Skip to main content
Top
Published in: Critical Care 1/2016

Open Access 01-12-2016 | Research

Assessment of dead-space ventilation in patients with acute respiratory distress syndrome: a prospective observational study

Authors: Jonne Doorduin, Joeke L. Nollet, Manon P. A. J. Vugts, Lisanne H. Roesthuis, Ferdi Akankan, Johannes G. van der Hoeven, Hieronymus W. H. van Hees, Leo M. A. Heunks

Published in: Critical Care | Issue 1/2016

Login to get access

Abstract

Background

Physiological dead space (VD/VT) represents the fraction of ventilation not participating in gas exchange. In patients with acute respiratory distress syndrome (ARDS), VD/VT has prognostic value and can be used to guide ventilator settings. However, VD/VT is rarely calculated in clinical practice, because its measurement is perceived as challenging. Recently, a novel technique to calculate partial pressure of carbon dioxide in alveolar air (PACO2) using volumetric capnography (VCap) was validated. The purpose of the present study was to evaluate how VCap and other available techniques to measure PACO2 and partial pressure of carbon dioxide in mixed expired air (PeCO2) affect calculated VD/VT.

Methods

In a prospective, observational study, 15 post-cardiac surgery patients and 15 patients with ARDS were included. PACO2 was measured using VCap to calculate Bohr dead space or substituted with partial pressure of carbon dioxide in arterial blood (PaCO2) to calculate the Enghoff modification. PeCO2 was measured in expired air using three techniques: Douglas bag (DBag), indirect calorimetry (InCal), and VCap. Subsequently, VD/VT was calculated using four methods: Enghoff-DBag, Enghoff-InCal, Enghoff-VCap, and Bohr-VCap.

Results

PaCO2 was higher than PACO2, particularly in patients with ARDS (post-cardiac surgery PACO2 = 4.3 ± 0.6 kPa vs. PaCO2 = 5.2 ± 0.5 kPa, P < 0.05; ARDS PACO2 = 3.9 ± 0.8 kPa vs. PaCO2 = 6.9 ± 1.7 kPa, P < 0.05). There was good agreement in PeCO2 calculated with DBag vs. VCap (post-cardiac surgery bias = 0.04 ± 0.19 kPa; ARDS bias = 0.03 ± 0.27 kPa) and relatively low agreement with DBag vs. InCal (post-cardiac surgery bias = −1.17 ± 0.50 kPa; ARDS mean bias = −0.15 ± 0.53 kPa). These differences strongly affected calculated VD/VT. For example, in patients with ARDS, VD/VTcalculated with Enghoff-InCal was much higher than Bohr-VCap (VD/VT Enghoff-InCal = 66 ± 10 % vs. VD/VT Bohr-VCap = 45 ± 7 %; P < 0.05).

Conclusions

Different techniques to measure PACO2 and PeCO2 result in clinically relevant mean and individual differences in calculated VD/VT, particularly in patients with ARDS. Volumetric capnography is a promising technique to calculate true Bohr dead space. Our results demonstrate the challenges clinicians face in interpreting an apparently simple measurement such as VD/VT.
Appendix
Available only for authorised users
Literature
1.
go back to reference Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–6.CrossRefPubMed Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med. 2002;346(17):1281–6.CrossRefPubMed
2.
go back to reference Cepkova M, Kapur V, Ren X, Quinn T, Zhuo H, Foster E, et al. Pulmonary dead space fraction and pulmonary artery systolic pressure as early predictors of clinical outcome in acute lung injury. Chest. 2007;132(3):836–42.CrossRefPubMed Cepkova M, Kapur V, Ren X, Quinn T, Zhuo H, Foster E, et al. Pulmonary dead space fraction and pulmonary artery systolic pressure as early predictors of clinical outcome in acute lung injury. Chest. 2007;132(3):836–42.CrossRefPubMed
3.
go back to reference Lucangelo U, Bernabe F, Vatua S, Degrassi G, Villagra A, Fernandez R, et al. Prognostic value of different dead space indices in mechanically ventilated patients with acute lung injury and ARDS. Chest. 2008;133(1):62–71.CrossRefPubMed Lucangelo U, Bernabe F, Vatua S, Degrassi G, Villagra A, Fernandez R, et al. Prognostic value of different dead space indices in mechanically ventilated patients with acute lung injury and ARDS. Chest. 2008;133(1):62–71.CrossRefPubMed
4.
go back to reference Raurich JM, Vilar M, Colomar A, Ibáñez J, Ayestarán I, Pérez-Bárcena J, et al. Prognostic value of the pulmonary dead-space fraction during the early and intermediate phases of acute respiratory distress syndrome. Respir Care. 2010;55(3):282–7.PubMed Raurich JM, Vilar M, Colomar A, Ibáñez J, Ayestarán I, Pérez-Bárcena J, et al. Prognostic value of the pulmonary dead-space fraction during the early and intermediate phases of acute respiratory distress syndrome. Respir Care. 2010;55(3):282–7.PubMed
5.
go back to reference Mercat A, Diehl JL, Michard F, Anguel N, Teboul JL, Labrousse J, et al. Extending inspiratory time in acute respiratory distress syndrome. Crit Care Med. 2001;29(1):40–4.CrossRefPubMed Mercat A, Diehl JL, Michard F, Anguel N, Teboul JL, Labrousse J, et al. Extending inspiratory time in acute respiratory distress syndrome. Crit Care Med. 2001;29(1):40–4.CrossRefPubMed
6.
go back to reference Maisch S, Reissmann H, Fuellekrug B, Weismann D, Rutkowski T, Tusman G, et al. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg. 2008;106(1):175–81.CrossRefPubMed Maisch S, Reissmann H, Fuellekrug B, Weismann D, Rutkowski T, Tusman G, et al. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg. 2008;106(1):175–81.CrossRefPubMed
7.
go back to reference Devaquet J, Jonson B, Niklason L, Si Larbi AG, Uttman L, Aboab J, et al. Effects of inspiratory pause on CO2 elimination and arterial Pco 2 in acute lung injury. J Appl Physiol. 2008;105(6):1944–9.CrossRefPubMedPubMedCentral Devaquet J, Jonson B, Niklason L, Si Larbi AG, Uttman L, Aboab J, et al. Effects of inspiratory pause on CO2 elimination and arterial Pco 2 in acute lung injury. J Appl Physiol. 2008;105(6):1944–9.CrossRefPubMedPubMedCentral
8.
go back to reference Fengmei G, Jin C, Songqiao L, Congshan Y, Yi Y. Dead space fraction changes during PEEP titration following lung recruitment in patients with ARDS. Respir Care. 2012;57(10):1578–85.CrossRefPubMed Fengmei G, Jin C, Songqiao L, Congshan Y, Yi Y. Dead space fraction changes during PEEP titration following lung recruitment in patients with ARDS. Respir Care. 2012;57(10):1578–85.CrossRefPubMed
9.
10.
go back to reference Tusman G, Sipmann FS, Bohm SH. Rationale of dead space measurement by volumetric capnography. Anesth Analg. 2012;114(4):866–74.CrossRefPubMed Tusman G, Sipmann FS, Bohm SH. Rationale of dead space measurement by volumetric capnography. Anesth Analg. 2012;114(4):866–74.CrossRefPubMed
11.
go back to reference Enghoff H. Volumen inefficax. Bermekungen zur Frage des shadlichen Raumes. Upsala Lakareforen Forh. 1938;44:191–218. Enghoff H. Volumen inefficax. Bermekungen zur Frage des shadlichen Raumes. Upsala Lakareforen Forh. 1938;44:191–218.
12.
go back to reference Kuwabara S, Duncalf D. Effect of anatomic shunt on physiologic deadspace-to-tidal volume ratio – a new equation. Anesthesiology. 1969;31(6):575–7.CrossRefPubMed Kuwabara S, Duncalf D. Effect of anatomic shunt on physiologic deadspace-to-tidal volume ratio – a new equation. Anesthesiology. 1969;31(6):575–7.CrossRefPubMed
13.
go back to reference Blanch L, Lucangelo U, Lopez-Aguilar J, Fernandez R, Romero PV. Volumetric capnography in patients with acute lung injury: effects of positive end-expiratory pressure. Eur Respir J. 1999;13(5):1048–54.CrossRefPubMed Blanch L, Lucangelo U, Lopez-Aguilar J, Fernandez R, Romero PV. Volumetric capnography in patients with acute lung injury: effects of positive end-expiratory pressure. Eur Respir J. 1999;13(5):1048–54.CrossRefPubMed
14.
go back to reference Jones NL, Robertson DG, Kane JW. Difference between end-tidal and arterial PCO2 in exercise. J Appl Physiol. 1979;47(5):954–60.PubMed Jones NL, Robertson DG, Kane JW. Difference between end-tidal and arterial PCO2 in exercise. J Appl Physiol. 1979;47(5):954–60.PubMed
15.
go back to reference Shimada Y, Yoshiya I, Tanaka K, Sone S, Sakurai M. Evaluation of the progress and prognosis of adult respiratory distress syndrome: simple respiratory physiologic measurement. Chest. 1979;76(2):180–6.CrossRefPubMed Shimada Y, Yoshiya I, Tanaka K, Sone S, Sakurai M. Evaluation of the progress and prognosis of adult respiratory distress syndrome: simple respiratory physiologic measurement. Chest. 1979;76(2):180–6.CrossRefPubMed
16.
go back to reference Liu Z, Vargas F, Stansbury D, Sasse SA, Light RW. Comparison of the end-tidal arterial Pco 2 gradient during exercise in normal subjects and in patients with severe COPD. Chest. 1995;107(5):1218–24.CrossRefPubMed Liu Z, Vargas F, Stansbury D, Sasse SA, Light RW. Comparison of the end-tidal arterial Pco 2 gradient during exercise in normal subjects and in patients with severe COPD. Chest. 1995;107(5):1218–24.CrossRefPubMed
17.
go back to reference Tusman G, Scandurra A, Böhm SH, Suarez-Sipmann F, Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput. 2009;23(4):197–206.CrossRefPubMed Tusman G, Scandurra A, Böhm SH, Suarez-Sipmann F, Clara F. Model fitting of volumetric capnograms improves calculations of airway dead space and slope of phase III. J Clin Monit Comput. 2009;23(4):197–206.CrossRefPubMed
18.
go back to reference Tusman G, Sipmann FS, Borges JB, Hedenstierna G, Bohm SH. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37(5):870–4.CrossRefPubMed Tusman G, Sipmann FS, Borges JB, Hedenstierna G, Bohm SH. Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med. 2011;37(5):870–4.CrossRefPubMed
19.
go back to reference Tusman G, Gogniat E, Bohm SH, Scandurra A, Suarez-Sipmann F, Torroba A, et al. Reference values for volumetric capnography-derived non-invasive parameters in healthy individuals. J Clin Monit Comput. 2013;27(3):281–8.CrossRefPubMed Tusman G, Gogniat E, Bohm SH, Scandurra A, Suarez-Sipmann F, Torroba A, et al. Reference values for volumetric capnography-derived non-invasive parameters in healthy individuals. J Clin Monit Comput. 2013;27(3):281–8.CrossRefPubMed
20.
go back to reference Forbat AF, Her C. Correction for gas compression in mechanical ventilators. Anesth Analg. 1980;59(7):488–93.CrossRefPubMed Forbat AF, Her C. Correction for gas compression in mechanical ventilators. Anesth Analg. 1980;59(7):488–93.CrossRefPubMed
21.
go back to reference The ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33. The ARDS Definition Task Force. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526–33.
22.
go back to reference Robertson HT, Swenson ER. What do dead-space measurements tell us about the lung with acute respiratory distress syndrome? Respir Care. 2004;49(9):1006–7.PubMed Robertson HT, Swenson ER. What do dead-space measurements tell us about the lung with acute respiratory distress syndrome? Respir Care. 2004;49(9):1006–7.PubMed
23.
go back to reference Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J. 2015;45(6):1704–16.CrossRefPubMed Robertson HT. Dead space: the physiology of wasted ventilation. Eur Respir J. 2015;45(6):1704–16.CrossRefPubMed
24.
go back to reference Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiologic dead space measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method. Respir Care. 2005;50(4):462–7.PubMed Kallet RH, Daniel BM, Garcia O, Matthay MA. Accuracy of physiologic dead space measurements in patients with acute respiratory distress syndrome using volumetric capnography: comparison with the metabolic monitor method. Respir Care. 2005;50(4):462–7.PubMed
25.
go back to reference Sinha P, Soni N. Comparison of volumetric capnography and mixed expired gas methods to calculate physiological dead space in mechanically ventilated ICU patients. Intensive Care Med. 2012;38(10):1712–7.CrossRefPubMed Sinha P, Soni N. Comparison of volumetric capnography and mixed expired gas methods to calculate physiological dead space in mechanically ventilated ICU patients. Intensive Care Med. 2012;38(10):1712–7.CrossRefPubMed
26.
go back to reference Siobal MS, Ong H, Valdes J, Tang J. Calculation of physiologic dead space: comparison of ventilator volumetric capnography to measurements by metabolic analyzer and volumetric CO2 monitor. Respir Care. 2013;58(7):1143–51.CrossRefPubMed Siobal MS, Ong H, Valdes J, Tang J. Calculation of physiologic dead space: comparison of ventilator volumetric capnography to measurements by metabolic analyzer and volumetric CO2 monitor. Respir Care. 2013;58(7):1143–51.CrossRefPubMed
27.
go back to reference Schulz A, Schulz H, Heilmann P, Brand P, Heyder J. Pulmonary dead space and airway dimensions in dogs at different levels of lung inflation. J Appl Physiol. 1994;76(5):1896–902.PubMed Schulz A, Schulz H, Heilmann P, Brand P, Heyder J. Pulmonary dead space and airway dimensions in dogs at different levels of lung inflation. J Appl Physiol. 1994;76(5):1896–902.PubMed
28.
go back to reference Beydon L, Uttman L, Rawal R, Jonson B. Effects of positive end-expiratory pressure on dead space and its partitions in acute lung injury. Intensive Care Med. 2002;28(9):1239–45.CrossRefPubMed Beydon L, Uttman L, Rawal R, Jonson B. Effects of positive end-expiratory pressure on dead space and its partitions in acute lung injury. Intensive Care Med. 2002;28(9):1239–45.CrossRefPubMed
29.
go back to reference Tusman G, Böhm SH, Suarez-Sipmann F, Turchetto E. Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anaesth. 2004;51(7):723–7.CrossRefPubMed Tusman G, Böhm SH, Suarez-Sipmann F, Turchetto E. Alveolar recruitment improves ventilatory efficiency of the lungs during anesthesia. Can J Anaesth. 2004;51(7):723–7.CrossRefPubMed
30.
go back to reference Feihl F, Eckert P, Brimioulle S, Jacobs O, Schaller MD, Mélot C, et al. Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;162(1):209–15.CrossRefPubMed Feihl F, Eckert P, Brimioulle S, Jacobs O, Schaller MD, Mélot C, et al. Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;162(1):209–15.CrossRefPubMed
Metadata
Title
Assessment of dead-space ventilation in patients with acute respiratory distress syndrome: a prospective observational study
Authors
Jonne Doorduin
Joeke L. Nollet
Manon P. A. J. Vugts
Lisanne H. Roesthuis
Ferdi Akankan
Johannes G. van der Hoeven
Hieronymus W. H. van Hees
Leo M. A. Heunks
Publication date
01-12-2016
Publisher
BioMed Central
Published in
Critical Care / Issue 1/2016
Electronic ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-016-1311-8

Other articles of this Issue 1/2016

Critical Care 1/2016 Go to the issue