Skip to main content
Top
Published in: Journal of Translational Medicine 1/2021

Open Access 01-12-2021 | Biomarkers | Research

Identifying the functions of two biomarkers in human oligodendrocyte progenitor cell development

Authors: Haipeng Zhou, Ying He, Zhaoyan Wang, Qian Wang, Caiyan Hu, Xiaohua Wang, Siliang Lu, Ke Li, Yinxiang Yang, Zuo Luan

Published in: Journal of Translational Medicine | Issue 1/2021

Login to get access

Abstract

Background

Human oligodendrocyte precursor cells (hOPCs) are an important source of myelinating cells for cell transplantation to treat demyelinating diseases. Myelin oligodendrocytes develop from migratory and proliferative hOPCs. It is well known that NG2 and A2B5 are important biological markers of hOPCs. However, the functional differences between the cell populations represented by these two biomarkers have not been well studied in depth.

Objective

To study the difference between NG2 and A2B5 cells in the development of human oligodendrocyte progenitor cells.

Methods

Using cell sorting technology, we obtained NG2+/−, A2B5+/− cells. Further research was then conducted via in vitro cell proliferation and migration assays, single-cell sequencing, mRNA sequencing, and cell transplantation into shiverer mice.

Results

The proportion of PDGFR-α + cells in the negative cell population was higher than that in the positive cell population. The migration ability of the NG2+/−, A2B5+/− cells was inversely proportional to their myelination ability. The migration, proliferation, and myelination capacities of the negative cell population were stronger than those of the positive cell population. The ability of cell migration and proliferation of the four groups of cells from high to low was: A2B5− > NG2− > NG2+ > A2B5+. The content of PDGFR-α+ cells and the ability of cell differentiation from high to low was: NG2− > A2B5− > A2B5+ > NG2+.

Conclusion

In summary, NG2+  and A2B5+ cells have poor myelination ability due to low levels of PDGFR-α+ cells. Therefore, hOPCs with a higher content of PDGFR-α+ cells may have a better effect in the cell transplantation treatment of demyelinating diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Alexanian A, Svendsen C, Crowe M, Kurpad S. Transplantation of human glial-restricted neural precursors into injured spinal cord promotes functional and sensory recovery without causing allodynia. Cytotherapy. 2011;13(1):61–8.CrossRef Alexanian A, Svendsen C, Crowe M, Kurpad S. Transplantation of human glial-restricted neural precursors into injured spinal cord promotes functional and sensory recovery without causing allodynia. Cytotherapy. 2011;13(1):61–8.CrossRef
2.
go back to reference Dietrich J, Noble M, Mayer-Proschel M. Characterization of A2B5+ glial precursor cells from cryopreserved human fetal brain progenitor cells. Glia. 2002;40(1):65–77.CrossRef Dietrich J, Noble M, Mayer-Proschel M. Characterization of A2B5+ glial precursor cells from cryopreserved human fetal brain progenitor cells. Glia. 2002;40(1):65–77.CrossRef
3.
go back to reference Roy N, Wang S, Harrison-Restelli C, Benraiss A, Fraser R, Gravel M, et al. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J Neurosci Off J Soc Neurosci. 1999;19(22):9986–95.CrossRef Roy N, Wang S, Harrison-Restelli C, Benraiss A, Fraser R, Gravel M, et al. Identification, isolation, and promoter-defined separation of mitotic oligodendrocyte progenitor cells from the adult human subcortical white matter. J Neurosci Off J Soc Neurosci. 1999;19(22):9986–95.CrossRef
4.
go back to reference Windrem M, Nunes M, Rashbaum W, Schwartz T, Goodman R, McKhann G, et al. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med. 2004;10(1):93–7.CrossRef Windrem M, Nunes M, Rashbaum W, Schwartz T, Goodman R, McKhann G, et al. Fetal and adult human oligodendrocyte progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med. 2004;10(1):93–7.CrossRef
5.
go back to reference Izrael M, Zhang P, Kaufman R, Shinder V, Ella R, Amit M, et al. Human oligodendrocytes derived from embryonic stem cells: effect of noggin on phenotypic differentiation in vitro and on myelination in vivo. Mol Cell Neurosci. 2007;34(3):310–23.CrossRef Izrael M, Zhang P, Kaufman R, Shinder V, Ella R, Amit M, et al. Human oligodendrocytes derived from embryonic stem cells: effect of noggin on phenotypic differentiation in vitro and on myelination in vivo. Mol Cell Neurosci. 2007;34(3):310–23.CrossRef
6.
go back to reference Keirstead H, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci Off J Soc Neurosci. 2005;25(19):4694–705.CrossRef Keirstead H, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci Off J Soc Neurosci. 2005;25(19):4694–705.CrossRef
7.
go back to reference Douvaras P, Wang J, Zimmer M, Hanchuk S, O’Bara M, Sadiq S, et al. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem cell reports. 2014;3(2):250–9.CrossRef Douvaras P, Wang J, Zimmer M, Hanchuk S, O’Bara M, Sadiq S, et al. Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem cell reports. 2014;3(2):250–9.CrossRef
8.
go back to reference Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 2013;12(2):252–64.CrossRef Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 2013;12(2):252–64.CrossRef
9.
go back to reference Hart I, Richardson W, Bolsover S, Raff M. PDGF and intracellular signaling in the timing of oligodendrocyte differentiation. J Cell Biol. 1989;109:3411–7.CrossRef Hart I, Richardson W, Bolsover S, Raff M. PDGF and intracellular signaling in the timing of oligodendrocyte differentiation. J Cell Biol. 1989;109:3411–7.CrossRef
10.
go back to reference Wolswijk G, Noble M. Identification of an adult-specific glial progenitor cell. Development (Cambridge, England). 1989;105(2):387–400.CrossRef Wolswijk G, Noble M. Identification of an adult-specific glial progenitor cell. Development (Cambridge, England). 1989;105(2):387–400.CrossRef
11.
go back to reference Lyu Q, Zhang Z, Fu S, Xiong L, Liu J, Wang T. Microarray expression profile of lncRNAs and mRNAs in rats with traumatic brain injury after A2B5+ cell transplantation. Cell Transplant. 2017;26(10):1622–35.CrossRef Lyu Q, Zhang Z, Fu S, Xiong L, Liu J, Wang T. Microarray expression profile of lncRNAs and mRNAs in rats with traumatic brain injury after A2B5+ cell transplantation. Cell Transplant. 2017;26(10):1622–35.CrossRef
12.
go back to reference Baracskay K, Kidd G, Miller R, Trapp B. NG2-positive cells generate A2B5-positive oligodendrocyte precursor cells. Glia. 2007;55(10):1001–10.CrossRef Baracskay K, Kidd G, Miller R, Trapp B. NG2-positive cells generate A2B5-positive oligodendrocyte precursor cells. Glia. 2007;55(10):1001–10.CrossRef
13.
go back to reference Ju P, Liu R, Yang H, Xia Y, Feng Z. Clonal analysis for elucidating the lineage potential of embryonic NG2+ cells. Cytotherapy. 2012;14(5):608–20.CrossRef Ju P, Liu R, Yang H, Xia Y, Feng Z. Clonal analysis for elucidating the lineage potential of embryonic NG2+ cells. Cytotherapy. 2012;14(5):608–20.CrossRef
14.
go back to reference Lu Y, Yang Y, Wang Z, Wang C, Du Q, Wang Q, et al. Isolation and culture of human oligodendrocyte precursor cells from neurospheres. Brain Res Bull. 2015;118:17–24.CrossRef Lu Y, Yang Y, Wang Z, Wang C, Du Q, Wang Q, et al. Isolation and culture of human oligodendrocyte precursor cells from neurospheres. Brain Res Bull. 2015;118:17–24.CrossRef
15.
go back to reference Paik DT, Tian L, Williams IM, Liu C, Wu JC. Abstract 642: single-cell RNA-seq unveils unique transcriptomic signatures of organ-specific endothelial cells. Circul Res. 2019;125(Suppl_1). Paik DT, Tian L, Williams IM, Liu C, Wu JC. Abstract 642: single-cell RNA-seq unveils unique transcriptomic signatures of organ-specific endothelial cells. Circul Res. 2019;125(Suppl_1).
16.
go back to reference Feng B, Zhu J, Xu Y, Chen W, Cao H. Immunosuppressive effects of mesenchymal stem cells on lung B cell gene expression in LPS-induced acute lung injury. Stem Cell Res Ther. 2020;11(1):418.CrossRef Feng B, Zhu J, Xu Y, Chen W, Cao H. Immunosuppressive effects of mesenchymal stem cells on lung B cell gene expression in LPS-induced acute lung injury. Stem Cell Res Ther. 2020;11(1):418.CrossRef
17.
go back to reference Liu T, Zhu B, Liu Y, Zhang X, Yin J, Li X, et al. Multi-omic comparison of Alzheimer’s variants in human ESC-derived microglia reveals convergence at APOE. J Exp Med. 2020;217(12). Liu T, Zhu B, Liu Y, Zhang X, Yin J, Li X, et al. Multi-omic comparison of Alzheimer’s variants in human ESC-derived microglia reveals convergence at APOE. J Exp Med. 2020;217(12).
18.
go back to reference Seong R, Lee J, Cho G, Kumar M, Shin O. mRNA and miRNA profiling of Zika virus-infected human umbilical cord mesenchymal stem cells identifies miR-142-5p as an antiviral factor. Emerg Microb Infect. 2020;9(1):2061–75.CrossRef Seong R, Lee J, Cho G, Kumar M, Shin O. mRNA and miRNA profiling of Zika virus-infected human umbilical cord mesenchymal stem cells identifies miR-142-5p as an antiviral factor. Emerg Microb Infect. 2020;9(1):2061–75.CrossRef
19.
go back to reference Wang J, Liu X, Qiu Y, Shi Y, Cai J, Wang B, et al. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J Hematol Oncol. 2018;11(1):11.CrossRef Wang J, Liu X, Qiu Y, Shi Y, Cai J, Wang B, et al. Cell adhesion-mediated mitochondria transfer contributes to mesenchymal stem cell-induced chemoresistance on T cell acute lymphoblastic leukemia cells. J Hematol Oncol. 2018;11(1):11.CrossRef
20.
go back to reference Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Investig. 2019;129(4):1566–80.CrossRef Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Investig. 2019;129(4):1566–80.CrossRef
21.
go back to reference Uchida N, Chen K, Dohse M, Hansen K, Dean J, Buser J, et al. Human neural stem cells induce functional myelination in mice with severe dysmyelination. Sci Transl Med. 2012;4(155):155ra36.CrossRef Uchida N, Chen K, Dohse M, Hansen K, Dean J, Buser J, et al. Human neural stem cells induce functional myelination in mice with severe dysmyelination. Sci Transl Med. 2012;4(155):155ra36.CrossRef
22.
go back to reference Mitome M, Low H, van den Pol A, Nunnari J, Wolf M, Billings-Gagliardi S, et al. Towards the reconstruction of central nervous system white matter using neural precursor cells. Brain J Neurol. 2001;124:2147–61.CrossRef Mitome M, Low H, van den Pol A, Nunnari J, Wolf M, Billings-Gagliardi S, et al. Towards the reconstruction of central nervous system white matter using neural precursor cells. Brain J Neurol. 2001;124:2147–61.CrossRef
23.
go back to reference Lei, Chen, XiaoYong, Pan, Yu-Hang, Zhang, et al. Classification of widely and rarely expressed genes with recurrent neural network. 2018. Lei, Chen, XiaoYong, Pan, Yu-Hang, Zhang, et al. Classification of widely and rarely expressed genes with recurrent neural network. 2018.
24.
go back to reference Schneider C, Rasband W, Eliceiri K. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.CrossRef Schneider C, Rasband W, Eliceiri K. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.CrossRef
25.
go back to reference Fu C, Zhou H, Wang Y, Liu D, Li J, Deng H, et al. One-pot synthesis of dextran-coated iron oxide nanoclusters for real-time regional lymph node mapping. Int J Nanomed. 2017;12:3365–74.CrossRef Fu C, Zhou H, Wang Y, Liu D, Li J, Deng H, et al. One-pot synthesis of dextran-coated iron oxide nanoclusters for real-time regional lymph node mapping. Int J Nanomed. 2017;12:3365–74.CrossRef
26.
go back to reference Diers-Fenger M, Kirchhoff F, Kettenmann H, Levine J, Trotter J. AN2/NG2 protein-expressing glial progenitor cells in the murine CNS: isolation, differentiation, and association with radial glia. Glia. 2001;34(3):213–28.CrossRef Diers-Fenger M, Kirchhoff F, Kettenmann H, Levine J, Trotter J. AN2/NG2 protein-expressing glial progenitor cells in the murine CNS: isolation, differentiation, and association with radial glia. Glia. 2001;34(3):213–28.CrossRef
27.
go back to reference Stallcup W. The NG2 antigen, a putative lineage marker: immunofluorescent localization in primary cultures of rat brain. Dev Biol. 1981;83(1):154–65.CrossRef Stallcup W. The NG2 antigen, a putative lineage marker: immunofluorescent localization in primary cultures of rat brain. Dev Biol. 1981;83(1):154–65.CrossRef
28.
go back to reference Esmonde-White C, Yaqubi M, Bilodeau P, Cui Q, Pernin F, Larochelle C, et al. Distinct function-related molecular profile of adult human A2B5-positive pre-oligodendrocytes versus mature oligodendrocytes. J Neuropathol Exp Neurol. 2019;78(6):468–79.CrossRef Esmonde-White C, Yaqubi M, Bilodeau P, Cui Q, Pernin F, Larochelle C, et al. Distinct function-related molecular profile of adult human A2B5-positive pre-oligodendrocytes versus mature oligodendrocytes. J Neuropathol Exp Neurol. 2019;78(6):468–79.CrossRef
29.
go back to reference Schonberg D, Goldstein E, Sahinkaya F, Wei P, Popovich P, McTigue D. Ferritin stimulates oligodendrocyte genesis in the adult spinal cord and can be transferred from macrophages to NG2 cells in vivo. J Neurosci Off J Soc Neurosci. 2012;32(16):5374–84.CrossRef Schonberg D, Goldstein E, Sahinkaya F, Wei P, Popovich P, McTigue D. Ferritin stimulates oligodendrocyte genesis in the adult spinal cord and can be transferred from macrophages to NG2 cells in vivo. J Neurosci Off J Soc Neurosci. 2012;32(16):5374–84.CrossRef
30.
go back to reference Sim FJ, Mcclain CR, Schanz SJ, Protack TL, Windrem MS, Goldman SA. CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells. Nat Biotechnol. 2011;29(10):934–41.CrossRef Sim FJ, Mcclain CR, Schanz SJ, Protack TL, Windrem MS, Goldman SA. CD140a identifies a population of highly myelinogenic, migration-competent and efficiently engrafting human oligodendrocyte progenitor cells. Nat Biotechnol. 2011;29(10):934–41.CrossRef
Metadata
Title
Identifying the functions of two biomarkers in human oligodendrocyte progenitor cell development
Authors
Haipeng Zhou
Ying He
Zhaoyan Wang
Qian Wang
Caiyan Hu
Xiaohua Wang
Siliang Lu
Ke Li
Yinxiang Yang
Zuo Luan
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Biomarkers
Published in
Journal of Translational Medicine / Issue 1/2021
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-021-02857-8

Other articles of this Issue 1/2021

Journal of Translational Medicine 1/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.