Skip to main content
Top
Published in: Journal of Nuclear Cardiology 4/2022

16-04-2021 | Cardiac Amyloidosis | Original Article

Cardiac amyloidosis characterization by kinetic model fitting on [18F]florbetaben PET images

Authors: M. F. Santarelli, MF, PhD, D. Genovesi, MD, M. Scipioni, V. Positano, MSc, B. Favilli, MSc, A. Giorgetti, MD, G. Vergaro, MD, L. Landini, M. Emdin, MD, PhD, P. Marzullo, MD

Published in: Journal of Nuclear Cardiology | Issue 4/2022

Login to get access

Abstract

Objective

To evaluate the feasibility of kinetic modeling-based approaches from [18F]-Flobetaben dynamic PET images as a non-invasive diagnostic method for cardiac amyloidosis (CA) and to identify the two AL- and ATTR-subtypes.

Methods and Results

Twenty-one patients with diagnoses of CA (11 patients with AL-subtype and 10 patients with ATTR-subtype of CA) and 15 Control patients with no-CA conditions underwent PET/CT imaging after [18F]Florbetaben bolus injection. A two-tissue-compartment (2TC) kinetic model was fitted to time-activity curves (TAC) obtained from left ventricle wall and left atrium cavity ROIs to estimate kinetic micro- and macro-parameters. Combinations of kinetic parameters were evaluated with the purpose of distinguishing Control subjects and CA patients, and to correctly label the last ones as AL- or ATTR-subtype. Resulting sensitivity, specificity, and accuracy for Control subjects were: 0.87, 0.9, 0.89; as far as CA patients, the sensitivity, specificity, and accuracy were respectively 0.9, 1, and 0.97 for AL-CA patients and 0.9, 0.92, 0.97 for ATTR-CA patients.

Conclusion

Pharmacokinetic analysis based on a 2TC model allows cardiac amyloidosis characterization from dynamic [18F]Florbetaben PET images. Estimated model parameters allows to not only distinguish between Control subjects and patients, but also between AL- and ATTR-amyloid patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Falk RH, Dubrey SW. Amyloid heart disease. Prog Cardiovasc Dis. 2010;52:347-61.CrossRef Falk RH, Dubrey SW. Amyloid heart disease. Prog Cardiovasc Dis. 2010;52:347-61.CrossRef
3.
go back to reference Falk RH. Cardiac amyloidosis: A treatable disease, often overlooked. Circulation. 2011;124:1079-85.CrossRef Falk RH. Cardiac amyloidosis: A treatable disease, often overlooked. Circulation. 2011;124:1079-85.CrossRef
5.
6.
go back to reference González-López E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral FJ, Cobo-Marcos M, Robles C, Bornstein B, Salas C, Lara-Pezzi E, Alonso-Pulpon L, Garcia-Pavia P. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;36(38):2585-94. https://doi.org/10.1093/eurheartj/ehv338.CrossRefPubMed González-López E, Gallego-Delgado M, Guzzo-Merello G, de Haro-Del Moral FJ, Cobo-Marcos M, Robles C, Bornstein B, Salas C, Lara-Pezzi E, Alonso-Pulpon L, Garcia-Pavia P. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction. Eur Heart J. 2015;36(38):2585-94. https://​doi.​org/​10.​1093/​eurheartj/​ehv338.CrossRefPubMed
7.
go back to reference Skinner M, Sanchorawala V, Seldin DC, Dember LM, Falk RH, Berk JL, et al. High-dose melphalan and autologous stem-cell transplantation in patients with AL amyloidosis: An 8-year study. Ann Intern Med. 2004;140:85-93.CrossRef Skinner M, Sanchorawala V, Seldin DC, Dember LM, Falk RH, Berk JL, et al. High-dose melphalan and autologous stem-cell transplantation in patients with AL amyloidosis: An 8-year study. Ann Intern Med. 2004;140:85-93.CrossRef
8.
go back to reference Ruberg FL, Berk JL. Transthyretin (ATTR) cardiac amyloidosis. Circulation. 2012;126:1286-300.CrossRef Ruberg FL, Berk JL. Transthyretin (ATTR) cardiac amyloidosis. Circulation. 2012;126:1286-300.CrossRef
18.
go back to reference Kyriakou P, Mouselimis D, Tsarouchas A, Rigopoulos A, Bakogiannis C, Noutsias M, Vassilikos V. Diagnosis of cardiac amyloidosis: A systematic review on the role of imaging and biomarkers. BMC Cardiovasc Disord. 2018;18(1):221.CrossRef Kyriakou P, Mouselimis D, Tsarouchas A, Rigopoulos A, Bakogiannis C, Noutsias M, Vassilikos V. Diagnosis of cardiac amyloidosis: A systematic review on the role of imaging and biomarkers. BMC Cardiovasc Disord. 2018;18(1):221.CrossRef
19.
go back to reference Cappelli F, Gallini C, DiMario C, Costanzo EN, Vaggelli L, Tutino F, et al. Accuracy of 99mTc-hydroxymethylene diphosphonate scintigraphy for diagnosis of transthyretin cardiac amyloidosis. J Nucl Cardiol. 2019;26:497-504.CrossRef Cappelli F, Gallini C, DiMario C, Costanzo EN, Vaggelli L, Tutino F, et al. Accuracy of 99mTc-hydroxymethylene diphosphonate scintigraphy for diagnosis of transthyretin cardiac amyloidosis. J Nucl Cardiol. 2019;26:497-504.CrossRef
20.
go back to reference Treglia G, Glaudemans AWJM, Bertagna F, Hazenberg BPC, Erba PA, Giubbini R, et al. Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: A bivariate meta-analysis. Eur J Nuclear Med Mol Imaging. 2018;45:1945-55.CrossRef Treglia G, Glaudemans AWJM, Bertagna F, Hazenberg BPC, Erba PA, Giubbini R, et al. Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: A bivariate meta-analysis. Eur J Nuclear Med Mol Imaging. 2018;45:1945-55.CrossRef
21.
go back to reference Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. 99mTc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013;6(2):195-201.CrossRef Bokhari S, Castaño A, Pozniakoff T, Deslisle S, Latif F, Maurer MS. 99mTc-pyrophosphate scintigraphy for differentiating light-chain cardiac amyloidosis from the transthyretin-related familial and senile cardiac amyloidoses. Circ Cardiovasc Imaging. 2013;6(2):195-201.CrossRef
26.
27.
go back to reference Gillmore JD, et al. BCSH Committee. Guidelines on the diagnosis ad investigation of AL amyloidosis. Br J Haematol. 2015;168:2017-218.CrossRef Gillmore JD, et al. BCSH Committee. Guidelines on the diagnosis ad investigation of AL amyloidosis. Br J Haematol. 2015;168:2017-218.CrossRef
30.
go back to reference Scipioni M, Giorgetti A, Della Latta D, Fucci S, Positano V, Landini L, Santarelli MF. Accelerated PET kinetic maps estimation by analytic fitting method. Comput Biol Med. 2018;99:221-35.CrossRef Scipioni M, Giorgetti A, Della Latta D, Fucci S, Positano V, Landini L, Santarelli MF. Accelerated PET kinetic maps estimation by analytic fitting method. Comput Biol Med. 2018;99:221-35.CrossRef
32.
go back to reference Burnham KP, Anderson DR. Model selection and multimodel inference: A practical information theoretic approach. 2nd ed. New York: Springer-Verlag; 2002. p. 70-5. Burnham KP, Anderson DR. Model selection and multimodel inference: A practical information theoretic approach. 2nd ed. New York: Springer-Verlag; 2002. p. 70-5.
36.
go back to reference Gillmore JD, et al. Nonbiopsy diagnosis of cardiac transthyretine amyloidosis. Circulation. 2016;133:2404-12.CrossRef Gillmore JD, et al. Nonbiopsy diagnosis of cardiac transthyretine amyloidosis. Circulation. 2016;133:2404-12.CrossRef
Metadata
Title
Cardiac amyloidosis characterization by kinetic model fitting on [18F]florbetaben PET images
Authors
M. F. Santarelli, MF, PhD
D. Genovesi, MD
M. Scipioni
V. Positano, MSc
B. Favilli, MSc
A. Giorgetti, MD
G. Vergaro, MD
L. Landini
M. Emdin, MD, PhD
P. Marzullo, MD
Publication date
16-04-2021
Publisher
Springer International Publishing
Published in
Journal of Nuclear Cardiology / Issue 4/2022
Print ISSN: 1071-3581
Electronic ISSN: 1532-6551
DOI
https://doi.org/10.1007/s12350-021-02608-8

Other articles of this Issue 4/2022

Journal of Nuclear Cardiology 4/2022 Go to the issue