Skip to main content
Top
Published in: International Urogynecology Journal 4/2015

01-04-2015 | Original Article

Biomechanical pregnant pelvic system model and numerical simulation of childbirth: impact of delivery on the uterosacral ligaments, preliminary results

Authors: J. Lepage, C. Jayyosi, P. Lecomte-Grosbras, M. Brieu, C. Duriez, M. Cosson, C. Rubod

Published in: International Urogynecology Journal | Issue 4/2015

Login to get access

Abstract

Introduction and hypothesis

We created a pregnant woman pelvic model to perform a simulation of delivery to understand the pathophysiology of urogenital prolapse by studying the constraints on the pelvic components (muscles, ligaments, pelvic organs) during childbirth. These simulations will also provide valuable tools to understand and teach obstetrical mechanics.

Methods

We built a numerical model of the pelvic system from a term pregnant woman, using the finite element method on a mesh built from magnetic resonance images of a nulliparous pregnant woman. Mechanical properties of pelvic tissues already determined by the team were adapted to account for pregnancy.

Results

The system allows delivery to be simulated. When a fetal head at the 50th percentile for the term goes through the pelvic system, uterosacral ligaments undergo a deformation of around 30 %. Uterosacral ligaments are the major pelvic sustaining structures, their lesion may be a potential cause of urogenital prolapse. We built a model of childbirth as a function of pregnancy term by varying volumes of fetal head and uterus. The impact on uterosacral ligaments is higher when the fetal head is larger.

Conclusions

Our modelling is rather complete considering that it involves many organs including ligaments. It allows us to analyse the effect of childbirth on uterosacral ligaments and to understand how they impact on pelvic statics. First results are promising, but optimisation and future simulations will be needed. We also plan to simulate various delivery scenarios (cephalic, breech presentation, instrumental extraction), which will be useful to study perineal lesions and also to teach obstetrical mechanics.
Literature
1.
go back to reference Mant J, Painter R, Vessey M (1997) Epidemiology of genital prolapse: observations from the Oxford Family Planning Association Study. Br J Obstet Gynaecol 104(5):579–585CrossRefPubMed Mant J, Painter R, Vessey M (1997) Epidemiology of genital prolapse: observations from the Oxford Family Planning Association Study. Br J Obstet Gynaecol 104(5):579–585CrossRefPubMed
3.
go back to reference Samuelsson EC, Victor FT, Tibblin G, Svärdsudd KF (1999) Signs of genital prolapse in a Swedish population of women 20 to 59 years of age and possible related factors. Am J Obstet Gynecol 180(2 Pt 1):299–305CrossRefPubMed Samuelsson EC, Victor FT, Tibblin G, Svärdsudd KF (1999) Signs of genital prolapse in a Swedish population of women 20 to 59 years of age and possible related factors. Am J Obstet Gynecol 180(2 Pt 1):299–305CrossRefPubMed
4.
go back to reference Swift SE (2000) The distribution of pelvic organ support in a population of female subjects seen for routine gynecologic health care. Am J Obstet Gynecol 183(2):277–285CrossRefPubMed Swift SE (2000) The distribution of pelvic organ support in a population of female subjects seen for routine gynecologic health care. Am J Obstet Gynecol 183(2):277–285CrossRefPubMed
6.
go back to reference Moreau R, Pham MT, Silveira R, Redarce T, Brun X, Dupuis O (2007) Design of a new instrumented forceps: application to safe obstetrical forceps blade placement. IEEE Trans Biomed Eng 54(7):1280–1290CrossRefPubMed Moreau R, Pham MT, Silveira R, Redarce T, Brun X, Dupuis O (2007) Design of a new instrumented forceps: application to safe obstetrical forceps blade placement. IEEE Trans Biomed Eng 54(7):1280–1290CrossRefPubMed
7.
go back to reference Parente MP, Natal Jorge RM, Mascarenhas T, Silva-Filho AL (2010) The influence of pelvic muscle activation during vaginal delivery. Obstet Gynecol 115(4):804–808CrossRefPubMed Parente MP, Natal Jorge RM, Mascarenhas T, Silva-Filho AL (2010) The influence of pelvic muscle activation during vaginal delivery. Obstet Gynecol 115(4):804–808CrossRefPubMed
8.
go back to reference Li X, Kruger JA, Nash MP, Nielsen PMF (2011) Anisotropic effects of the levator ani muscle during childbirth. Biomech Model Mechanobiol 10(4):485–494CrossRefPubMed Li X, Kruger JA, Nash MP, Nielsen PMF (2011) Anisotropic effects of the levator ani muscle during childbirth. Biomech Model Mechanobiol 10(4):485–494CrossRefPubMed
9.
go back to reference Venugopala Rao G, Rubod C, Brieu M, Bhatnagar N, Cosson M (2010) Experiments and finite element modelling for the study of prolapse in the pelvic floor system. Comput Methods Biomech Biomed Engin 13(3):349–357CrossRefPubMed Venugopala Rao G, Rubod C, Brieu M, Bhatnagar N, Cosson M (2010) Experiments and finite element modelling for the study of prolapse in the pelvic floor system. Comput Methods Biomech Biomed Engin 13(3):349–357CrossRefPubMed
10.
go back to reference Cosson M, Rubod C, Vallet A, Witz JF, Dubois P, Brieu M (2013) Simulation of normal pelvic mobilities in building an MRI-validated biomechanical model. Int Urogynecol J 24(1):105–112CrossRefPubMed Cosson M, Rubod C, Vallet A, Witz JF, Dubois P, Brieu M (2013) Simulation of normal pelvic mobilities in building an MRI-validated biomechanical model. Int Urogynecol J 24(1):105–112CrossRefPubMed
11.
go back to reference Kamina P, Demondion X, Richer JP, Scepi M, Faure JP (2003) Anatomie clinique de l’appareil génital féminin. Encycl Méd Chir Ed Sci Méd Elsevier SAS Paris Gynécol 10:A10 Kamina P, Demondion X, Richer JP, Scepi M, Faure JP (2003) Anatomie clinique de l’appareil génital féminin. Encycl Méd Chir Ed Sci Méd Elsevier SAS Paris Gynécol 10:A10
12.
go back to reference Créquat J, Duyme M, Brodaty G (2000) Biometry 2000. Fetal growth charts by the French College of fetal ultrasonography and the Inserm U 155. Gynecol Obstet Fertil 28(6):435–445PubMed Créquat J, Duyme M, Brodaty G (2000) Biometry 2000. Fetal growth charts by the French College of fetal ultrasonography and the Inserm U 155. Gynecol Obstet Fertil 28(6):435–445PubMed
13.
go back to reference Cosson M, Rubod C, Vallet A, Witz J-F, Brieu M (2011) Biomechanical modeling of pelvic organ mobility: towards personalized medicine. Bull Acad Natl Med 195(8):1869–1883, discussion 1883PubMed Cosson M, Rubod C, Vallet A, Witz J-F, Brieu M (2011) Biomechanical modeling of pelvic organ mobility: towards personalized medicine. Bull Acad Natl Med 195(8):1869–1883, discussion 1883PubMed
14.
go back to reference Rubod C, Boukerrou M, Brieu M, Dubois P, Cosson M (2007) Biomechanical properties of vaginal tissue. Part 1: new experimental protocol. J Urol 178(1):320–325CrossRefPubMed Rubod C, Boukerrou M, Brieu M, Dubois P, Cosson M (2007) Biomechanical properties of vaginal tissue. Part 1: new experimental protocol. J Urol 178(1):320–325CrossRefPubMed
15.
go back to reference Rubod C, Boukerrou M, Brieu M, Jean-Charles C, Dubois P, Cosson M (2008) Biomechanical properties of vaginal tissue: preliminary results. Int Urogynecol J Pelvic Floor Dysfunct 19(6):811–816CrossRefPubMed Rubod C, Boukerrou M, Brieu M, Jean-Charles C, Dubois P, Cosson M (2008) Biomechanical properties of vaginal tissue: preliminary results. Int Urogynecol J Pelvic Floor Dysfunct 19(6):811–816CrossRefPubMed
16.
go back to reference Rubod C, Brieu M, Cosson M, Rivaux G, Clay J-C, de Landsheere L et al (2012) Biomechanical properties of human pelvic organs. Urology 79(4):968.e17–968.e22CrossRef Rubod C, Brieu M, Cosson M, Rivaux G, Clay J-C, de Landsheere L et al (2012) Biomechanical properties of human pelvic organs. Urology 79(4):968.e17–968.e22CrossRef
17.
go back to reference Rahn DD, Ruff MD, Brown SA, Tibbals HF, Word RA (2008) Biomechanical properties of the vaginal wall: effect of pregnancy, elastic fiber deficiency, and pelvic organ prolapse. Am J Obstet Gynecol 198(5):590.e1–590.e6CrossRef Rahn DD, Ruff MD, Brown SA, Tibbals HF, Word RA (2008) Biomechanical properties of the vaginal wall: effect of pregnancy, elastic fiber deficiency, and pelvic organ prolapse. Am J Obstet Gynecol 198(5):590.e1–590.e6CrossRef
19.
go back to reference Mazza E, Nava A, Bauer M, Winter R, Bajka M, Holzapfel GA (2006) Mechanical properties of the human uterine cervix: an in vivo study. Med Image Anal 10(2):125–136CrossRefPubMed Mazza E, Nava A, Bauer M, Winter R, Bajka M, Holzapfel GA (2006) Mechanical properties of the human uterine cervix: an in vivo study. Med Image Anal 10(2):125–136CrossRefPubMed
20.
go back to reference Allard J, Cotin S, Faure F, Bensoussan P-J, Poyer F, Duriez C et al (2007) SOFA–an open source framework for medical simulation. Stud Health Technol Inform 125:13–18PubMed Allard J, Cotin S, Faure F, Bensoussan P-J, Poyer F, Duriez C et al (2007) SOFA–an open source framework for medical simulation. Stud Health Technol Inform 125:13–18PubMed
21.
go back to reference Parente MP, Natal Jorge RM, Mascarenhas T, Fernandes AA, Silva-Filho AL (2010) Computational modeling approach to study the effects of fetal head flexion during vaginal delivery. Am J Obstet Gynecol 203(3):217.e1–217.e6CrossRef Parente MP, Natal Jorge RM, Mascarenhas T, Fernandes AA, Silva-Filho AL (2010) Computational modeling approach to study the effects of fetal head flexion during vaginal delivery. Am J Obstet Gynecol 203(3):217.e1–217.e6CrossRef
22.
go back to reference Buttin R, Zara F, Shariat B, Redarce T, Grangé G (2011) Simulation biomécanique de la descente foetale sans trajectoire théorique imposée. Rev Electron Francoph Inform Graph 5(2):1–13 Buttin R, Zara F, Shariat B, Redarce T, Grangé G (2011) Simulation biomécanique de la descente foetale sans trajectoire théorique imposée. Rev Electron Francoph Inform Graph 5(2):1–13
23.
go back to reference Bibin L, Anquez J, de la Plata Alcalde JP, Boubekeur T, Angelini ED, Bloch I (2010) Whole-body pregnant woman modeling by digital geometry processing with detailed uterofetal unit based on medical images. IEEE Trans Biomed Eng 57(10):2346–2358CrossRefPubMed Bibin L, Anquez J, de la Plata Alcalde JP, Boubekeur T, Angelini ED, Bloch I (2010) Whole-body pregnant woman modeling by digital geometry processing with detailed uterofetal unit based on medical images. IEEE Trans Biomed Eng 57(10):2346–2358CrossRefPubMed
24.
go back to reference Martins JAC, Pato MPM, Pires EB, Jorge RMN, Parente M, Mascarenhas T (2007) Finite element studies of the deformation of the pelvic floor. Ann N Y Acad Sci 1101(1):316–334CrossRefPubMed Martins JAC, Pato MPM, Pires EB, Jorge RMN, Parente M, Mascarenhas T (2007) Finite element studies of the deformation of the pelvic floor. Ann N Y Acad Sci 1101(1):316–334CrossRefPubMed
25.
go back to reference Hoyte L, Damaser MS, Warfield SK, Chukkapalli G, Majumdar A, Choi DJ et al (2008) Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Am J Obstet Gynecol 199(2):198.e1–198.e5CrossRef Hoyte L, Damaser MS, Warfield SK, Chukkapalli G, Majumdar A, Choi DJ et al (2008) Quantity and distribution of levator ani stretch during simulated vaginal childbirth. Am J Obstet Gynecol 199(2):198.e1–198.e5CrossRef
Metadata
Title
Biomechanical pregnant pelvic system model and numerical simulation of childbirth: impact of delivery on the uterosacral ligaments, preliminary results
Authors
J. Lepage
C. Jayyosi
P. Lecomte-Grosbras
M. Brieu
C. Duriez
M. Cosson
C. Rubod
Publication date
01-04-2015
Publisher
Springer London
Published in
International Urogynecology Journal / Issue 4/2015
Print ISSN: 0937-3462
Electronic ISSN: 1433-3023
DOI
https://doi.org/10.1007/s00192-014-2498-3

Other articles of this Issue 4/2015

International Urogynecology Journal 4/2015 Go to the issue