Skip to main content
Top
Published in: Journal of Nuclear Cardiology 4/2022

04-05-2022 | Artificial Intelligence | Review Article

Artificial intelligence for disease diagnosis and risk prediction in nuclear cardiology

Authors: Robert J. H. Miller, MD, Cathleen Huang, BA, Joanna X. Liang, BA, Piotr J. Slomka, PhD

Published in: Journal of Nuclear Cardiology | Issue 4/2022

Login to get access

Abstract

Artificial intelligence (AI) techniques have emerged as a highly efficient approach to accurately and rapidly interpret diagnostic imaging and may play a vital role in nuclear cardiology. In nuclear cardiology, there are many clinical, stress, and imaging variables potentially available, which need to be optimally integrated to predict the presence of obstructive coronary artery disease (CAD) or predict the risk of cardiovascular events. In spite of clinical awareness of a large number of potential variables, it is difficult for physicians to integrate multiple features consistently and objectively. Machine learning (ML) is particularly well suited to integrating this vast array of information to provide patient-specific predictions. Deep learning (DL), a branch of ML characterized by a multi-layered convolutional model architecture, can extract information directly from images and identify latent image features associated with a specific prediction. This review will discuss the latest AI applications to disease diagnosis and risk prediction in nuclear cardiology with a focus on potential clinical applications.
Appendix
Available only for authorised users
Literature
1.
go back to reference Slomka PJ, Moody JB, Miller RJH, Renaud JM, Ficaro EP, Garcia EV. Quantitative clinical nuclear cardiology, part 2: evolving/emerging applications. J Nucl Cardiol 2021;28:115‐27.CrossRef Slomka PJ, Moody JB, Miller RJH, Renaud JM, Ficaro EP, Garcia EV. Quantitative clinical nuclear cardiology, part 2: evolving/emerging applications. J Nucl Cardiol 2021;28:115‐27.CrossRef
2.
go back to reference Tilkemeier PL, Bourque J, Doukky R, Sanghani R, Weinberg RL. ASNC imaging guidelines for nuclear cardiology procedures. J Nucl Cardiol 2017;24:2064‐128.CrossRef Tilkemeier PL, Bourque J, Doukky R, Sanghani R, Weinberg RL. ASNC imaging guidelines for nuclear cardiology procedures. J Nucl Cardiol 2017;24:2064‐128.CrossRef
3.
go back to reference Garcia EV, Slomka P, Moody JB, Germano G, Ficaro EP. Quantitative Clinical Nuclear Cardiology, Part 1: Established Applications. J Nucl Cardiol 2020;27:189‐201.CrossRef Garcia EV, Slomka P, Moody JB, Germano G, Ficaro EP. Quantitative Clinical Nuclear Cardiology, Part 1: Established Applications. J Nucl Cardiol 2020;27:189‐201.CrossRef
4.
go back to reference Slomka P, Xu Y, Berman D, Germano G. Quantitative analysis of perfusion studies: strengths and pitfalls. J Nucl Cardiol 2012;19:338‐46.CrossRef Slomka P, Xu Y, Berman D, Germano G. Quantitative analysis of perfusion studies: strengths and pitfalls. J Nucl Cardiol 2012;19:338‐46.CrossRef
5.
go back to reference Berman DS, Kang X, Slomka PJ, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 2007;14:521‐8.CrossRef Berman DS, Kang X, Slomka PJ, et al. Underestimation of extent of ischemia by gated SPECT myocardial perfusion imaging in patients with left main coronary artery disease. J Nucl Cardiol 2007;14:521‐8.CrossRef
6.
go back to reference Nakanishi R, Gransar H, Slomka P, et al. Predictors of high-risk coronary artery disease in subjects with normal SPECT myocardial perfusion imaging. J Nucl Cardiol 2016;23:530‐41.CrossRef Nakanishi R, Gransar H, Slomka P, et al. Predictors of high-risk coronary artery disease in subjects with normal SPECT myocardial perfusion imaging. J Nucl Cardiol 2016;23:530‐41.CrossRef
7.
go back to reference Arsanjani R, Xu Y, Dey D, et al. Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm. J Nucl Med 2013;54:549‐55.CrossRef Arsanjani R, Xu Y, Dey D, et al. Improved accuracy of myocardial perfusion SPECT for the detection of coronary artery disease using a support vector machine algorithm. J Nucl Med 2013;54:549‐55.CrossRef
8.
go back to reference Arsanjani R, Tourassi G, Xu Y, et al. Improved accuracy of myocardial perfusion SPECT (MPS) for detection of coronary artery disease (CAD) by utilizing machine learning methods. J Nucl Cardiol 2012;19:827. Arsanjani R, Tourassi G, Xu Y, et al. Improved accuracy of myocardial perfusion SPECT (MPS) for detection of coronary artery disease (CAD) by utilizing machine learning methods. J Nucl Cardiol 2012;19:827.
9.
go back to reference Juarez-Orozco LE, Knol RJJ, Sanchez-Catasus CA, Martinez-Manzanera O, van der Zant FM, Knuuti J. Machine learning in the integration of simple variables for identifying patients with myocardial ischemia. J Nucl Cardiol 2020;27:147‐55.CrossRef Juarez-Orozco LE, Knol RJJ, Sanchez-Catasus CA, Martinez-Manzanera O, van der Zant FM, Knuuti J. Machine learning in the integration of simple variables for identifying patients with myocardial ischemia. J Nucl Cardiol 2020;27:147‐55.CrossRef
11.
go back to reference Spier N, Nekolla S, Rupprecht C, Mustafa M, Navab N, Baust M. Classification of polar maps from cardiac perfusion imaging with graph-convolutional neural networks. Sci Rep 2019;9:7569.CrossRef Spier N, Nekolla S, Rupprecht C, Mustafa M, Navab N, Baust M. Classification of polar maps from cardiac perfusion imaging with graph-convolutional neural networks. Sci Rep 2019;9:7569.CrossRef
12.
go back to reference Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging 2018;11:1654‐63.CrossRef Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study. JACC Cardiovasc Imaging 2018;11:1654‐63.CrossRef
13.
go back to reference Arsanjani R, Xu Y, Hayes SW, et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med 2013;54:221‐8.CrossRef Arsanjani R, Xu Y, Hayes SW, et al. Comparison of fully automated computer analysis and visual scoring for detection of coronary artery disease from myocardial perfusion SPECT in a large population. J Nucl Med 2013;54:221‐8.CrossRef
14.
go back to reference Betancur JA, Hu LH, Commandeur F, et al. Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study. J Nucl Med 2018;60:664‐70.CrossRef Betancur JA, Hu LH, Commandeur F, et al. Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study. J Nucl Med 2018;60:664‐70.CrossRef
15.
go back to reference Nishina H, Slomka PJ, Abidov A, et al. Combined supine and prone quantitative myocardial perfusion SPECT: method development and clinical validation in patients with no known coronary artery disease. J Nucl Med 2006;47:51‐8.PubMed Nishina H, Slomka PJ, Abidov A, et al. Combined supine and prone quantitative myocardial perfusion SPECT: method development and clinical validation in patients with no known coronary artery disease. J Nucl Med 2006;47:51‐8.PubMed
16.
go back to reference Nakazato R, Tamarappoo BK, Kang X, et al. Quantitative upright-supine high-speed SPECT myocardial perfusion imaging for detection of coronary artery disease: correlation with invasive coronary angiography. J Nucl Med 2010;51:1724‐31.CrossRef Nakazato R, Tamarappoo BK, Kang X, et al. Quantitative upright-supine high-speed SPECT myocardial perfusion imaging for detection of coronary artery disease: correlation with invasive coronary angiography. J Nucl Med 2010;51:1724‐31.CrossRef
17.
go back to reference Togo R, Hirata K, Manabe O, et al. Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps. Comput Biol Med 2019;104:81‐6.CrossRef Togo R, Hirata K, Manabe O, et al. Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps. Comput Biol Med 2019;104:81‐6.CrossRef
18.
go back to reference Santarelli MF, Genovesi D, Positano V, et al. Deep-learning-based cardiac amyloidosis classification from early acquired pet images. Int J Cardiovasc Imaging 2021;37:2327‐35.CrossRef Santarelli MF, Genovesi D, Positano V, et al. Deep-learning-based cardiac amyloidosis classification from early acquired pet images. Int J Cardiovasc Imaging 2021;37:2327‐35.CrossRef
20.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. IEEE Int Conf Comput Vis 2017;1:618‐26. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. IEEE Int Conf Comput Vis 2017;1:618‐26.
21.
go back to reference Rozanski A, Gransar H, Hayes SW, Friedman JD, Hachamovitch R, Berman DS. Comparison of long-term mortality risk following normal exercise vs adenosine myocardial perfusion SPECT. J Nucl Cardiol 2010;17:999‐1008.CrossRef Rozanski A, Gransar H, Hayes SW, Friedman JD, Hachamovitch R, Berman DS. Comparison of long-term mortality risk following normal exercise vs adenosine myocardial perfusion SPECT. J Nucl Cardiol 2010;17:999‐1008.CrossRef
23.
go back to reference Otaki Y, Betancur J, Sharir T, et al. 5-Year prognostic value of quantitative versus visual MPI in subtle perfusion defects. JACC Cardiovasc Imaging 2020;13:774‐85.CrossRef Otaki Y, Betancur J, Sharir T, et al. 5-Year prognostic value of quantitative versus visual MPI in subtle perfusion defects. JACC Cardiovasc Imaging 2020;13:774‐85.CrossRef
24.
go back to reference Miller RJH, Sharir T, Otaki Y, et al. Quantitation of poststress change in ventricular morphology improves risk stratification. J Nucl Med 2021;62:1582‐90.CrossRef Miller RJH, Sharir T, Otaki Y, et al. Quantitation of poststress change in ventricular morphology improves risk stratification. J Nucl Med 2021;62:1582‐90.CrossRef
25.
go back to reference Miller RJH, Hu LH, Gransar H, et al. Transient ischaemic dilation and post-stress wall motion abnormality increase risk in patients with less than moderate ischaemia: analysis of the REFINE SPECT registry. Eur Heart J Cardiovasc Imaging 2020;21:567‐75.CrossRef Miller RJH, Hu LH, Gransar H, et al. Transient ischaemic dilation and post-stress wall motion abnormality increase risk in patients with less than moderate ischaemia: analysis of the REFINE SPECT registry. Eur Heart J Cardiovasc Imaging 2020;21:567‐75.CrossRef
26.
go back to reference Kuronuma K, Miller RJH, Otaki Y, et al. Prognostic value of phase analysis for predicting adverse cardiac events beyond conventional single-photon emission computed tomography variables: results from the REFINE SPECT Registry. Circulation 2021;14:e012386.PubMed Kuronuma K, Miller RJH, Otaki Y, et al. Prognostic value of phase analysis for predicting adverse cardiac events beyond conventional single-photon emission computed tomography variables: results from the REFINE SPECT Registry. Circulation 2021;14:e012386.PubMed
28.
go back to reference Schiltz F, Masci C, Agasisti T, Horn D. Using regression tree ensembles to model interaction effects: a graphical approach. Appl Econ 2018;50:6341‐54.CrossRef Schiltz F, Masci C, Agasisti T, Horn D. Using regression tree ensembles to model interaction effects: a graphical approach. Appl Econ 2018;50:6341‐54.CrossRef
29.
go back to reference Betancur J, Otaki Y, Motwani M, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging 2018;11:1000‐9.CrossRef Betancur J, Otaki Y, Motwani M, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging 2018;11:1000‐9.CrossRef
30.
go back to reference Arsanjani R, Dey D, Khachatryan T, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol 2015;22:877‐84.CrossRef Arsanjani R, Dey D, Khachatryan T, et al. Prediction of revascularization after myocardial perfusion SPECT by machine learning in a large population. J Nucl Cardiol 2015;22:877‐84.CrossRef
31.
go back to reference Hu LH, Betancur J, Sharir T, et al. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. Eur Heart J Cardiovasc Imaging 2020;21:549‐59.CrossRef Hu LH, Betancur J, Sharir T, et al. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. Eur Heart J Cardiovasc Imaging 2020;21:549‐59.CrossRef
32.
go back to reference Hu LH, Miller RJH, Sharir T, et al. Prognostically safe stress-only single-photon emission computed tomography myocardial perfusion imaging guided by machine learning: report from REFINE SPECT. Eur Heart J Cardiovasc Imaging 2021;22:705‐14.CrossRef Hu LH, Miller RJH, Sharir T, et al. Prognostically safe stress-only single-photon emission computed tomography myocardial perfusion imaging guided by machine learning: report from REFINE SPECT. Eur Heart J Cardiovasc Imaging 2021;22:705‐14.CrossRef
34.
go back to reference Rios R, Miller RJH, Manral N, et al. Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: insights from REFINE SPECT registry. Comp Biol Med 2022;145:105449.CrossRef Rios R, Miller RJH, Manral N, et al. Handling missing values in machine learning to predict patient-specific risk of adverse cardiac events: insights from REFINE SPECT registry. Comp Biol Med 2022;145:105449.CrossRef
35.
go back to reference Juarez-Orozco LE, Martinez-Manzanera O, van der Zant FM, Knol RJJ, Knuuti J. Deep learning in quantitative PET myocardial perfusion imaging: a study on cardiovascular event prediction. JACC Cardiovasc Imaging 2020;13:180‐2.CrossRef Juarez-Orozco LE, Martinez-Manzanera O, van der Zant FM, Knol RJJ, Knuuti J. Deep learning in quantitative PET myocardial perfusion imaging: a study on cardiovascular event prediction. JACC Cardiovasc Imaging 2020;13:180‐2.CrossRef
36.
go back to reference Wolterink JM, Leiner T, Takx RA, Viergever MA, Isgum I. Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection. IEEE Trans Med Imaging 2015;34:1867‐78.CrossRef Wolterink JM, Leiner T, Takx RA, Viergever MA, Isgum I. Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection. IEEE Trans Med Imaging 2015;34:1867‐78.CrossRef
37.
go back to reference Isgum I, Prokop M, Niemeijer M, Viergever MA, van Ginneken B. Automatic coronary calcium scoring in low-dose chest computed tomography. IEEE Trans Med Imaging 2012;31:2322‐34.CrossRef Isgum I, Prokop M, Niemeijer M, Viergever MA, van Ginneken B. Automatic coronary calcium scoring in low-dose chest computed tomography. IEEE Trans Med Imaging 2012;31:2322‐34.CrossRef
38.
go back to reference Isgum I, Rutten A, Prokop M, van Ginneken B. Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease. Med Phys 2007;34:1450‐61.CrossRef Isgum I, Rutten A, Prokop M, van Ginneken B. Detection of coronary calcifications from computed tomography scans for automated risk assessment of coronary artery disease. Med Phys 2007;34:1450‐61.CrossRef
39.
go back to reference Pieszko KSA, Killekar A, Lemley M, et al. Calcium scoring in low-dose ungated chest CT scans using convolutional long-short term memory networks. SPIE Med Imaging 2022;1:1‐10. Pieszko KSA, Killekar A, Lemley M, et al. Calcium scoring in low-dose ungated chest CT scans using convolutional long-short term memory networks. SPIE Med Imaging 2022;1:1‐10.
41.
go back to reference Zeleznik R, Foldyna B, Eslami P, et al. Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nature Comm 2021;12:715.CrossRef Zeleznik R, Foldyna B, Eslami P, et al. Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nature Comm 2021;12:715.CrossRef
42.
go back to reference Isgum I, de Vos BD, Wolterink JM, et al. Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT. J Nucl Cardiol 2018;25:2133‐42.CrossRef Isgum I, de Vos BD, Wolterink JM, et al. Automatic determination of cardiovascular risk by CT attenuation correction maps in Rb-82 PET/CT. J Nucl Cardiol 2018;25:2133‐42.CrossRef
43.
go back to reference Commandeur F, Goeller M, Razipour A, et al. Fully automated CT quantification of epicardial adipose tissue by deep learning: a multicenter study. Radiol Artif Intell 2019;1:e190045.CrossRef Commandeur F, Goeller M, Razipour A, et al. Fully automated CT quantification of epicardial adipose tissue by deep learning: a multicenter study. Radiol Artif Intell 2019;1:e190045.CrossRef
44.
go back to reference Commandeur F, Slomka PJ, Goeller M, et al. Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study. Cardiovasc Res 2020;116:2216‐25.CrossRef Commandeur F, Slomka PJ, Goeller M, et al. Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study. Cardiovasc Res 2020;116:2216‐25.CrossRef
45.
go back to reference Singh A, Pieszko K, Shanbhag A et al. Improved Mortality Risk Assessment From Myocardial Pet Flow Perfusion And Calcium Scores Using Artificial Intelligence. J Am Coll Cardiol 2022; Abstract. Singh A, Pieszko K, Shanbhag A et al. Improved Mortality Risk Assessment From Myocardial Pet Flow Perfusion And Calcium Scores Using Artificial Intelligence. J Am Coll Cardiol 2022; Abstract.
46.
go back to reference Kwiecinski J, Tzolos E, Meah MN, et al. Machine learning with (18)F-sodium fluoride PET and quantitative plaque analysis on CT angiography for the future risk of myocardial infarction. J Nucl Med. 2022;63:158‐65.CrossRef Kwiecinski J, Tzolos E, Meah MN, et al. Machine learning with (18)F-sodium fluoride PET and quantitative plaque analysis on CT angiography for the future risk of myocardial infarction. J Nucl Med. 2022;63:158‐65.CrossRef
Metadata
Title
Artificial intelligence for disease diagnosis and risk prediction in nuclear cardiology
Authors
Robert J. H. Miller, MD
Cathleen Huang, BA
Joanna X. Liang, BA
Piotr J. Slomka, PhD
Publication date
04-05-2022
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 4/2022
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-022-02977-8

Other articles of this Issue 4/2022

Journal of Nuclear Cardiology 4/2022 Go to the issue