Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2015

01-06-2015

Association of chromosome 19 to lung cancer genotypes and phenotypes

Authors: Xiangdong Wang, Yong Zhang, Carol L. Nilsson, Frode S. Berven, Per E. Andrén, Elisabet Carlsohn, Peter Horvatovich, Johan Malm, Manuel Fuentes, Ákos Végvári, Charlotte Welinder, Thomas E. Fehniger, Melinda Rezeli, Goutham Edula, Sophia Hober, Toshihide Nishimura, György Marko-Varga

Published in: Cancer and Metastasis Reviews | Issue 2/2015

Login to get access

Abstract

The Chromosome 19 Consortium, a part of the Chromosome-Centric Human Proteome Project (C-HPP, http://​www.​C-HPP.​org), is tasked with the understanding chromosome 19 functions at the gene and protein levels, as well as their roles in lung oncogenesis. Comparative genomic hybridization (CGH) studies revealed chromosome aberration in lung cancer subtypes, including ADC, SCC, LCC, and SCLC. The most common abnormality is 19p loss and 19q gain. Sixty-four aberrant genes identified in previous genomic studies and their encoded protein functions were further validated in the neXtProt database (http://​www.​nextprot.​org/​). Among those, the loss of tumor suppressor genes STK11, MUM1, KISS1R (19p13.3), and BRG1 (19p13.13) is associated with lung oncogenesis or remote metastasis. Gene aberrations include translocation t(15, 19) (q13, p13.1) fusion oncogene BRD4-NUT, DNA repair genes (ERCC1, ERCC2, XRCC1), TGFβ1 pathway activation genes (TGFB1, LTBP4), Dyrk1B, and potential oncogenesis protector genes such as NFkB pathway inhibition genes (NFKBIB, PPP1R13L) and EGLN2. In conclusion, neXtProt is an effective resource for the validation of gene aberrations identified in genomic studies. It promises to enhance our understanding of lung cancer oncogenesis.
Literature
1.
go back to reference Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians. doi:10.3322/caac.21262. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., & Jemal, A. (2015). Global cancer statistics, 2012. CA: A Cancer Journal for Clinicians. doi:10.​3322/​caac.​21262.
2.
3.
go back to reference Allemani, C., Weir, H. K., Carreira, H., Harewood, R., Spika, D., Wang, X. S., et al. (2014). Global surveillance of cancer survival 1995-2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. doi:10.1016/S0140-6736(14)62038-9.PubMed Allemani, C., Weir, H. K., Carreira, H., Harewood, R., Spika, D., Wang, X. S., et al. (2014). Global surveillance of cancer survival 1995-2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. doi:10.​1016/​S0140-6736(14)62038-9.PubMed
4.
go back to reference Bronte, G., Rizzo, S., La Paglia, L., Adamo, V., Siragusa, S., Ficorella, C., et al. (2010). Driver mutations and differential sensitivity to targeted therapies: a new approach to the treatment of lung adenocarcinoma. Cancer Treatment Reviews, 36(Suppl 3), S21–S29. doi:10.1016/S0305-7372(10)70016-5.PubMedCrossRef Bronte, G., Rizzo, S., La Paglia, L., Adamo, V., Siragusa, S., Ficorella, C., et al. (2010). Driver mutations and differential sensitivity to targeted therapies: a new approach to the treatment of lung adenocarcinoma. Cancer Treatment Reviews, 36(Suppl 3), S21–S29. doi:10.​1016/​S0305-7372(10)70016-5.PubMedCrossRef
5.
go back to reference Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448(7153), 561–566. doi:10.1038/nature05945.PubMedCrossRef Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448(7153), 561–566. doi:10.​1038/​nature05945.PubMedCrossRef
8.
go back to reference Paik, Y. K., Jeong, S. K., Omenn, G. S., Uhlen, M., Hanash, S., Cho, S. Y., et al. (2012). The chromosome-centric human proteome project for cataloging proteins encoded in the genome. Nature Biotechnology, 30(3), 221–223. doi:10.1038/nbt.2152.PubMedCrossRef Paik, Y. K., Jeong, S. K., Omenn, G. S., Uhlen, M., Hanash, S., Cho, S. Y., et al. (2012). The chromosome-centric human proteome project for cataloging proteins encoded in the genome. Nature Biotechnology, 30(3), 221–223. doi:10.​1038/​nbt.​2152.PubMedCrossRef
11.
go back to reference Nilsson, C. L., Berven, F., Selheim, F., Liu, H., Moskal, J. R., Kroes, R. A., et al. (2013). Chromosome 19 annotations with disease speciation: a first report from the Global Research Consortium. Journal of Proteome Research, 12(1), 135–150. doi:10.1021/pr3008607.PubMedCentralPubMedCrossRef Nilsson, C. L., Berven, F., Selheim, F., Liu, H., Moskal, J. R., Kroes, R. A., et al. (2013). Chromosome 19 annotations with disease speciation: a first report from the Global Research Consortium. Journal of Proteome Research, 12(1), 135–150. doi:10.​1021/​pr3008607.PubMedCentralPubMedCrossRef
12.
go back to reference Lichti, C. F., Liu, H., Shavkunov, A. S., Mostovenko, E., Sulman, E. P., Ezhilarasan, R., et al. (2014). Integrated chromosome 19 transcriptomic and proteomic data sets derived from glioma cancer stem-cell lines. Journal of Proteome Research, 13(1), 191–199. doi:10.1021/pr400786s.PubMedCrossRef Lichti, C. F., Liu, H., Shavkunov, A. S., Mostovenko, E., Sulman, E. P., Ezhilarasan, R., et al. (2014). Integrated chromosome 19 transcriptomic and proteomic data sets derived from glioma cancer stem-cell lines. Journal of Proteome Research, 13(1), 191–199. doi:10.​1021/​pr400786s.PubMedCrossRef
13.
go back to reference Lichti, C. F., Mostovenko, E., Wadsworth, P. A., Lynch, G. C., Pettitt, B. M., Sulman, E. P., et al. (2015). Systematic identification of single amino Acid variants in glioma stem-cell-derived chromosome 19 proteins. Journal of Proteome Research, 14(2), 778–786. doi:10.1021/pr500810g.PubMedCrossRef Lichti, C. F., Mostovenko, E., Wadsworth, P. A., Lynch, G. C., Pettitt, B. M., Sulman, E. P., et al. (2015). Systematic identification of single amino Acid variants in glioma stem-cell-derived chromosome 19 proteins. Journal of Proteome Research, 14(2), 778–786. doi:10.​1021/​pr500810g.PubMedCrossRef
14.
15.
go back to reference Marko-Varga, G., Lindberg, H., Lofdahl, C. G., Jonsson, P., Hansson, L., Dahlback, M., et al. (2005). Discovery of biomarker candidates within disease by protein profiling: principles and concepts. Journal of Proteome Research, 4(4), 1200–1212. doi:10.1021/pr050122w.PubMedCrossRef Marko-Varga, G., Lindberg, H., Lofdahl, C. G., Jonsson, P., Hansson, L., Dahlback, M., et al. (2005). Discovery of biomarker candidates within disease by protein profiling: principles and concepts. Journal of Proteome Research, 4(4), 1200–1212. doi:10.​1021/​pr050122w.PubMedCrossRef
16.
go back to reference Yen, C. C., Liang, S. C., Jong, Y. J., Chen, Y. J., Lin, C. H., Chen, Y. M., et al. (2007). Chromosomal aberrations of malignant pleural effusions of lung adenocarcinoma: different cytogenetic changes are correlated with genders and smoking habits. Lung Cancer, 57(3), 292–301. doi:10.1016/j.lungcan.2007.04.007.PubMedCrossRef Yen, C. C., Liang, S. C., Jong, Y. J., Chen, Y. J., Lin, C. H., Chen, Y. M., et al. (2007). Chromosomal aberrations of malignant pleural effusions of lung adenocarcinoma: different cytogenetic changes are correlated with genders and smoking habits. Lung Cancer, 57(3), 292–301. doi:10.​1016/​j.​lungcan.​2007.​04.​007.PubMedCrossRef
17.
go back to reference Choi, J. S., Zheng, L. T., Ha, E., Lim, Y. J., Kim, Y. H., Wang, Y. P., et al. (2006). Comparative genomic hybridization array analysis and real-time PCR reveals genomic copy number alteration for lung adenocarcinomas. Lung, 184(6), 355–362. doi:10.1007/s00408-006-0009-0.PubMedCrossRef Choi, J. S., Zheng, L. T., Ha, E., Lim, Y. J., Kim, Y. H., Wang, Y. P., et al. (2006). Comparative genomic hybridization array analysis and real-time PCR reveals genomic copy number alteration for lung adenocarcinomas. Lung, 184(6), 355–362. doi:10.​1007/​s00408-006-0009-0.PubMedCrossRef
19.
go back to reference Wong, M. P., Lam, W. K., Wang, E., Chiu, S. W., Lam, C. L., & Chung, L. P. (2002). Primary adenocarcinomas of the lung in nonsmokers show a distinct pattern of allelic imbalance. Cancer Research, 62(15), 4464–4468.PubMed Wong, M. P., Lam, W. K., Wang, E., Chiu, S. W., Lam, C. L., & Chung, L. P. (2002). Primary adenocarcinomas of the lung in nonsmokers show a distinct pattern of allelic imbalance. Cancer Research, 62(15), 4464–4468.PubMed
21.
go back to reference Choi, Y. W., Choi, J. S., Zheng, L. T., Lim, Y. J., Yoon, H. K., Kim, Y. H., et al. (2007). Comparative genomic hybridization array analysis and real time PCR reveals genomic alterations in squamous cell carcinomas of the lung. Lung Cancer, 55(1), 43–51. doi:10.1016/j.lungcan.2006.09.018.PubMedCrossRef Choi, Y. W., Choi, J. S., Zheng, L. T., Lim, Y. J., Yoon, H. K., Kim, Y. H., et al. (2007). Comparative genomic hybridization array analysis and real time PCR reveals genomic alterations in squamous cell carcinomas of the lung. Lung Cancer, 55(1), 43–51. doi:10.​1016/​j.​lungcan.​2006.​09.​018.PubMedCrossRef
23.
go back to reference Kayser, K., Kosjerina, Z., Goldmann, T., Kayser, G., Kazmierczak, B., & Vollmer, E. (2005). Lung carcinoma-associated atypical adenomatoid hyperplasia, squamous cell dysplasia, and chromosome alterations in non-neoplastic bronchial mucosa. Lung Cancer, 47(2), 205–214. doi:10.1016/j.lungcan.2004.07.042.PubMedCrossRef Kayser, K., Kosjerina, Z., Goldmann, T., Kayser, G., Kazmierczak, B., & Vollmer, E. (2005). Lung carcinoma-associated atypical adenomatoid hyperplasia, squamous cell dysplasia, and chromosome alterations in non-neoplastic bronchial mucosa. Lung Cancer, 47(2), 205–214. doi:10.​1016/​j.​lungcan.​2004.​07.​042.PubMedCrossRef
25.
go back to reference Vogel, U., Laros, I., Jacobsen, N. R., Thomsen, B. L., Bak, H., Olsen, A., et al. (2004). Two regions in chromosome 19q13.2-3 are associated with risk of lung cancer. Mutation Research, 546(1-2), 65–74.PubMedCrossRef Vogel, U., Laros, I., Jacobsen, N. R., Thomsen, B. L., Bak, H., Olsen, A., et al. (2004). Two regions in chromosome 19q13.2-3 are associated with risk of lung cancer. Mutation Research, 546(1-2), 65–74.PubMedCrossRef
26.
27.
go back to reference Bloom, A. J., Baker, T. B., Chen, L. S., Breslau, N., Hatsukami, D., Bierut, L. J., et al. (2014). Variants in two adjacent genes, EGLN2 and CYP2A6, influence smoking behavior related to disease risk via different mechanisms. Human Molecular Genetics, 23(2), 555–561. doi:10.1093/hmg/ddt432.PubMedCentralPubMedCrossRef Bloom, A. J., Baker, T. B., Chen, L. S., Breslau, N., Hatsukami, D., Bierut, L. J., et al. (2014). Variants in two adjacent genes, EGLN2 and CYP2A6, influence smoking behavior related to disease risk via different mechanisms. Human Molecular Genetics, 23(2), 555–561. doi:10.​1093/​hmg/​ddt432.PubMedCentralPubMedCrossRef
31.
go back to reference Timofeeva, M. N., McKay, J. D., Smith, G. D., Johansson, M., Byrnes, G. B., Chabrier, A., et al. (2011). Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk of lung cancer in EPIC. Cancer Epidemiology, Biomarkers and Prevention, 20(10), 2250–2261. doi:10.1158/1055-9965.EPI-11-0496.PubMedCrossRef Timofeeva, M. N., McKay, J. D., Smith, G. D., Johansson, M., Byrnes, G. B., Chabrier, A., et al. (2011). Genetic polymorphisms in 15q25 and 19q13 loci, cotinine levels, and risk of lung cancer in EPIC. Cancer Epidemiology, Biomarkers and Prevention, 20(10), 2250–2261. doi:10.​1158/​1055-9965.​EPI-11-0496.PubMedCrossRef
32.
go back to reference Sanchez-Cespedes, M., Ahrendt, S. A., Piantadosi, S., Rosell, R., Monzo, M., Wu, L., et al. (2001). Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Cancer Research, 61(4), 1309–1313.PubMed Sanchez-Cespedes, M., Ahrendt, S. A., Piantadosi, S., Rosell, R., Monzo, M., Wu, L., et al. (2001). Chromosomal alterations in lung adenocarcinoma from smokers and nonsmokers. Cancer Research, 61(4), 1309–1313.PubMed
34.
go back to reference Ruosaari, S. T., Nymark, P. E., Aavikko, M. M., Kettunen, E., Knuutila, S., Hollmen, J., et al. (2008). Aberrations of chromosome 19 in asbestos-associated lung cancer and in asbestos-induced micronuclei of bronchial epithelial cells in vitro. Carcinogenesis, 29(5), 913–917. doi:10.1093/carcin/bgn068.PubMedCrossRef Ruosaari, S. T., Nymark, P. E., Aavikko, M. M., Kettunen, E., Knuutila, S., Hollmen, J., et al. (2008). Aberrations of chromosome 19 in asbestos-associated lung cancer and in asbestos-induced micronuclei of bronchial epithelial cells in vitro. Carcinogenesis, 29(5), 913–917. doi:10.​1093/​carcin/​bgn068.PubMedCrossRef
35.
go back to reference Wikman, H., Ruosaari, S., Nymark, P., Sarhadi, V. K., Saharinen, J., Vanhala, E., et al. (2007). Gene expression and copy number profiling suggests the importance of allelic imbalance in 19p in asbestos-associated lung cancer. Oncogene, 26(32), 4730–4737. doi:10.1038/sj.onc.1210270.PubMedCrossRef Wikman, H., Ruosaari, S., Nymark, P., Sarhadi, V. K., Saharinen, J., Vanhala, E., et al. (2007). Gene expression and copy number profiling suggests the importance of allelic imbalance in 19p in asbestos-associated lung cancer. Oncogene, 26(32), 4730–4737. doi:10.​1038/​sj.​onc.​1210270.PubMedCrossRef
36.
go back to reference Nymark, P., Aavikko, M., Makila, J., Ruosaari, S., Hienonen-Kempas, T., Wikman, H., et al. (2013). Accumulation of genomic alterations in 2p16, 9q33.1 and 19p13 in lung tumours of asbestos-exposed patients. Molecular Oncology, 7(1), 29–40. doi:10.1016/j.molonc.2012.07.006.PubMedCrossRef Nymark, P., Aavikko, M., Makila, J., Ruosaari, S., Hienonen-Kempas, T., Wikman, H., et al. (2013). Accumulation of genomic alterations in 2p16, 9q33.1 and 19p13 in lung tumours of asbestos-exposed patients. Molecular Oncology, 7(1), 29–40. doi:10.​1016/​j.​molonc.​2012.​07.​006.PubMedCrossRef
37.
go back to reference Hu, Y., Gao, Y. N., Feng, F. Y., Lin, D. M., & Jiao, S. C. (2010). Analysis of first-line chemoresistance and prediction of chemo-response in non-small cell lung cancer by comparative genomic hybridization. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 32(4), 389–393. doi:10.3881/j.issn.1000-503X.2010.04.006.PubMed Hu, Y., Gao, Y. N., Feng, F. Y., Lin, D. M., & Jiao, S. C. (2010). Analysis of first-line chemoresistance and prediction of chemo-response in non-small cell lung cancer by comparative genomic hybridization. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 32(4), 389–393. doi:10.​3881/​j.​issn.​1000-503X.​2010.​04.​006.PubMed
38.
40.
go back to reference Rydzanicz, M., Giefing, M., Ziolkowski, A., Kasprzyk, M., Gabriel, A., Dyszkiewicz, W., et al. (2008). Nonrandom DNA copy number changes related to lymph node metastases in squamous cell carcinoma of the lung. Neoplasma, 55(6), 493–500.PubMed Rydzanicz, M., Giefing, M., Ziolkowski, A., Kasprzyk, M., Gabriel, A., Dyszkiewicz, W., et al. (2008). Nonrandom DNA copy number changes related to lymph node metastases in squamous cell carcinoma of the lung. Neoplasma, 55(6), 493–500.PubMed
41.
go back to reference Goode, R. J., Yu, S., Kannan, A., Christiansen, J. H., Beitz, A., Hancock, W. S., et al. (2013). The proteome browser web portal. Journal of Proteome Research, 12(1), 172–178. doi:10.1021/pr3010056.PubMedCrossRef Goode, R. J., Yu, S., Kannan, A., Christiansen, J. H., Beitz, A., Hancock, W. S., et al. (2013). The proteome browser web portal. Journal of Proteome Research, 12(1), 172–178. doi:10.​1021/​pr3010056.PubMedCrossRef
42.
go back to reference Gazdar, A. F., Bader, S., Hung, J., Kishimoto, Y., Sekido, Y., Sugio, K., et al. (1994). Molecular genetic changes found in human lung cancer and its precursor lesions. Cold Spring Harbor Symposia on Quantitative Biology, 59, 565–572.PubMedCrossRef Gazdar, A. F., Bader, S., Hung, J., Kishimoto, Y., Sekido, Y., Sugio, K., et al. (1994). Molecular genetic changes found in human lung cancer and its precursor lesions. Cold Spring Harbor Symposia on Quantitative Biology, 59, 565–572.PubMedCrossRef
49.
go back to reference Orvis, T., Hepperla, A., Walter, V., Song, S., Simon, J., Parker, J., et al. (2014). BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Research, 74(22), 6486–6498. doi:10.1158/0008-5472.CAN-14-0061.PubMedCrossRef Orvis, T., Hepperla, A., Walter, V., Song, S., Simon, J., Parker, J., et al. (2014). BRG1/SMARCA4 inactivation promotes non-small cell lung cancer aggressiveness by altering chromatin organization. Cancer Research, 74(22), 6486–6498. doi:10.​1158/​0008-5472.​CAN-14-0061.PubMedCrossRef
51.
go back to reference Sun, Y. B., & Xu, S. (2013). Expression of KISS1 and KISS1R (GPR54) may be used as favorable prognostic markers for patients with non-small cell lung cancer. International Journal of Oncology, 43(2), 521–530. doi:10.3892/ijo.2013.1967.PubMed Sun, Y. B., & Xu, S. (2013). Expression of KISS1 and KISS1R (GPR54) may be used as favorable prognostic markers for patients with non-small cell lung cancer. International Journal of Oncology, 43(2), 521–530. doi:10.​3892/​ijo.​2013.​1967.PubMed
52.
go back to reference Vargas, S. O., French, C. A., Faul, P. N., Fletcher, J. A., Davis, I. J., Dal Cin, P., et al. (2001). Upper respiratory tract carcinoma with chromosomal translocation 15;19: evidence for a distinct disease entity of young patients with a rapidly fatal course. Cancer, 92(5), 1195–1203.PubMedCrossRef Vargas, S. O., French, C. A., Faul, P. N., Fletcher, J. A., Davis, I. J., Dal Cin, P., et al. (2001). Upper respiratory tract carcinoma with chromosomal translocation 15;19: evidence for a distinct disease entity of young patients with a rapidly fatal course. Cancer, 92(5), 1195–1203.PubMedCrossRef
53.
go back to reference French, C. A., Miyoshi, I., Kubonishi, I., Grier, H. E., Perez-Atayde, A. R., & Fletcher, J. A. (2003). BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Research, 63(2), 304–307.PubMed French, C. A., Miyoshi, I., Kubonishi, I., Grier, H. E., Perez-Atayde, A. R., & Fletcher, J. A. (2003). BRD4-NUT fusion oncogene: a novel mechanism in aggressive carcinoma. Cancer Research, 63(2), 304–307.PubMed
54.
go back to reference Thompson-Wicking, K., Francis, R. W., Stirnweiss, A., Ferrari, E., Welch, M. D., Baker, E., et al. (2013). Novel BRD4-NUT fusion isoforms increase the pathogenic complexity in NUT midline carcinoma. Oncogene, 32(39), 4664–4674. doi:10.1038/onc.2012.487.PubMedCrossRef Thompson-Wicking, K., Francis, R. W., Stirnweiss, A., Ferrari, E., Welch, M. D., Baker, E., et al. (2013). Novel BRD4-NUT fusion isoforms increase the pathogenic complexity in NUT midline carcinoma. Oncogene, 32(39), 4664–4674. doi:10.​1038/​onc.​2012.​487.PubMedCrossRef
56.
go back to reference Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284(5415), 770–776.PubMedCrossRef Artavanis-Tsakonas, S., Rand, M. D., & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284(5415), 770–776.PubMedCrossRef
57.
go back to reference Dang, T. P., Gazdar, A. F., Virmani, A. K., Sepetavec, T., Hande, K. R., Minna, J. D., et al. (2000). Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. Journal of the National Cancer Institute, 92(16), 1355–1357.PubMedCrossRef Dang, T. P., Gazdar, A. F., Virmani, A. K., Sepetavec, T., Hande, K. R., Minna, J. D., et al. (2000). Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. Journal of the National Cancer Institute, 92(16), 1355–1357.PubMedCrossRef
63.
go back to reference Bokobza, S. M., Jiang, Y., Weber, A. M., Devery, A. M., & Ryan, A. J. (2014). Combining AKT inhibition with chloroquine and gefitinib prevents compensatory autophagy and induces cell death in EGFR mutated NSCLC cells. Oncotarget, 5(13), 4765–4778.PubMedCentralPubMed Bokobza, S. M., Jiang, Y., Weber, A. M., Devery, A. M., & Ryan, A. J. (2014). Combining AKT inhibition with chloroquine and gefitinib prevents compensatory autophagy and induces cell death in EGFR mutated NSCLC cells. Oncotarget, 5(13), 4765–4778.PubMedCentralPubMed
64.
65.
go back to reference Li, H., Da, L. J., Fan, W. D., Long, X. H., & Zhang, X. Q. (2015). Transcription factor glioma-associated oncogene homolog 1 is required for transforming growth factor-beta1-induced epithelial-mesenchymal transition of non-small cell lung cancer cells. Molecular Medicine Reports, 11(5), 3259–3268. doi:10.3892/mmr.2015.3150.PubMedCentralPubMed Li, H., Da, L. J., Fan, W. D., Long, X. H., & Zhang, X. Q. (2015). Transcription factor glioma-associated oncogene homolog 1 is required for transforming growth factor-beta1-induced epithelial-mesenchymal transition of non-small cell lung cancer cells. Molecular Medicine Reports, 11(5), 3259–3268. doi:10.​3892/​mmr.​2015.​3150.PubMedCentralPubMed
67.
go back to reference Yang, J. P., Hori, M., Sanda, T., & Okamoto, T. (1999). Identification of a novel inhibitor of nuclear factor-kappaB, RelA-associated inhibitor. Journal of Biological Chemistry, 274(22), 15662–15670.PubMedCrossRef Yang, J. P., Hori, M., Sanda, T., & Okamoto, T. (1999). Identification of a novel inhibitor of nuclear factor-kappaB, RelA-associated inhibitor. Journal of Biological Chemistry, 274(22), 15662–15670.PubMedCrossRef
68.
go back to reference Slee, E. A., Gillotin, S., Bergamaschi, D., Royer, C., Llanos, S., Ali, S., et al. (2004). The N-terminus of a novel isoform of human iASPP is required for its cytoplasmic localization. Oncogene, 23(56), 9007–9016. doi:10.1038/sj.onc.1208088.PubMedCrossRef Slee, E. A., Gillotin, S., Bergamaschi, D., Royer, C., Llanos, S., Ali, S., et al. (2004). The N-terminus of a novel isoform of human iASPP is required for its cytoplasmic localization. Oncogene, 23(56), 9007–9016. doi:10.​1038/​sj.​onc.​1208088.PubMedCrossRef
69.
go back to reference Mantovani, F., Tocco, F., Girardini, J., Smith, P., Gasco, M., Lu, X., et al. (2007). The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nature Structural and Molecular Biology, 14(10), 912–920. doi:10.1038/nsmb1306.PubMedCrossRef Mantovani, F., Tocco, F., Girardini, J., Smith, P., Gasco, M., Lu, X., et al. (2007). The prolyl isomerase Pin1 orchestrates p53 acetylation and dissociation from the apoptosis inhibitor iASPP. Nature Structural and Molecular Biology, 14(10), 912–920. doi:10.​1038/​nsmb1306.PubMedCrossRef
70.
go back to reference Gao, J., Zheng, Z., Rawal, B., Schell, M. J., Bepler, G., & Haura, E. B. (2009). Mirk/Dyrk1B, a novel therapeutic target, mediates cell survival in non-small cell lung cancer cells. Cancer Biology and Therapy, 8(17), 1671–1679.PubMedCentralPubMedCrossRef Gao, J., Zheng, Z., Rawal, B., Schell, M. J., Bepler, G., & Haura, E. B. (2009). Mirk/Dyrk1B, a novel therapeutic target, mediates cell survival in non-small cell lung cancer cells. Cancer Biology and Therapy, 8(17), 1671–1679.PubMedCentralPubMedCrossRef
71.
72.
Metadata
Title
Association of chromosome 19 to lung cancer genotypes and phenotypes
Authors
Xiangdong Wang
Yong Zhang
Carol L. Nilsson
Frode S. Berven
Per E. Andrén
Elisabet Carlsohn
Peter Horvatovich
Johan Malm
Manuel Fuentes
Ákos Végvári
Charlotte Welinder
Thomas E. Fehniger
Melinda Rezeli
Goutham Edula
Sophia Hober
Toshihide Nishimura
György Marko-Varga
Publication date
01-06-2015
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2015
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-015-9556-2

Other articles of this Issue 2/2015

Cancer and Metastasis Reviews 2/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine