Skip to main content
Top
Published in: Current Pain and Headache Reports 4/2024

12-02-2024 | Artificial Intelligence | Alternative Treatments for Pain Medicine (C Robinson, Section Editor)

Applications of Artificial Intelligence in Pain Medicine

Authors: Alaa Abd-Elsayed, Christopher L. Robinson, Zwade Marshall, Sudhir Diwan, Theodore Peters

Published in: Current Pain and Headache Reports | Issue 4/2024

Login to get access

Abstract

Purpose of Review

This review explores the current applications of artificial intelligence (AI) in the field of pain medicine with a focus on machine learning.

Recent Findings

Utilizing a literature search conducted through the PubMed database, several current trends were identified, including the use of AI as a tool for diagnostics, predicting pain progression, predicting treatment response, and performance of therapy and pain management. Results of these studies show promise for the improvement of patient outcomes.

Summary

Current gaps in the research and subsequent directions for future study involve AI in optimizing and improving nerve stimulation and more thoroughly predicting patients’ responses to treatment.
Literature
1.
go back to reference Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology. 2020;132(2):379–94.CrossRefPubMed Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology. 2020;132(2):379–94.CrossRefPubMed
4.
go back to reference Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43.CrossRefPubMedPubMedCentral Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230–43.CrossRefPubMedPubMedCentral
5.
go back to reference Bishop CM. Neural networks and their applications. Rev Sci Instrum. 1994;65(6):1803–32.CrossRefADS Bishop CM. Neural networks and their applications. Rev Sci Instrum. 1994;65(6):1803–32.CrossRefADS
6.
go back to reference Abdollahi M, Ashouri S, Abedi M, Azadeh-Fard N, Parnianpour M, Khalaf K, et al. Using a motion sensor to categorize nonspecific low back pain patients: a machine learning approach. Sensors (Basel). 2020;20(12):3600.CrossRefPubMedADS Abdollahi M, Ashouri S, Abedi M, Azadeh-Fard N, Parnianpour M, Khalaf K, et al. Using a motion sensor to categorize nonspecific low back pain patients: a machine learning approach. Sensors (Basel). 2020;20(12):3600.CrossRefPubMedADS
7.
go back to reference Staartjes VE, Quddusi A, Klukowska AM, Schröder ML. Initial classification of low back and leg pain based on objective functional testing: a pilot study of machine learning applied to diagnostics. Eur Spine J. 2020;29(7):1702–8.CrossRefPubMed Staartjes VE, Quddusi A, Klukowska AM, Schröder ML. Initial classification of low back and leg pain based on objective functional testing: a pilot study of machine learning applied to diagnostics. Eur Spine J. 2020;29(7):1702–8.CrossRefPubMed
8.
go back to reference Gruss S, Treister R, Werner P, Traue HC, Crawcour S, Andrade A, et al. Pain intensity recognition rates via biopotential feature patterns with support vector machines. PLoS ONE. 2015;10(10):e0140330.CrossRefPubMedPubMedCentral Gruss S, Treister R, Werner P, Traue HC, Crawcour S, Andrade A, et al. Pain intensity recognition rates via biopotential feature patterns with support vector machines. PLoS ONE. 2015;10(10):e0140330.CrossRefPubMedPubMedCentral
9.
go back to reference Liew BXW, Rugamer D, De Nunzio AM, Falla D. Interpretable machine learning models for classifying low back pain status using functional physiological variables. Eur Spine J. 2020;29(8):1845–59.CrossRefPubMed Liew BXW, Rugamer D, De Nunzio AM, Falla D. Interpretable machine learning models for classifying low back pain status using functional physiological variables. Eur Spine J. 2020;29(8):1845–59.CrossRefPubMed
10.
go back to reference Lee J, Mawla I, Kim J, Loggia ML, Ortiz A, Jung C, et al. Machine learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. Pain. 2019;160(3):550–60.CrossRefPubMedPubMedCentral Lee J, Mawla I, Kim J, Loggia ML, Ortiz A, Jung C, et al. Machine learning-based prediction of clinical pain using multimodal neuroimaging and autonomic metrics. Pain. 2019;160(3):550–60.CrossRefPubMedPubMedCentral
11.
go back to reference • Wu CL, Liu SF, Yu TL, Shih SJ, Chang CH, Yang Mao SF, et al. Deep learning-based pain classifier based on the facial expression in critically Ill patients. Front Med (Lausanne). 2022;9:851690. Recent reference examining AI model for treating pain.CrossRefPubMed • Wu CL, Liu SF, Yu TL, Shih SJ, Chang CH, Yang Mao SF, et al. Deep learning-based pain classifier based on the facial expression in critically Ill patients. Front Med (Lausanne). 2022;9:851690. Recent reference examining AI model for treating pain.CrossRefPubMed
12.
go back to reference •• Guan B, Liu F, Mizaian AH, Demehri S, Samsonov A, Guermazi A, et al. Deep learning approach to predict pain progression in knee osteoarthritis. Skeletal Radiol. 2022;51(2):363–73. Recent reference and relevant to our article.CrossRefPubMed •• Guan B, Liu F, Mizaian AH, Demehri S, Samsonov A, Guermazi A, et al. Deep learning approach to predict pain progression in knee osteoarthritis. Skeletal Radiol. 2022;51(2):363–73. Recent reference and relevant to our article.CrossRefPubMed
13.
go back to reference Liu L, Zhu MM, Cai LL, Zhang X. Predictive models for knee pain in middle-aged and elderly individuals based on machine learning methods. Comput Math Methods Med. 2022;2022:5005195.CrossRefPubMedPubMedCentral Liu L, Zhu MM, Cai LL, Zhang X. Predictive models for knee pain in middle-aged and elderly individuals based on machine learning methods. Comput Math Methods Med. 2022;2022:5005195.CrossRefPubMedPubMedCentral
14.
go back to reference •• Lin T, Peng S, Lu S, Fu S, Zeng D, Li J, et al. Prediction of knee pain improvement over two years for knee osteoarthritis using a dynamic nomogram based on MRI-derived radiomics: a proof-of-concept study. Osteoarthritis Cartilage. 2023;31(2):267–78. Recent reference with long term follow up.CrossRefPubMed •• Lin T, Peng S, Lu S, Fu S, Zeng D, Li J, et al. Prediction of knee pain improvement over two years for knee osteoarthritis using a dynamic nomogram based on MRI-derived radiomics: a proof-of-concept study. Osteoarthritis Cartilage. 2023;31(2):267–78. Recent reference with long term follow up.CrossRefPubMed
15.
go back to reference Goldstein P, Ashar Y, Tesarz J, Kazgan M, Cetin B, Wager TD. Emerging clinical technology: application of machine learning to chronic pain assessments based on emotional body maps. Neurotherapeutics. 2020;17(3):774–83.CrossRefPubMedPubMedCentral Goldstein P, Ashar Y, Tesarz J, Kazgan M, Cetin B, Wager TD. Emerging clinical technology: application of machine learning to chronic pain assessments based on emotional body maps. Neurotherapeutics. 2020;17(3):774–83.CrossRefPubMedPubMedCentral
16.
go back to reference Ichesco E, Peltier SJ, Mawla I, Harper DE, Pauer L, Harte SE, et al. Prediction of differential pharmacologic response in chronic pain using functional neuroimaging biomarkers and a support vector machine algorithm: an exploratory study. Arthritis Rheumatol. 2021;73(11):2127–37.CrossRefPubMedPubMedCentral Ichesco E, Peltier SJ, Mawla I, Harper DE, Pauer L, Harte SE, et al. Prediction of differential pharmacologic response in chronic pain using functional neuroimaging biomarkers and a support vector machine algorithm: an exploratory study. Arthritis Rheumatol. 2021;73(11):2127–37.CrossRefPubMedPubMedCentral
17.
go back to reference Verma D, Jansen D, Bach K, Poel M, Mork PJ, d’Hollosy WON. Exploratory application of machine learning methods on patient reported data in the development of supervised models for predicting outcomes. BMC Med Inform Decis Mak. 2022;22(1):227.CrossRefPubMedPubMedCentral Verma D, Jansen D, Bach K, Poel M, Mork PJ, d’Hollosy WON. Exploratory application of machine learning methods on patient reported data in the development of supervised models for predicting outcomes. BMC Med Inform Decis Mak. 2022;22(1):227.CrossRefPubMedPubMedCentral
18.
go back to reference Tu Y, Ortiz A, Gollub RL, Cao J, Gerber J, Lang C, et al. Multivariate resting-state functional connectivity predicts responses to real and sham acupuncture treatment in chronic low back pain. Neuroimage Clin. 2019;23:101885.CrossRefPubMedPubMedCentral Tu Y, Ortiz A, Gollub RL, Cao J, Gerber J, Lang C, et al. Multivariate resting-state functional connectivity predicts responses to real and sham acupuncture treatment in chronic low back pain. Neuroimage Clin. 2019;23:101885.CrossRefPubMedPubMedCentral
19.
go back to reference Branco P, Berger S, Abdullah T, Vachon-Presseau E, Cecchi G, Apkarian AV. Predicting placebo analgesia in patients with chronic pain using natural language processing: a preliminary validation study. Pain. 2023;164(5):1078–86.CrossRefPubMed Branco P, Berger S, Abdullah T, Vachon-Presseau E, Cecchi G, Apkarian AV. Predicting placebo analgesia in patients with chronic pain using natural language processing: a preliminary validation study. Pain. 2023;164(5):1078–86.CrossRefPubMed
20.
go back to reference Ortiz-Catalan M, Guðmundsdóttir RA, Kristoffersen MB, Zepeda-Echavarria A, Caine-Winterberger K, Kulbacka-Ortiz K, et al. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet. 2016;388(10062):2885–94.CrossRefPubMed Ortiz-Catalan M, Guðmundsdóttir RA, Kristoffersen MB, Zepeda-Echavarria A, Caine-Winterberger K, Kulbacka-Ortiz K, et al. Phantom motor execution facilitated by machine learning and augmented reality as treatment for phantom limb pain: a single group, clinical trial in patients with chronic intractable phantom limb pain. Lancet. 2016;388(10062):2885–94.CrossRefPubMed
21.
go back to reference Piette JD, Newman S, Krein SL, Marinec N, Chen J, Williams DA, et al. Patient-centered pain care using artificial intelligence and mobile health tools. JAMA Intern Med. 2022;182(9):975–83.CrossRefPubMedPubMedCentral Piette JD, Newman S, Krein SL, Marinec N, Chen J, Williams DA, et al. Patient-centered pain care using artificial intelligence and mobile health tools. JAMA Intern Med. 2022;182(9):975–83.CrossRefPubMedPubMedCentral
22.
go back to reference Marcuzzi A, Nordstoga AL, Bach K, Aasdahl L, Nilsen TIL, Bardal EM, et al. Effect of an artificial intelligence-based self-management app on musculoskeletal health in patients with neck and/or low back pain referred to specialist care: a randomized clinical trial. JAMA Netw Open. 2023;6(6):e2320400.CrossRefPubMedPubMedCentral Marcuzzi A, Nordstoga AL, Bach K, Aasdahl L, Nilsen TIL, Bardal EM, et al. Effect of an artificial intelligence-based self-management app on musculoskeletal health in patients with neck and/or low back pain referred to specialist care: a randomized clinical trial. JAMA Netw Open. 2023;6(6):e2320400.CrossRefPubMedPubMedCentral
23.
go back to reference Anan T, Kajiki S, Oka H, Fujii T, Kawamata K, Mori K, et al. Effects of an artificial intelligence–assisted health program on workers with neck/shoulder pain/stiffness and low back pain: randomized controlled trial. JMIR Mhealth Uhealth. 2021;9(9):e27535.CrossRefPubMedPubMedCentral Anan T, Kajiki S, Oka H, Fujii T, Kawamata K, Mori K, et al. Effects of an artificial intelligence–assisted health program on workers with neck/shoulder pain/stiffness and low back pain: randomized controlled trial. JMIR Mhealth Uhealth. 2021;9(9):e27535.CrossRefPubMedPubMedCentral
24.
go back to reference Snyder K, Thomas B, Lu ML, Jha R, Barim MS, Hayden M, et al. A deep learning approach for lower back-pain risk prediction during manual lifting. PLoS ONE. 2021;16(2):e0247162.CrossRefPubMedPubMedCentral Snyder K, Thomas B, Lu ML, Jha R, Barim MS, Hayden M, et al. A deep learning approach for lower back-pain risk prediction during manual lifting. PLoS ONE. 2021;16(2):e0247162.CrossRefPubMedPubMedCentral
25.
go back to reference Knab JH, Wallace MS, Wagner RL, Tsoukatos J, Weinger MB. The use of a computer-based decision support system facilitates primary care physicians’ management of chronic pain. Anesth Analg. 2001;93(3):712–20.CrossRefPubMed Knab JH, Wallace MS, Wagner RL, Tsoukatos J, Weinger MB. The use of a computer-based decision support system facilitates primary care physicians’ management of chronic pain. Anesth Analg. 2001;93(3):712–20.CrossRefPubMed
26.
go back to reference Cai N, Wang G, Xu L, Zhou Y, Chong H, Zhao Y, et al. Examining the impact perceptual learning artificial-intelligence-based on the incidence of paresthesia when performing the ultrasound-guided popliteal sciatic block: simulation-based randomized study. BMC Anesthesiol. 2022;22(1):392.CrossRefPubMedPubMedCentral Cai N, Wang G, Xu L, Zhou Y, Chong H, Zhao Y, et al. Examining the impact perceptual learning artificial-intelligence-based on the incidence of paresthesia when performing the ultrasound-guided popliteal sciatic block: simulation-based randomized study. BMC Anesthesiol. 2022;22(1):392.CrossRefPubMedPubMedCentral
27.
go back to reference Johnson M. Transcutaneous electrical nerve stimulation: mechanisms. Clinical Application and Evidence Rev Pain. 2007;1(1):7–11.PubMed Johnson M. Transcutaneous electrical nerve stimulation: mechanisms. Clinical Application and Evidence Rev Pain. 2007;1(1):7–11.PubMed
28.
go back to reference Boutet A, Madhavan R, Elias GJB, Joel SE, Gramer R, Ranjan M, et al. Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nat Commun. 2021;12(1):3043.CrossRefPubMedPubMedCentralADS Boutet A, Madhavan R, Elias GJB, Joel SE, Gramer R, Ranjan M, et al. Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nat Commun. 2021;12(1):3043.CrossRefPubMedPubMedCentralADS
29.
go back to reference Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, et al. Durability of clinical and quality-of-life outcomes of closed-loop spinal cord stimulation for chronic back and leg pain: a secondary analysis of the evoke randomized clinical trial. JAMA Neurol. 2022;79(3):251–60.CrossRefPubMedPubMedCentral Mekhail N, Levy RM, Deer TR, Kapural L, Li S, Amirdelfan K, et al. Durability of clinical and quality-of-life outcomes of closed-loop spinal cord stimulation for chronic back and leg pain: a secondary analysis of the evoke randomized clinical trial. JAMA Neurol. 2022;79(3):251–60.CrossRefPubMedPubMedCentral
Metadata
Title
Applications of Artificial Intelligence in Pain Medicine
Authors
Alaa Abd-Elsayed
Christopher L. Robinson
Zwade Marshall
Sudhir Diwan
Theodore Peters
Publication date
12-02-2024
Publisher
Springer US
Published in
Current Pain and Headache Reports / Issue 4/2024
Print ISSN: 1531-3433
Electronic ISSN: 1534-3081
DOI
https://doi.org/10.1007/s11916-024-01224-8

Other articles of this Issue 4/2024

Current Pain and Headache Reports 4/2024 Go to the issue

Hot Topics in Pain and Headache (N Rosen, Section Editor)

Does weather trigger migraine?

Non-pharmacologic Aspects of Pain, Migraine, and Headache (D Buse, Section Editor)

Complementary and Integrative Medicine for the Treatment of Trigeminal Neuralgia and Trigeminal Autonomic Cephalalgia

Chronic Daily Headache (S-J Wang and S-P Chen, Section Editors)

Influences of Genetic and Environmental Factors on Chronic Migraine: A Narrative Review

Chronic Pain Medicine (O Viswanath, Section Editor)

Cervical Spinal Cord Stimulation: A Review