Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Biomarkers | Research

“Salivary LINC00657 and miRNA-106a as diagnostic biomarkers for oral squamous cell carcinoma, an observational diagnostic study”

Authors: Nayroz Abdel Fattah Tarrad, Sandy Hassan, Olfat Gamil Shaker, Maha AbdelKawy

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

Early detection and diagnosis of malignant tumors is critical for improving the survival rate and treatment outcomes of oral cancer. Thus, the current prospective investigation was designed to verify the role, sensitivity, and specificity of salivary LINC00657 and miRNA-106a as diagnostic markers in oral squamous cell carcinoma patients as compared to oral lichen planus (as an example of oral potentially malignant disorders) and normal individuals, and to show LINC00657 relation to miR-106a.

Methods

A total of 36 participants were included, subdivided into 3 groups: Group I: 12 patients diagnosed with oral squamous cell carcinoma (OSCC). Group II: 12 patients diagnosed with oral lichen planus (OLP). Group III: 12 systemically free individuals with no oral mucosal lesions. Unstimulated salivary samples were collected from all participants to evaluate level of LINC00657 and miR-106a in different groups using quantitative real-time PCR.

Results

OSCC showed the highest LINC00657 and lowest miR-106a fold change among included groups. Receiver Operating Characteristic (ROC) curve analysis of the two biomarkers for detecting OSCC revealed that LINC00657 had higher diagnostic accuracy (DA) (83.3%) compared to miR-106a (80.4%). As for detecting OLP, ROC analysis showed that miR-106a had higher (DA) (61%) compared to LINC00657 (52.5%). To discriminate OSCC from OLP, the diagnostic accuracy of both markers is the same (75%). Moreover, differentiating OSCC grades II and III, ROC analysis showed that miR-106a had lower (DA) (60%) compared to LINC00657 (DA) (83.3%).

Conclusions

Salivary LINC00657 and miR-106a could be promising diagnostic markers for oral squamous cell carcinoma. Salivary LINC00657 may differentiate oral squamous cell carcinoma from oral potentially malignant disorders with considerable diagnostic accuracy. Moreover, low levels of salivary miR-106a could have the potential to indicate malignancy.

Trial registration

The study was retrospectively registered on clinicaltrial.gov with NCT05821179 (first trial registration in 26/3/2023), date of registration: 19/4/2023.
Appendix
Available only for authorised users
Literature
1.
go back to reference Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45:309–16.PubMedCrossRef Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009;45:309–16.PubMedCrossRef
2.
go back to reference Tandon P, Dadhich A, Saluja H, Bawane S, Sachdeva S. The prevalence of squamous cell carcinoma in different sites of oral cavity at our rural health Care Centre in Loni, Maharashtra - a retrospective 10-year study. Contemp Oncol (Pozn). 2017;21(2):178–83.PubMedPubMedCentral Tandon P, Dadhich A, Saluja H, Bawane S, Sachdeva S. The prevalence of squamous cell carcinoma in different sites of oral cavity at our rural health Care Centre in Loni, Maharashtra - a retrospective 10-year study. Contemp Oncol (Pozn). 2017;21(2):178–83.PubMedPubMedCentral
3.
go back to reference Warnakulasuriya S. Oral potentially malignant disorders: a comprehensive review on clinical aspects and management. Oral Oncol. 2020;102:104550.PubMedCrossRef Warnakulasuriya S. Oral potentially malignant disorders: a comprehensive review on clinical aspects and management. Oral Oncol. 2020;102:104550.PubMedCrossRef
4.
go back to reference Piyarathne NS, Rasnayake RMSGK, Angammana R, Chandrasekera P, Ramachandra S, Weerasekera M, et al. Diagnostic salivary biomarkers in oral cancer and oral potentially malignant disorders and their relationships to risk factors – a systematic review, expert rev. Mol Diagn. 2021;21(8):789–807. Piyarathne NS, Rasnayake RMSGK, Angammana R, Chandrasekera P, Ramachandra S, Weerasekera M, et al. Diagnostic salivary biomarkers in oral cancer and oral potentially malignant disorders and their relationships to risk factors – a systematic review, expert rev. Mol Diagn. 2021;21(8):789–807.
5.
go back to reference Ford P, Farah C. Early detection and diagnosis of oral cancer: strategies for improvement. J Cancer Policy. 2013;1:e2–7.CrossRef Ford P, Farah C. Early detection and diagnosis of oral cancer: strategies for improvement. J Cancer Policy. 2013;1:e2–7.CrossRef
6.
go back to reference Thompson-Harvey A, Yetukuri M, Hansen AR, Simpson MC, Adjei Boakye E, Varvares MA, et al. Rising incidence of late-stage head and neck cancer in the United States. Cancer. 2020;126:1090–101.PubMedCrossRef Thompson-Harvey A, Yetukuri M, Hansen AR, Simpson MC, Adjei Boakye E, Varvares MA, et al. Rising incidence of late-stage head and neck cancer in the United States. Cancer. 2020;126:1090–101.PubMedCrossRef
7.
go back to reference McCullough M, Prasad G, Farah C. Oral mucosal malignancy and potentially malignant lesions: an update on the epidemiology, risk factors, diagnosis, and management. Aust Dent J. 2010;55(Suppl. 1):61–5.PubMedCrossRef McCullough M, Prasad G, Farah C. Oral mucosal malignancy and potentially malignant lesions: an update on the epidemiology, risk factors, diagnosis, and management. Aust Dent J. 2010;55(Suppl. 1):61–5.PubMedCrossRef
8.
go back to reference Minhas S, Sajjad A, Kashif M, Taj F, Waddani HA, Khurshid Z. Oral ulcers presentation in systemic diseases: an update. Open Access Maced J Med Sci. 2019;7(19):3341–7.PubMedPubMedCentralCrossRef Minhas S, Sajjad A, Kashif M, Taj F, Waddani HA, Khurshid Z. Oral ulcers presentation in systemic diseases: an update. Open Access Maced J Med Sci. 2019;7(19):3341–7.PubMedPubMedCentralCrossRef
9.
go back to reference Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, et al. Long non-coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol. 2020;10:598817.PubMedPubMedCentralCrossRef Gao N, Li Y, Li J, Gao Z, Yang Z, Li Y, et al. Long non-coding RNAs: the regulatory mechanisms, research strategies, and future directions in cancers. Front Oncol. 2020;10:598817.PubMedPubMedCentralCrossRef
12.
go back to reference Ghafouri-Fard S, Azimi T, Hussen BM, Abak A, Taheri M, Dilmaghani NA. Non-coding RNA activated by DNA damage: review of its roles in the carcinogenesis. Front Cell Dev Biol. 2021;9:714787.PubMedPubMedCentralCrossRef Ghafouri-Fard S, Azimi T, Hussen BM, Abak A, Taheri M, Dilmaghani NA. Non-coding RNA activated by DNA damage: review of its roles in the carcinogenesis. Front Cell Dev Biol. 2021;9:714787.PubMedPubMedCentralCrossRef
13.
go back to reference Zhou K, Ou Q, Wang G, Zhang W, Hao Y, Li W. High long non-coding RNA NORAD expression predicts poor prognosis and promotes breast cancer progression by regulating TGF-b pathway. Cancer Cell Int. 2019;19:1–7.CrossRef Zhou K, Ou Q, Wang G, Zhang W, Hao Y, Li W. High long non-coding RNA NORAD expression predicts poor prognosis and promotes breast cancer progression by regulating TGF-b pathway. Cancer Cell Int. 2019;19:1–7.CrossRef
14.
go back to reference Yu S, et al. Silencing the long noncoding RNA NORAD inhibits gastric cancer cell proliferation and invasion by the RhoA/ROCK1 pathway. Eur Rev Med Pharmacol Sci. 2019;23:3760–70.PubMed Yu S, et al. Silencing the long noncoding RNA NORAD inhibits gastric cancer cell proliferation and invasion by the RhoA/ROCK1 pathway. Eur Rev Med Pharmacol Sci. 2019;23:3760–70.PubMed
15.
go back to reference Yang X, Cai JB, Peng R, Wei CY, Lu JC, Gao C, et al. The long noncoding RNA NORAD enhances the TGF-b pathway to promote hepatocellular carcinoma progression by targeting miR-202-5p. J Cell Physiol. 2019;234:12051–60.PubMedCrossRef Yang X, Cai JB, Peng R, Wei CY, Lu JC, Gao C, et al. The long noncoding RNA NORAD enhances the TGF-b pathway to promote hepatocellular carcinoma progression by targeting miR-202-5p. J Cell Physiol. 2019;234:12051–60.PubMedCrossRef
16.
go back to reference Huang Q, Xing S, Peng A, Yu Z. NORAD accelerates chemoresistance of non-small-cell lung cancer via targeting at miR-129-1 3p/SOX4 axis. Biosci Rep. 2020;40(1):BSR20193489.PubMedPubMedCentralCrossRef Huang Q, Xing S, Peng A, Yu Z. NORAD accelerates chemoresistance of non-small-cell lung cancer via targeting at miR-129-1 3p/SOX4 axis. Biosci Rep. 2020;40(1):BSR20193489.PubMedPubMedCentralCrossRef
17.
go back to reference Xu F, Xu X, Hu X. LINC00657 promotes malignant progression of oral squamous cell carcinoma via regulating microRNA-150. Eur Rev Med Pharmacol Sci. 2020;24:2482–90.PubMed Xu F, Xu X, Hu X. LINC00657 promotes malignant progression of oral squamous cell carcinoma via regulating microRNA-150. Eur Rev Med Pharmacol Sci. 2020;24:2482–90.PubMed
18.
go back to reference Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294:862–4.PubMedCrossRef Lee RC, Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294:862–4.PubMedCrossRef
19.
go back to reference Li Z, Yu X, Wang Y, Shen J, Wu WK, Liang J, et al. By downregulating TIAM1 expression, microRNA-329 suppresses gastric cancer invasion and growth. Onco Target. 2015a;6:17559–69. Li Z, Yu X, Wang Y, Shen J, Wu WK, Liang J, et al. By downregulating TIAM1 expression, microRNA-329 suppresses gastric cancer invasion and growth. Onco Target. 2015a;6:17559–69.
20.
go back to reference Li Z, Lei H, Luo M, Wang Y, Dong L, Ma Y, et al. DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer. 2015b;18:43–54.PubMedCrossRef Li Z, Lei H, Luo M, Wang Y, Dong L, Ma Y, et al. DNA methylation downregulated mir-10b acts as a tumor suppressor in gastric cancer. Gastric Cancer. 2015b;18:43–54.PubMedCrossRef
21.
go back to reference Yu X, Li Z. The role of miRNAs in cutaneous squamous cell carcinoma. J Cell Mol Med. 2016;20:3–9.PubMedCrossRef Yu X, Li Z. The role of miRNAs in cutaneous squamous cell carcinoma. J Cell Mol Med. 2016;20:3–9.PubMedCrossRef
22.
go back to reference Pan YJ, Wei LL, Wu XJ, Huo FC, Mou J, Pei DS. MiR-106a-5p inhibits the cell migration and invasion of renal cell carcinoma through targeting PAK5. Cell Death Dis. 2017;8:e3155.PubMedPubMedCentralCrossRef Pan YJ, Wei LL, Wu XJ, Huo FC, Mou J, Pei DS. MiR-106a-5p inhibits the cell migration and invasion of renal cell carcinoma through targeting PAK5. Cell Death Dis. 2017;8:e3155.PubMedPubMedCentralCrossRef
23.
go back to reference Shin SS, Park SS, Hwang B, Kim WT, Choi YH, Kim WJ, et al. MicroRNA-106a suppresses proliferation, migration, and invasion of bladder cancer cells by modulating MAPK signaling cell cycle regulators, and Ets-1-mediated MMP-2 expression. Oncol Rep. 2016;36:2421–9.PubMedCrossRef Shin SS, Park SS, Hwang B, Kim WT, Choi YH, Kim WJ, et al. MicroRNA-106a suppresses proliferation, migration, and invasion of bladder cancer cells by modulating MAPK signaling cell cycle regulators, and Ets-1-mediated MMP-2 expression. Oncol Rep. 2016;36:2421–9.PubMedCrossRef
24.
25.
go back to reference El-Naggar AK, Chan J, Grandis J, Takata T, Slootweg P. WHO classification of head and neck tumours. 4th ed; 2017. p. 105–11. El-Naggar AK, Chan J, Grandis J, Takata T, Slootweg P. WHO classification of head and neck tumours. 4th ed; 2017. p. 105–11.
27.
go back to reference World Health Organization. Cancer and pre-cancer classification systems, Annex 4. In: In Comprehensive Cervical Cancer Control: A Guide to Essential Practice. 2nd ed. World Health Organization; 2014. World Health Organization. Cancer and pre-cancer classification systems, Annex 4. In: In Comprehensive Cervical Cancer Control: A Guide to Essential Practice. 2nd ed. World Health Organization; 2014.
28.
go back to reference Omar E. Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma—a systematic review. Head Face Med. 2015;11:6.PubMedPubMedCentralCrossRef Omar E. Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma—a systematic review. Head Face Med. 2015;11:6.PubMedPubMedCentralCrossRef
29.
go back to reference Carrozzo M, Thorpe R. Oral lichen planus: a review. Minerva Stomatol. 2009;58:519–37.PubMed Carrozzo M, Thorpe R. Oral lichen planus: a review. Minerva Stomatol. 2009;58:519–37.PubMed
30.
go back to reference Colema DV, Evans DM, Baker R, editors. Histological methods and type of biopsy. Biopsy pathology and cytology of the cervix. 2nd ed. London: Arnold Company; 1999. p. 40. Colema DV, Evans DM, Baker R, editors. Histological methods and type of biopsy. Biopsy pathology and cytology of the cervix. 2nd ed. London: Arnold Company; 1999. p. 40.
31.
go back to reference Kerr DA, Millard HD. Oral Diagnosis. In: CV. 2nd ed. Saint-Louis: Mosby Company; 1965. p. 17. Kerr DA, Millard HD. Oral Diagnosis. In: CV. 2nd ed. Saint-Louis: Mosby Company; 1965. p. 17.
32.
go back to reference Navazesh M. Methods for collecting saliva. Ann N.Y. Acad Sci. 1993;694:72–7.CrossRef Navazesh M. Methods for collecting saliva. Ann N.Y. Acad Sci. 1993;694:72–7.CrossRef
33.
go back to reference Shaker OG, Ali MA, Ahmed TI, Zaki OM, Ali DY, Hassan EA, et al. Association between LINC00657 and miR-106a serum expression levels and susceptibility to colorectal Cancer, adenomatous polyposis, and ulcerative colitis in Egyptian population. IUBMB Life. 2019;71:(9):1322–35.CrossRef Shaker OG, Ali MA, Ahmed TI, Zaki OM, Ali DY, Hassan EA, et al. Association between LINC00657 and miR-106a serum expression levels and susceptibility to colorectal Cancer, adenomatous polyposis, and ulcerative colitis in Egyptian population. IUBMB Life. 2019;71:(9):1322–35.CrossRef
34.
go back to reference Chaudhari V, Pradeep GL, Prakash N, Mahajan AM. Estimation of salivary sialic acid in oral premalignancy and oral squamous cell carcinoma. Contemp Clin Dent. 2016;7:451–6.PubMedPubMedCentralCrossRef Chaudhari V, Pradeep GL, Prakash N, Mahajan AM. Estimation of salivary sialic acid in oral premalignancy and oral squamous cell carcinoma. Contemp Clin Dent. 2016;7:451–6.PubMedPubMedCentralCrossRef
35.
go back to reference Guruaribam VD, Sarumathi T. Relevance of serum and salivary sialic acid in oral cancer diagnostics. J Can Res Ther. 2020;16:401–4.CrossRef Guruaribam VD, Sarumathi T. Relevance of serum and salivary sialic acid in oral cancer diagnostics. J Can Res Ther. 2020;16:401–4.CrossRef
37.
go back to reference Slaby O, Laga R, Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. Biochem J. 2017;474:4219–51.PubMedCrossRef Slaby O, Laga R, Sedlacek O. Therapeutic targeting of non-coding RNAs in cancer. Biochem J. 2017;474:4219–51.PubMedCrossRef
38.
go back to reference Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18.PubMedCrossRef Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18:5–18.PubMedCrossRef
39.
go back to reference Wang M, Jiang S, Yu F, Zhou L, Wang K. Noncoding RNAs as molecular targets of resveratrol underlying its anticancer effects. J Agric Food Chem. 2019;67:4709–19.PubMedCrossRef Wang M, Jiang S, Yu F, Zhou L, Wang K. Noncoding RNAs as molecular targets of resveratrol underlying its anticancer effects. J Agric Food Chem. 2019;67:4709–19.PubMedCrossRef
40.
go back to reference Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene induced DNA damage model for cancer development. Science. 2008;319:1352–5.PubMedCrossRef Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene induced DNA damage model for cancer development. Science. 2008;319:1352–5.PubMedCrossRef
41.
go back to reference Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. 2016;164:69–80.PubMedCrossRef Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. 2016;164:69–80.PubMedCrossRef
42.
go back to reference Xie Z, Zhou F, Yang Y, Li L, Lei Y, Lin X, et al. Lnc-PCDH9-13:1 is a hypersensitive and specific biomarker for early hepatocellular carcinoma. EBioMedicine. 2018;33:57–67.PubMedPubMedCentralCrossRef Xie Z, Zhou F, Yang Y, Li L, Lei Y, Lin X, et al. Lnc-PCDH9-13:1 is a hypersensitive and specific biomarker for early hepatocellular carcinoma. EBioMedicine. 2018;33:57–67.PubMedPubMedCentralCrossRef
43.
go back to reference Hu B, Cai H, Zheng R, Yang S, Zhou Z, Tu J. Long non-coding RNA 657 suppresses hepatocellular carcinoma cell growth by acting as a molecular sponge of miR-106a-5p to regulate PTEN expression. Int J Biochem Cell Biol. 2017;92:34–42.PubMedCrossRef Hu B, Cai H, Zheng R, Yang S, Zhou Z, Tu J. Long non-coding RNA 657 suppresses hepatocellular carcinoma cell growth by acting as a molecular sponge of miR-106a-5p to regulate PTEN expression. Int J Biochem Cell Biol. 2017;92:34–42.PubMedCrossRef
44.
go back to reference Sun Y, Wang J, Pan S, Yang T, Sun X, Wang Y, et al. LINC00657 played oncogenic roles in esophageal squamous cell carcinoma by targeting miR-615-3p and JunB. Biomed Pharmacother. 2018;108:316–24.PubMedCrossRef Sun Y, Wang J, Pan S, Yang T, Sun X, Wang Y, et al. LINC00657 played oncogenic roles in esophageal squamous cell carcinoma by targeting miR-615-3p and JunB. Biomed Pharmacother. 2018;108:316–24.PubMedCrossRef
45.
go back to reference Bi S, Wang Y, Feng H, Li Q. Long noncoding RNA LINC00657 enhances the malignancy of pancreatic ductal adenocarcinoma by acting as a competing endogenous RNA on microRNA-433 to increase PAK4 expression. Cell Cycle. 2020;19:801–16.PubMedPubMedCentralCrossRef Bi S, Wang Y, Feng H, Li Q. Long noncoding RNA LINC00657 enhances the malignancy of pancreatic ductal adenocarcinoma by acting as a competing endogenous RNA on microRNA-433 to increase PAK4 expression. Cell Cycle. 2020;19:801–16.PubMedPubMedCentralCrossRef
46.
go back to reference Farag AF, Abou-Alnour DA, Abu-Taleb NS. Oral carcinoma cuniculatum, an unacquainted variant of oral squamous cell carcinoma: a systematic review. Imaging Sci Dent. 2018;48(4):233–44.PubMedPubMedCentralCrossRef Farag AF, Abou-Alnour DA, Abu-Taleb NS. Oral carcinoma cuniculatum, an unacquainted variant of oral squamous cell carcinoma: a systematic review. Imaging Sci Dent. 2018;48(4):233–44.PubMedPubMedCentralCrossRef
Metadata
Title
“Salivary LINC00657 and miRNA-106a as diagnostic biomarkers for oral squamous cell carcinoma, an observational diagnostic study”
Authors
Nayroz Abdel Fattah Tarrad
Sandy Hassan
Olfat Gamil Shaker
Maha AbdelKawy
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Biomarkers
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03726-0

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue