Skip to main content
Top
Published in: Current Osteoporosis Reports 4/2010

01-12-2010

The Pathophysiology of the Aging Skeleton

Authors: Farhan A. Syed, Alvin C. Ng

Published in: Current Osteoporosis Reports | Issue 4/2010

Login to get access

Abstract

In recent decades the population of both elderly men and women has grown substantially worldwide. Aging is associated with a number of pathologies involving various organs including the skeleton. Age-related bone loss and resultant osteoporosis put the elderly population at an increased risk for fractures and morbidity. Fortunately, in parallel our understanding of this malady has also grown substantially in recent years. A number of clinical as well as translational studies have been pivotal in providing us with an understanding of the pathophysiology of this condition. This article discusses the current concepts of age-related modulation of the skeleton involving intrinsic factors such as genetics, hormonal changes, levels of oxidative stress, and changes in telomere length, as well as extrinsic factors such as nutritional and lifestyle choices. It also briefly outlines recent studies on the relationship between bone and fat in the marrow as well as the periphery.
Literature
1.
go back to reference Riggs BL, Wahner HW, Seeman E, et al.: Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 1982, 70:716–723.CrossRefPubMed Riggs BL, Wahner HW, Seeman E, et al.: Changes in bone mineral density of the proximal femur and spine with aging. Differences between the postmenopausal and senile osteoporosis syndromes. J Clin Invest 1982, 70:716–723.CrossRefPubMed
2.
go back to reference Riggs BL, Khosla S, Melton LJ III: The type I/type II model for involutional osteoporosis: update and modifications based on new observations. In Osteoporosis, 2nd edition. Edited by Marcus R, Feldman D, Kelsey J. Salt Lake City: Academic Press; 2001:49–58. Riggs BL, Khosla S, Melton LJ III: The type I/type II model for involutional osteoporosis: update and modifications based on new observations. In Osteoporosis, 2nd edition. Edited by Marcus R, Feldman D, Kelsey J. Salt Lake City: Academic Press; 2001:49–58.
3.
go back to reference Riggs BL, Khosla S, Melton LJ III: Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002, 23:279–302.CrossRefPubMed Riggs BL, Khosla S, Melton LJ III: Sex steroids and the construction and conservation of the adult skeleton. Endocr Rev 2002, 23:279–302.CrossRefPubMed
4.
go back to reference Lee CA, Einhorn TA: The Bone Organ System: Form and Function. In Osteoporosis, 2nd edition. Edited by Marcus R, Feldman D, Kelsey J. Salt Lake City: Academic Press; 2001:2–20. Lee CA, Einhorn TA: The Bone Organ System: Form and Function. In Osteoporosis, 2nd edition. Edited by Marcus R, Feldman D, Kelsey J. Salt Lake City: Academic Press; 2001:2–20.
5.
go back to reference Center JR, Eisman JA: Genetics of osteoporosis. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Edited by Rosen CJ. Washington DC: American Society for Bone and Mineral Research; 2008:213–219.CrossRef Center JR, Eisman JA: Genetics of osteoporosis. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Edited by Rosen CJ. Washington DC: American Society for Bone and Mineral Research; 2008:213–219.CrossRef
6.
go back to reference Newton-John HF, Morgan DB. The loss of bone with age, osteoporosis, and fractures. Clin Orthop Relat Res 1970, 71:229–252.CrossRefPubMed Newton-John HF, Morgan DB. The loss of bone with age, osteoporosis, and fractures. Clin Orthop Relat Res 1970, 71:229–252.CrossRefPubMed
7.
go back to reference Matkovic V, Kostial K, Simonovic I, et al.: Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr 1979, 32:540–549.PubMed Matkovic V, Kostial K, Simonovic I, et al.: Bone status and fracture rates in two regions of Yugoslavia. Am J Clin Nutr 1979, 32:540–549.PubMed
8.
go back to reference Ferrari S, Rizzoli R, Slosman D, Bonjour JP: Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab 1998, 83:358–361.CrossRefPubMed Ferrari S, Rizzoli R, Slosman D, Bonjour JP: Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab 1998, 83:358–361.CrossRefPubMed
9.
go back to reference Dertina LM, Sayre J, Kaufman F, Gilsanz V: Childhood bone measurements predict values at young adulthood. Bone 1998, 23:S288. Dertina LM, Sayre J, Kaufman F, Gilsanz V: Childhood bone measurements predict values at young adulthood. Bone 1998, 23:S288.
10.
go back to reference Halloran BP, Ferguson VL, Simske SJ, et al.: Changes in bone structure and mass with advancing age in the male C57BL/6J mouse. J Bone Miner Res 2002, 17:1044–1050.CrossRefPubMed Halloran BP, Ferguson VL, Simske SJ, et al.: Changes in bone structure and mass with advancing age in the male C57BL/6J mouse. J Bone Miner Res 2002, 17:1044–1050.CrossRefPubMed
11.
go back to reference Bollerslev J, Wilson SG, Dick IM, et al.: LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 2005, 36:599–606.CrossRefPubMed Bollerslev J, Wilson SG, Dick IM, et al.: LRP5 gene polymorphisms predict bone mass and incident fractures in elderly Australian women. Bone 2005, 36:599–606.CrossRefPubMed
12.
go back to reference Khosla S, Atkinson EJ, Melton LJ III, Riggs BL: Effects of age and estrogen status on serum parathyroid hormone levels and biochemical markers of bone turnover in women: a population-based study. J Clin Endocrinol Metab 1997, 82:1522–1527.CrossRefPubMed Khosla S, Atkinson EJ, Melton LJ III, Riggs BL: Effects of age and estrogen status on serum parathyroid hormone levels and biochemical markers of bone turnover in women: a population-based study. J Clin Endocrinol Metab 1997, 82:1522–1527.CrossRefPubMed
13.
go back to reference Rahmani P, Morin S: Prevention of osteoporosis related fractures among postmenopausal women and older men. CMAJ 2009, 181:815–820.PubMed Rahmani P, Morin S: Prevention of osteoporosis related fractures among postmenopausal women and older men. CMAJ 2009, 181:815–820.PubMed
14.
go back to reference Szulc P, Munoz F, Claustrat B, et al.: Bioavailable estradiol may be an important determinant of osteoporosis in men: the MINOS study. J Clin Endocrinol Metab 2001, 86:192–199.CrossRefPubMed Szulc P, Munoz F, Claustrat B, et al.: Bioavailable estradiol may be an important determinant of osteoporosis in men: the MINOS study. J Clin Endocrinol Metab 2001, 86:192–199.CrossRefPubMed
15.
go back to reference Khosla S, Melton LJ III, Atkinson EJ, et al.: Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 2001, 86:3555–3561.CrossRefPubMed Khosla S, Melton LJ III, Atkinson EJ, et al.: Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 2001, 86:3555–3561.CrossRefPubMed
16.
17.
go back to reference Sowers MR, Greendale GA, Bondarenko J, et al.: Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporos Int 2003, 14:191–197.CrossRefPubMed Sowers MR, Greendale GA, Bondarenko J, et al.: Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporos Int 2003, 14:191–197.CrossRefPubMed
18.
go back to reference • Wu XY, Wu XP, Xie H, et al.: Age-related changes in biochemical markers of bone turnover and gonadotropins levels and their relationship among Chinese adult women. Osteoporos Int 2010, 21:275–285. This paper provides clinical evidence for a correlation between high serum FSH and bone resorption in aging Chinese women.CrossRefPubMed • Wu XY, Wu XP, Xie H, et al.: Age-related changes in biochemical markers of bone turnover and gonadotropins levels and their relationship among Chinese adult women. Osteoporos Int 2010, 21:275–285. This paper provides clinical evidence for a correlation between high serum FSH and bone resorption in aging Chinese women.CrossRefPubMed
19.
go back to reference Sowers MR, Jannausch M, McConnell D, et al.: Hormone predictors of bone mineral density changes during the menopausal transition. J Clin Endocrinol Metabol 2006, 91:1261–1267.CrossRef Sowers MR, Jannausch M, McConnell D, et al.: Hormone predictors of bone mineral density changes during the menopausal transition. J Clin Endocrinol Metabol 2006, 91:1261–1267.CrossRef
20.
go back to reference Devleta B, Adem B, Senada S: Hypergonadotropic amenorrhea and bone density: new approach to an old problem. J Bone Min Res 2004, 22:360–364. Devleta B, Adem B, Senada S: Hypergonadotropic amenorrhea and bone density: new approach to an old problem. J Bone Min Res 2004, 22:360–364.
21.
go back to reference • Drake MT, McCready LK, Hoey KA, et al.: Effects of suppression of follicle stimulating hormone secretion on bone resorption markers in postmenopausal women. J Clin Endocrinol Metab 2010 Jul 7 [Epub ahead of print]. This is a clinical study in postmenopausal women on GnRH agonist that does not show a correlation between suppression of FSH and decreases in serum bone resorption markers. • Drake MT, McCready LK, Hoey KA, et al.: Effects of suppression of follicle stimulating hormone secretion on bone resorption markers in postmenopausal women. J Clin Endocrinol Metab 2010 Jul 7 [Epub ahead of print]. This is a clinical study in postmenopausal women on GnRH agonist that does not show a correlation between suppression of FSH and decreases in serum bone resorption markers.
22.
go back to reference Rosen CJ, Donahue LR, Hunter SJ: Insulin-like growth factors and bone: the osteoporosis connection. Proc Soc Exp Biol Med 1994, 206:83–102.PubMed Rosen CJ, Donahue LR, Hunter SJ: Insulin-like growth factors and bone: the osteoporosis connection. Proc Soc Exp Biol Med 1994, 206:83–102.PubMed
23.
go back to reference Boonen S, Mohan S, Dequeker J, et al.: Down-regulation of the serum stimulatory components of the insulin-like growth factor (IGF) system (IGF-I, IGF-II, IGF binding protein [BP]-3, and IGFBP-5) in age-related (type II) femoral neck osteoporosis. J Bone Miner Res 1999,14:2150–2158.CrossRefPubMed Boonen S, Mohan S, Dequeker J, et al.: Down-regulation of the serum stimulatory components of the insulin-like growth factor (IGF) system (IGF-I, IGF-II, IGF binding protein [BP]-3, and IGFBP-5) in age-related (type II) femoral neck osteoporosis. J Bone Miner Res 1999,14:2150–2158.CrossRefPubMed
24.
go back to reference Bauer DC, Rosen CJ, Cauley J, Cummings SR: Low serum IGF-1 but not IGFBP-3 predicts hip and spine fractures. Bone 1997, 20(Suppl):561. Bauer DC, Rosen CJ, Cauley J, Cummings SR: Low serum IGF-1 but not IGFBP-3 predicts hip and spine fractures. Bone 1997, 20(Suppl):561.
25.
go back to reference Amin S, Riggs BL, Melton LJ III, et al.: High serum IGFBP-2 is predictive of increased bone turnover in aging men and women. J Bone Miner Res 2007, 22:799–807.CrossRefPubMed Amin S, Riggs BL, Melton LJ III, et al.: High serum IGFBP-2 is predictive of increased bone turnover in aging men and women. J Bone Miner Res 2007, 22:799–807.CrossRefPubMed
26.
go back to reference Thomas T, Gori F, Khosla S, et al.: Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 1999, 140:1630–1638.CrossRefPubMed Thomas T, Gori F, Khosla S, et al.: Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 1999, 140:1630–1638.CrossRefPubMed
27.
go back to reference Ducy P, Amling M, Takeda S, et al.: Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000,100:197–207.CrossRefPubMed Ducy P, Amling M, Takeda S, et al.: Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000,100:197–207.CrossRefPubMed
28.
go back to reference Takeda S, Elefteriou F, Levasseur R, et al.: Leptin regulates bone formation via the sympathetic nervous system. Cell 2002, 111:305–317.CrossRefPubMed Takeda S, Elefteriou F, Levasseur R, et al.: Leptin regulates bone formation via the sympathetic nervous system. Cell 2002, 111:305–317.CrossRefPubMed
29.
go back to reference Elefteriou F, Ahn JD, Takeda S, et al.: Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005, 434 :514–520.CrossRefPubMed Elefteriou F, Ahn JD, Takeda S, et al.: Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005, 434 :514–520.CrossRefPubMed
30.
go back to reference Sato S, Hanada R, Kimura A, et al.: Central control of bone remodeling by neuromedin U. Nat Med 2007, 13:1234–1240.CrossRefPubMed Sato S, Hanada R, Kimura A, et al.: Central control of bone remodeling by neuromedin U. Nat Med 2007, 13:1234–1240.CrossRefPubMed
31.
go back to reference Pasco JA, Henry MJ, Sanders KM, et al.: Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res 2004, 19:19–24.CrossRefPubMed Pasco JA, Henry MJ, Sanders KM, et al.: Beta-adrenergic blockers reduce the risk of fracture partly by increasing bone mineral density: Geelong Osteoporosis Study. J Bone Miner Res 2004, 19:19–24.CrossRefPubMed
32.
go back to reference •• Yadav VK, Oury F, Suda N, et al.: A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 2009, 138:976–989. This study shows that brainstem-derived serotonin favors bone mass accrual following its binding to Htr2C receptors on ventromedial hypothalamic neurons and modulates appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions by reducing serotonin synthesis and firing of serotonergic neurons.CrossRefPubMed •• Yadav VK, Oury F, Suda N, et al.: A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 2009, 138:976–989. This study shows that brainstem-derived serotonin favors bone mass accrual following its binding to Htr2C receptors on ventromedial hypothalamic neurons and modulates appetite via Htr1a and 2b receptors on arcuate neurons. Leptin inhibits these functions by reducing serotonin synthesis and firing of serotonergic neurons.CrossRefPubMed
33.
go back to reference • Modder UI, Achenbach SJ, Amin S, et al.: Relation of serum serotonin levels to bone density and structural parameters in women. J Bone Miner Res 2010, 25:415–422. This is the first demonstration of the relationship between serum serotonin levels and postmenopausal bone loss; it shows a potential for use of serotonin as a marker.PubMed • Modder UI, Achenbach SJ, Amin S, et al.: Relation of serum serotonin levels to bone density and structural parameters in women. J Bone Miner Res 2010, 25:415–422. This is the first demonstration of the relationship between serum serotonin levels and postmenopausal bone loss; it shows a potential for use of serotonin as a marker.PubMed
34.
go back to reference Duque G, Troen BR: Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc 2008, 56:935–941.CrossRefPubMed Duque G, Troen BR: Understanding the mechanisms of senile osteoporosis: new facts for a major geriatric syndrome. J Am Geriatr Soc 2008, 56:935–941.CrossRefPubMed
35.
go back to reference Rosen CJ, Ackert-Bicknell C, Rodriguez JP, et al.: Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 2009,19:109–124.PubMed Rosen CJ, Ackert-Bicknell C, Rodriguez JP, et al.: Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 2009,19:109–124.PubMed
36.
go back to reference Syed FA, Oursler MJ, Hefferan TE, et al.: Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteopor Int 2008, 19:1323–1330.CrossRef Syed FA, Oursler MJ, Hefferan TE, et al.: Effects of estrogen therapy on bone marrow adipocytes in postmenopausal osteoporotic women. Osteopor Int 2008, 19:1323–1330.CrossRef
37.
go back to reference Griffith JF, Yeung DK, Antonio GE, et al.: Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005, 236:945–951.CrossRefPubMed Griffith JF, Yeung DK, Antonio GE, et al.: Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 2005, 236:945–951.CrossRefPubMed
38.
go back to reference Hsu YH, Venners SA, Terwedow HA, et al.: Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 2006, 83:146–154.PubMed Hsu YH, Venners SA, Terwedow HA, et al.: Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr 2006, 83:146–154.PubMed
39.
go back to reference • Zhao LJ, Liu YJ, Liu PY, et al.: Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 2007, 92:1640–1646. This study shows the inverse relationship between bone mass and fat mass, after taking into account the mechanical loading effects due to total body weight.CrossRefPubMed • Zhao LJ, Liu YJ, Liu PY, et al.: Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 2007, 92:1640–1646. This study shows the inverse relationship between bone mass and fat mass, after taking into account the mechanical loading effects due to total body weight.CrossRefPubMed
40.
go back to reference Cooper C, Westlake S, Harvey N, et al.: Review: developmental origins of osteoporotic fracture. Osteoporos Int 2006, 17:337–347.CrossRefPubMed Cooper C, Westlake S, Harvey N, et al.: Review: developmental origins of osteoporotic fracture. Osteoporos Int 2006, 17:337–347.CrossRefPubMed
41.
go back to reference Lips P: Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001, 22:477–501.CrossRefPubMed Lips P: Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001, 22:477–501.CrossRefPubMed
42.
go back to reference Eastell R, Yergey AL, Vieira NE, et al.: Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function, and age in women: evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action. J Bone Miner Res 1991, 6:125–132.CrossRefPubMed Eastell R, Yergey AL, Vieira NE, et al.: Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function, and age in women: evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action. J Bone Miner Res 1991, 6:125–132.CrossRefPubMed
43.
go back to reference Melton LJ 3rd, Riggs BL, Achenbach SJ, et al.: Does reduced skeletal loading account for age-related bone loss? J Bone Miner Res 2006, 21:1847–1855.CrossRefPubMed Melton LJ 3rd, Riggs BL, Achenbach SJ, et al.: Does reduced skeletal loading account for age-related bone loss? J Bone Miner Res 2006, 21:1847–1855.CrossRefPubMed
44.
go back to reference Leichter I, Simkin A, Margulies JY, et al.: Gain in mass density of bone following strenuous physical activity. J Orthop Res 1989, 7:86–90.CrossRefPubMed Leichter I, Simkin A, Margulies JY, et al.: Gain in mass density of bone following strenuous physical activity. J Orthop Res 1989, 7:86–90.CrossRefPubMed
45.
go back to reference Tinetti ME, Gordon C, Sogolow E, et al.: Fall-risk evaluation and management: challenges in adopting geriatric care practices. Gerontologist 2006, 46:717–725.PubMed Tinetti ME, Gordon C, Sogolow E, et al.: Fall-risk evaluation and management: challenges in adopting geriatric care practices. Gerontologist 2006, 46:717–725.PubMed
46.
go back to reference Crepaldi G, Maggi S: Epidemiologic link between osteoporosis and cardiovascular disease. J Endocrinol Invest 2009, 32(4 Suppl):2–5.PubMed Crepaldi G, Maggi S: Epidemiologic link between osteoporosis and cardiovascular disease. J Endocrinol Invest 2009, 32(4 Suppl):2–5.PubMed
47.
go back to reference Ozgocmen S, Kaya H, Fadillioglu, et al.: Effects of calcitonin, risedronate and raloxifene on erythrocyte antioxidant enzyme activity, lipid peroxidation and nitric oxide in postmenopausal osteoporosis. Arch Med Res 2007, 38:196–205.CrossRefPubMed Ozgocmen S, Kaya H, Fadillioglu, et al.: Effects of calcitonin, risedronate and raloxifene on erythrocyte antioxidant enzyme activity, lipid peroxidation and nitric oxide in postmenopausal osteoporosis. Arch Med Res 2007, 38:196–205.CrossRefPubMed
48.
go back to reference Sanders JL, Cauley JA, Boudreau RM, et al.: Leukocyte telomere length is not associated with BMD, osteoporosis, or fracture in older adults: results from the Health, Aging and Body Composition Study. J Bone Miner Res 2009, 24:1531–1536.CrossRefPubMed Sanders JL, Cauley JA, Boudreau RM, et al.: Leukocyte telomere length is not associated with BMD, osteoporosis, or fracture in older adults: results from the Health, Aging and Body Composition Study. J Bone Miner Res 2009, 24:1531–1536.CrossRefPubMed
49.
go back to reference Tang NL, Woo J, Suen EW, et al.: The effect of telomere length, a marker of biological aging, on bone mineral density in the elderly population. Osteoporos Int 2010, 21:89–97.CrossRefPubMed Tang NL, Woo J, Suen EW, et al.: The effect of telomere length, a marker of biological aging, on bone mineral density in the elderly population. Osteoporos Int 2010, 21:89–97.CrossRefPubMed
50.
go back to reference Valdes AM, Richards JB, Gardner JP, et al.: Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos Int 2007, 18:1203–1210.CrossRefPubMed Valdes AM, Richards JB, Gardner JP, et al.: Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos Int 2007, 18:1203–1210.CrossRefPubMed
Metadata
Title
The Pathophysiology of the Aging Skeleton
Authors
Farhan A. Syed
Alvin C. Ng
Publication date
01-12-2010
Publisher
Current Science Inc.
Published in
Current Osteoporosis Reports / Issue 4/2010
Print ISSN: 1544-1873
Electronic ISSN: 1544-2241
DOI
https://doi.org/10.1007/s11914-010-0035-y

Other articles of this Issue 4/2010

Current Osteoporosis Reports 4/2010 Go to the issue