Effects of poly(amidoamine) dendrimer-coated mesoporous bioactive glass nanoparticles on dentin remineralization. Nanomaterials (Basel). 2019;9(4):591.PubMedCrossRef
69.
go back to reference Tao SY, Fan ML, Xu HHK, Li JS, He LB, Zhou XD, Liang KN, Li JY. The remineralization effectiveness of PAMAM dendrimer with different terminal groups on demineralized dentin in vitro. RSC Adv. 2017;7(87):54947–55.CrossRef Tao SY, Fan ML, Xu HHK, Li JS, He LB, Zhou XD, Liang KN, Li JY. The remineralization effectiveness of PAMAM dendrimer with different terminal groups on demineralized dentin in vitro. RSC Adv. 2017;7(87):54947–55.CrossRef
70.
go back to reference Upadhyay A, Pillai S, Khayambashi P, Sabri H, Lee KT, Tarar M, Zhou S, Harb I, Tran SD. Biomimetic aspects of oral and dentofacial regeneration. Biomimetics (Basel). 2020;5(4):51.PubMedCrossRef Upadhyay A, Pillai S, Khayambashi P, Sabri H, Lee KT, Tarar M, Zhou S, Harb I, Tran SD. Biomimetic aspects of oral and dentofacial regeneration. Biomimetics (Basel). 2020;5(4):51.PubMedCrossRef
71.
go back to reference Landys Boren D, Jonasson P, Kvist T. Long-term survival of endodontically treated teeth at a public dental specialist clinic. J Endod. 2015;41(2):176–81.PubMedCrossRef Landys Boren D, Jonasson P, Kvist T. Long-term survival of endodontically treated teeth at a public dental specialist clinic. J Endod. 2015;41(2):176–81.PubMedCrossRef
72.
go back to reference Miller EK, Lee JY, Tawil PZ, Teixeira FB, Vann WF Jr. Emerging therapies for the management of traumatized immature permanent incisors. Pediatr Dent. 2012;34(1):66–9.PubMed Miller EK, Lee JY, Tawil PZ, Teixeira FB, Vann WF Jr. Emerging therapies for the management of traumatized immature permanent incisors. Pediatr Dent. 2012;34(1):66–9.PubMed
73.
go back to reference Tawil PZ, Duggan DJ, Galicia JC. Mineral trioxide aggregate (MTA): its history, composition, and clinical applications. Compend Contin Educ Dent. 2015;36(4):247–52.PubMedPubMedCentral Tawil PZ, Duggan DJ, Galicia JC. Mineral trioxide aggregate (MTA): its history, composition, and clinical applications. Compend Contin Educ Dent. 2015;36(4):247–52.PubMedPubMedCentral
74.
go back to reference Hamdy T. Bioactivity: a new buzz in dental materials. EC Dent Sci. 2018;17(8):1–6. Hamdy T. Bioactivity: a new buzz in dental materials. EC Dent Sci. 2018;17(8):1–6.
75.
go back to reference Nishanthi R, Ravindran V. Role of calcium hydroxide in dentistry: a review. Int J Pharm Res. 2020;12(2):2822–7. Nishanthi R, Ravindran V. Role of calcium hydroxide in dentistry: a review. Int J Pharm Res. 2020;12(2):2822–7.
76.
go back to reference Prati C, Gandolfi MG. Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater. 2015;31(4):351–70.PubMedCrossRef Prati C, Gandolfi MG. Calcium silicate bioactive cements: biological perspectives and clinical applications. Dent Mater. 2015;31(4):351–70.PubMedCrossRef
77.
78.
go back to reference Cervino G, Laino L, D’Amico C, Russo D, Nucci L, Amoroso G, Gorassini F, Tepedino M, Terranova A, Gambino D, Mastroieni R, Tozum MD, Fiorillo L. Mineral trioxide aggregate applications in endodontics: a review. Eur J Dent. 2020;14(4):683–91.PubMedPubMedCentralCrossRef Cervino G, Laino L, D’Amico C, Russo D, Nucci L, Amoroso G, Gorassini F, Tepedino M, Terranova A, Gambino D, Mastroieni R, Tozum MD, Fiorillo L. Mineral trioxide aggregate applications in endodontics: a review. Eur J Dent. 2020;14(4):683–91.PubMedPubMedCentralCrossRef
79.
go back to reference Mostafa NM, Moussa SA. Mineral trioxide aggregate (MTA) vs calcium hydroxide in direct pulp capping–literature review. On J Dent Oral Health. 2018;1(2):2018. Mostafa NM, Moussa SA. Mineral trioxide aggregate (MTA) vs calcium hydroxide in direct pulp capping–literature review. On J Dent Oral Health. 2018;1(2):2018.
80.
go back to reference Abu Hasna A, de Paula RL, Campos TMB, de Castro Lopes SLP, Rachi MA, de Oliveira LD, Carvalho CAT. Biological and chemical properties of five mineral oxides and of mineral trioxide aggregate repair high plasticity: an in vitro study. Sci Rep. 2022;12(1):14123.PubMedPubMedCentralCrossRef Abu Hasna A, de Paula RL, Campos TMB, de Castro Lopes SLP, Rachi MA, de Oliveira LD, Carvalho CAT. Biological and chemical properties of five mineral oxides and of mineral trioxide aggregate repair high plasticity: an in vitro study. Sci Rep. 2022;12(1):14123.PubMedPubMedCentralCrossRef
81.
go back to reference Cintra LTA, Benetti F, de Azevedo Queiroz IO, de Araujo Lopes JM, Penha de Oliveira SH, Sivieri Araujo G, Gomes-Filho JE. Cytotoxicity, biocompatibility, and biomineralization of the new high-plasticity MTA material. J Endod. 2017;43(5):774–8.PubMedCrossRef Cintra LTA, Benetti F, de Azevedo Queiroz IO, de Araujo Lopes JM, Penha de Oliveira SH, Sivieri Araujo G, Gomes-Filho JE. Cytotoxicity, biocompatibility, and biomineralization of the new high-plasticity MTA material. J Endod. 2017;43(5):774–8.PubMedCrossRef
82.
go back to reference Kaur M, Singh H, Dhillon JS, Batra M, Saini M. MTA versus biodentine: review of literature with a comparative analysis. J Clin Diagn Res. 2017;11(8):ZG01–5.PubMedPubMedCentral Kaur M, Singh H, Dhillon JS, Batra M, Saini M. MTA versus biodentine: review of literature with a comparative analysis. J Clin Diagn Res. 2017;11(8):ZG01–5.PubMedPubMedCentral
83.
go back to reference Malkondu O, Karapinar Kazandag M, Kazazoglu E. A review on biodentine, a contemporary dentine replacement and repair material. Biomed Res Int. 2014;2014: 160951.PubMedPubMedCentralCrossRef Malkondu O, Karapinar Kazandag M, Kazazoglu E. A review on biodentine, a contemporary dentine replacement and repair material. Biomed Res Int. 2014;2014: 160951.PubMedPubMedCentralCrossRef
84.
go back to reference Laurent P, Camps J, About I. Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 2012;45(5):439–48.PubMedCrossRef Laurent P, Camps J, About I. Biodentine(TM) induces TGF-beta1 release from human pulp cells and early dental pulp mineralization. Int Endod J. 2012;45(5):439–48.PubMedCrossRef
85.
go back to reference Luo Z, Kohli MR, Yu Q, Kim S, Qu T, He WX. Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium-/calmodulin-dependent protein kinase II pathways. J Endod. 2014;40(7):937–42.PubMedCrossRef Luo Z, Kohli MR, Yu Q, Kim S, Qu T, He WX. Biodentine induces human dental pulp stem cell differentiation through mitogen-activated protein kinase and calcium-/calmodulin-dependent protein kinase II pathways. J Endod. 2014;40(7):937–42.PubMedCrossRef
86.
go back to reference O’Brien WJ. Dental materials and their selection. 4th ed. Hanover Park, IL: Quintessence Pub. Co.; 2008. O’Brien WJ. Dental materials and their selection. 4th ed. Hanover Park, IL: Quintessence Pub. Co.; 2008.
87.
go back to reference Hashem DF, Foxton R, Manoharan A, Watson TF, Banerjee A. The physical characteristics of resin composite-calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater. 2014;30(3):343–9.PubMedCrossRef Hashem DF, Foxton R, Manoharan A, Watson TF, Banerjee A. The physical characteristics of resin composite-calcium silicate interface as part of a layered/laminate adhesive restoration. Dent Mater. 2014;30(3):343–9.PubMedCrossRef
88.
go back to reference Odabaş ME, Bani M, Tirali RE. Shear bond strengths of different adhesive systems to biodentine. Sci World J 2013;2013: 626103 . Odabaş ME, Bani M, Tirali RE. Shear bond strengths of different adhesive systems to biodentine. Sci World J 2013;2013: 626103 .
89.
go back to reference Miron RJ, Sculean A, Cochran DL, Froum S, Zucchelli G, Nemcovsky C, Donos N, Lyngstadaas SP, Deschner J, Dard M, Stavropoulos A, Zhang Y, Trombelli L, Kasaj A, Shirakata Y, Cortellini P, Tonetti M, Rasperini G, Jepsen S, Bosshardt DD. Twenty years of enamel matrix derivative: the past, the present and the future. J Clin Periodontol. 2016;43(8):668–83.PubMedCrossRef Miron RJ, Sculean A, Cochran DL, Froum S, Zucchelli G, Nemcovsky C, Donos N, Lyngstadaas SP, Deschner J, Dard M, Stavropoulos A, Zhang Y, Trombelli L, Kasaj A, Shirakata Y, Cortellini P, Tonetti M, Rasperini G, Jepsen S, Bosshardt DD. Twenty years of enamel matrix derivative: the past, the present and the future. J Clin Periodontol. 2016;43(8):668–83.PubMedCrossRef
90.
go back to reference Alberti A, Francetti L, Taschieri S, Corbella S. The applications of enamel matrix derivative in implant dentistry: a narrative review. Materials (Basel) 2021;14(11):3045.PubMedCrossRef Alberti A, Francetti L, Taschieri S, Corbella S. The applications of enamel matrix derivative in implant dentistry: a narrative review. Materials (Basel) 2021;14(11):3045.PubMedCrossRef
91.
go back to reference da Silva KTL, Grazziotin-Soares R, de Miranda RR, Novais VR, Carvalho EM, da Silva GR, Bauer J, Carvalho CN. Effect of an enamel matrix derivative (Emdogain) on the microhardness and chemical composition of human root dentin: an in vitro study. Sci Rep. 2022;12(1):8874.PubMedPubMedCentralCrossRef da Silva KTL, Grazziotin-Soares R, de Miranda RR, Novais VR, Carvalho EM, da Silva GR, Bauer J, Carvalho CN. Effect of an enamel matrix derivative (Emdogain) on the microhardness and chemical composition of human root dentin: an in vitro study. Sci Rep. 2022;12(1):8874.PubMedPubMedCentralCrossRef
92.
go back to reference Riksen EA, Landin MA, Reppe S, Nakamura Y, Lyngstadaas SP, Reseland JE. Enamel matrix derivative promote primary human pulp cell differentiation and mineralization. Int J Mol Sci. 2014;15(5):7731–49.PubMedPubMedCentralCrossRef Riksen EA, Landin MA, Reppe S, Nakamura Y, Lyngstadaas SP, Reseland JE. Enamel matrix derivative promote primary human pulp cell differentiation and mineralization. Int J Mol Sci. 2014;15(5):7731–49.PubMedPubMedCentralCrossRef
93.
go back to reference Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M, Fu SY, Koch PD, Mao JJ. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A. 2010;16(10):3023–31.PubMedPubMedCentralCrossRef Kim JY, Xin X, Moioli EK, Chung J, Lee CH, Chen M, Fu SY, Koch PD, Mao JJ. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing. Tissue Eng Part A. 2010;16(10):3023–31.PubMedPubMedCentralCrossRef
94.
go back to reference Kumar N, Maher N, Amin F, Ghabbani H, Zafar MS, Rodriguez-Lozano FJ, Onate-Sanchez RE. Biomimetic approaches in clinical endodontics. Biomimetics (Basel). 2022;7(4):229.PubMedCrossRef Kumar N, Maher N, Amin F, Ghabbani H, Zafar MS, Rodriguez-Lozano FJ, Onate-Sanchez RE. Biomimetic approaches in clinical endodontics. Biomimetics (Basel). 2022;7(4):229.PubMedCrossRef
95.
go back to reference Saini K, Chopra P, Sheokand V. Journey of platelet concentrates: a review. Biomed Pharmacol J. 2020;13(1):185–91.CrossRef Saini K, Chopra P, Sheokand V. Journey of platelet concentrates: a review. Biomed Pharmacol J. 2020;13(1):185–91.CrossRef
97.
go back to reference Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e37-44.PubMedCrossRef Dohan DM, Choukroun J, Diss A, Dohan SL, Dohan AJ, Mouhyi J, Gogly B. Platelet-rich fibrin (PRF): a second-generation platelet concentrate. Part I: technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101(3):e37-44.PubMedCrossRef
98.
go back to reference Granjeiro JM, Oliveira RC, Bustos-Valenzuela JC, Sogayar MC, Taga R. Bone morphogenetic proteins: from structure to clinical use. Braz J Med Biol Res. 2005;38(10):1463–73.PubMedCrossRef Granjeiro JM, Oliveira RC, Bustos-Valenzuela JC, Sogayar MC, Taga R. Bone morphogenetic proteins: from structure to clinical use. Braz J Med Biol Res. 2005;38(10):1463–73.PubMedCrossRef
99.
go back to reference Díaz-Sánchez R-M, Yáñez-Vico R-M, Fernández-Olavarría A, Mosquera-Pérez R, Iglesias-Linares A, Torres-Lagares D. Current approaches of bone morphogenetic proteins in dentistry. J Oral Implantol. 2015;41(3):337–42.PubMedCrossRef Díaz-Sánchez R-M, Yáñez-Vico R-M, Fernández-Olavarría A, Mosquera-Pérez R, Iglesias-Linares A, Torres-Lagares D. Current approaches of bone morphogenetic proteins in dentistry. J Oral Implantol. 2015;41(3):337–42.PubMedCrossRef
100.
go back to reference Liang C, Liang Q, Xu X, Liu X, Gao X, Li M, Yang J, Xing X, Huang H, Tang Q, Liao L, Tian W. Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: therapeutic potential for endogenous pulp regeneration. Int J Oral Sci. 2022;14(1):38.PubMedPubMedCentralCrossRef Liang C, Liang Q, Xu X, Liu X, Gao X, Li M, Yang J, Xing X, Huang H, Tang Q, Liao L, Tian W. Bone morphogenetic protein 7 mediates stem cells migration and angiogenesis: therapeutic potential for endogenous pulp regeneration. Int J Oral Sci. 2022;14(1):38.PubMedPubMedCentralCrossRef
101.
go back to reference Huang K-H, Wang C-Y, Chen C-Y, Hsu T-T, Lin C-P. Incorporation of calcium sulfate dihydrate into a mesoporous calcium silicate/poly-ε-caprolactone scaffold to regulate the release of bone morphogenetic protein-2 and accelerate bone regeneration. Biomedicines. 2021;9(2):128.PubMedPubMedCentralCrossRef Huang K-H, Wang C-Y, Chen C-Y, Hsu T-T, Lin C-P. Incorporation of calcium sulfate dihydrate into a mesoporous calcium silicate/poly-ε-caprolactone scaffold to regulate the release of bone morphogenetic protein-2 and accelerate bone regeneration. Biomedicines. 2021;9(2):128.PubMedPubMedCentralCrossRef
102.
go back to reference Chrepa V, Pitcher B, Henry MA, Diogenes A. Survival of the apical papilla and its resident stem cells in a case of advanced pulpal necrosis and apical periodontitis. J Endod. 2017;43(4):561–7.PubMedCrossRef Chrepa V, Pitcher B, Henry MA, Diogenes A. Survival of the apical papilla and its resident stem cells in a case of advanced pulpal necrosis and apical periodontitis. J Endod. 2017;43(4):561–7.PubMedCrossRef
103.
go back to reference Gong T, Heng BC, Lo EC, Zhang C. Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells Int. 2016;2016:9204574.PubMedPubMedCentralCrossRef Gong T, Heng BC, Lo EC, Zhang C. Current advance and future prospects of tissue engineering approach to dentin/pulp regenerative therapy. Stem Cells Int. 2016;2016:9204574.PubMedPubMedCentralCrossRef
Metadata
Title
Biomimetic approaches and materials in restorative and regenerative dentistry: review article
Authors
Lamia Singer
Ahmed Fouda
Christoph Bourauel
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-02808-3

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue