Skip to main content
Top
Published in: Inflammation 2/2012

Open Access 01-04-2012

Vasodilator Phosphostimulated Protein (VASP) Protects Endothelial Barrier Function During Hypoxia

Authors: Marthe A. Schmit, Valbona Mirakaj, Manfred Stangassinger, Klemens König, David Köhler, Peter Rosenberger

Published in: Inflammation | Issue 2/2012

Login to get access

Abstract

The endothelial barrier controls the passage of solutes from the vascular space. This is achieved through active reorganization of the actin cytoskeleton. A central cytoskeletal protein involved into this is vasodilator-stimulated phosphoprotein (VASP). However, the functional role of endothelial VASP during hypoxia has not been thoroughly elucidated. We determined endothelial VASP expression through real-time PCR (Rt-PCR), immunhistochemistry, and Western blot analysis during hypoxia. VASP promoter studies were performed using a PGL3 firefly luciferase containing plasmid. Following approval by the local authorities, VASP −/− mice and littermate controls were subjected to normobaric hypoxia (8% O2, 92% N2) after intravenous injection of Evans blue dye. In in vitro studies, we found significant VASP repression in human microvascular and human umbilical vein endothelial cells through Rt-PCR, immunhistochemistry, and Western blot analysis. The VASP promoter construct demonstrated significant repression in response to hypoxia, which was abolished when the binding of hypoxia-inducible factor 1 alpha was excluded. Exposure of wild-type (WT) and VASP −/− animals to normobaric hypoxia for 4 h resulted in an increase in Evans blue tissue extravasation that was significantly increased in VASP −/− animals compared to WT controls. In summary, we demonstrate here that endothelial VASP holds significant importance for endothelial barrier properties during hypoxia.
Literature
1.
go back to reference Comerford, K.M., D.W. Lawrence, K. Synnestvedt, B.P. Levi, and S.P. Colgan. 2002. Role of vasodilator-stimulated phosphoprotein in protein kinase A-induced changes in endothelial junctional permeability. FASEB J 16: 583–585.PubMed Comerford, K.M., D.W. Lawrence, K. Synnestvedt, B.P. Levi, and S.P. Colgan. 2002. Role of vasodilator-stimulated phosphoprotein in protein kinase A-induced changes in endothelial junctional permeability. FASEB J 16: 583–585.PubMed
2.
go back to reference Price, C.J., and N.P. Brindle. 2000. Vasodilator-stimulated phosphoprotein is involved in stress-fiber and membrane ruffle formation in endothelial cells. Arterioscler Thromb Vasc Biol 20: 2051–2056.PubMedCrossRef Price, C.J., and N.P. Brindle. 2000. Vasodilator-stimulated phosphoprotein is involved in stress-fiber and membrane ruffle formation in endothelial cells. Arterioscler Thromb Vasc Biol 20: 2051–2056.PubMedCrossRef
3.
go back to reference Rentsendorj, O., T. Mirzapoiazova, D. Adyshev, L.E. Servinsky, T. Renne, A.D. Verin, et al. 2008. Role of vasodilator-stimulated phosphoprotein in cGMP-mediated protection of human pulmonary artery endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 294: L686–L697.PubMedCrossRef Rentsendorj, O., T. Mirzapoiazova, D. Adyshev, L.E. Servinsky, T. Renne, A.D. Verin, et al. 2008. Role of vasodilator-stimulated phosphoprotein in cGMP-mediated protection of human pulmonary artery endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 294: L686–L697.PubMedCrossRef
4.
go back to reference Rosenberger, P., J. Khoury, T. Kong, T. Weissmuller, A.M. Robinson, and S.P. Colgan. 2007. Identification of vasodilator-stimulated phosphoprotein (VASP) as an HIF-regulated tissue permeability factor during hypoxia. FASEB J 10: 2613–2621.CrossRef Rosenberger, P., J. Khoury, T. Kong, T. Weissmuller, A.M. Robinson, and S.P. Colgan. 2007. Identification of vasodilator-stimulated phosphoprotein (VASP) as an HIF-regulated tissue permeability factor during hypoxia. FASEB J 10: 2613–2621.CrossRef
5.
go back to reference Schlegel, N., and J. Waschke. 2009. VASP is involved in cAMP-mediated Rac 1 activation in microvascular endothelial cells. Am J Physiol Cell Physiol 296: C453–C462.PubMedCrossRef Schlegel, N., and J. Waschke. 2009. VASP is involved in cAMP-mediated Rac 1 activation in microvascular endothelial cells. Am J Physiol Cell Physiol 296: C453–C462.PubMedCrossRef
6.
go back to reference Schlegel, N., S. Burger, N. Golenhofen, U. Walter, D. Drenckhahn, and J. Waschke. 2008. The role of VASP in regulation of cAMP- and Rac 1-mediated endothelial barrier stabilization. Am J Physiol Cell Physiol 294: C178–C188.PubMedCrossRef Schlegel, N., S. Burger, N. Golenhofen, U. Walter, D. Drenckhahn, and J. Waschke. 2008. The role of VASP in regulation of cAMP- and Rac 1-mediated endothelial barrier stabilization. Am J Physiol Cell Physiol 294: C178–C188.PubMedCrossRef
7.
go back to reference Schlegel, N., and J. Waschke. 2009. Impaired integrin-mediated adhesion contributes to reduced barrier properties in VASP-deficient microvascular endothelium. J Cell Physiol 220: 357–366.PubMedCrossRef Schlegel, N., and J. Waschke. 2009. Impaired integrin-mediated adhesion contributes to reduced barrier properties in VASP-deficient microvascular endothelium. J Cell Physiol 220: 357–366.PubMedCrossRef
8.
9.
go back to reference Wojciak-Stothard, B., L.Y. Tsang, and S.G. Haworth. 2005. Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 288: L749–L760.PubMedCrossRef Wojciak-Stothard, B., L.Y. Tsang, and S.G. Haworth. 2005. Rac and Rho play opposing roles in the regulation of hypoxia/reoxygenation-induced permeability changes in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 288: L749–L760.PubMedCrossRef
10.
go back to reference Wojciak-Stothard, B., L.Y. Tsang, E. Paleolog, S.M. Hall, and S.G. Haworth. 2006. Rac1 and RhoA as regulators of endothelial phenotype and barrier function in hypoxia-induced neonatal pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290: L1173–L1182.PubMedCrossRef Wojciak-Stothard, B., L.Y. Tsang, E. Paleolog, S.M. Hall, and S.G. Haworth. 2006. Rac1 and RhoA as regulators of endothelial phenotype and barrier function in hypoxia-induced neonatal pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 290: L1173–L1182.PubMedCrossRef
11.
go back to reference Kayyali, U.S., C.M. Pennella, C. Trujillo, O. Villa, M. Gaestel, and P.M. Hassoun. 2002. Cytoskeletal changes in hypoxic pulmonary endothelial cells are dependent on MAPK-activated protein kinase MK2. J Biol Chem 277: 42596–42602.PubMedCrossRef Kayyali, U.S., C.M. Pennella, C. Trujillo, O. Villa, M. Gaestel, and P.M. Hassoun. 2002. Cytoskeletal changes in hypoxic pulmonary endothelial cells are dependent on MAPK-activated protein kinase MK2. J Biol Chem 277: 42596–42602.PubMedCrossRef
12.
go back to reference Furman, C., A.L. Sieminski, A.V. Kwiatkowski, D.A. Rubinson, E. Vasile, R.T. Bronson, et al. 2007. Ena/VASP is required for endothelial barrier function in vivo. J Cell Biol 179: 761–775.PubMedCrossRef Furman, C., A.L. Sieminski, A.V. Kwiatkowski, D.A. Rubinson, E. Vasile, R.T. Bronson, et al. 2007. Ena/VASP is required for endothelial barrier function in vivo. J Cell Biol 179: 761–775.PubMedCrossRef
13.
go back to reference Eltzschig, H.K., M. Faigle, S. Knapp, J. Karhausen, J. Ibla, P. Rosenberger, et al. 2006. Endothelial catabolism of extracellular adenosine during hypoxia: the role of surface adenosine deaminase and CD26. Blood 108: 1602–1610.PubMedCrossRef Eltzschig, H.K., M. Faigle, S. Knapp, J. Karhausen, J. Ibla, P. Rosenberger, et al. 2006. Endothelial catabolism of extracellular adenosine during hypoxia: the role of surface adenosine deaminase and CD26. Blood 108: 1602–1610.PubMedCrossRef
14.
go back to reference Yamashita, R., Y. Suzuki, H. Wakaguri, K. Tsuitani, K. Nakai, and S. Sugano. 2006. DBTSS: DataBase of Human Transcription Start Sites, progress report 2007. Large-scale collection and characterization of promoters of human and mouse genes 5′-end SAGE for the analysis of transcriptional start sites. Nucleic Acids Res 34: D86–D89.PubMedCrossRef Yamashita, R., Y. Suzuki, H. Wakaguri, K. Tsuitani, K. Nakai, and S. Sugano. 2006. DBTSS: DataBase of Human Transcription Start Sites, progress report 2007. Large-scale collection and characterization of promoters of human and mouse genes 5′-end SAGE for the analysis of transcriptional start sites. Nucleic Acids Res 34: D86–D89.PubMedCrossRef
15.
go back to reference Hohenstein, B., L. Kasperek, D.J. Kobelt, C. Daniel, S. Gambaryan, T. Renne, et al. 2005. Vasodilator-stimulated phosphoprotein-deficient mice demonstrate increased platelet activation but improved renal endothelial preservation and regeneration in passive nephrotoxic nephritis. J Am Soc Nephrol 16: 986–996.PubMedCrossRef Hohenstein, B., L. Kasperek, D.J. Kobelt, C. Daniel, S. Gambaryan, T. Renne, et al. 2005. Vasodilator-stimulated phosphoprotein-deficient mice demonstrate increased platelet activation but improved renal endothelial preservation and regeneration in passive nephrotoxic nephritis. J Am Soc Nephrol 16: 986–996.PubMedCrossRef
16.
go back to reference Barone, G.W., P.C. Farley, J.M. Conerly, T.L. Flanagan, and I.L. Kron. 1989. Morphological and functional techniques for assessing endothelial integrity: the use of Evans blue dye, silver stains, and endothelial derived relaxing factor. J Card Surg 4: 140–148.PubMedCrossRef Barone, G.W., P.C. Farley, J.M. Conerly, T.L. Flanagan, and I.L. Kron. 1989. Morphological and functional techniques for assessing endothelial integrity: the use of Evans blue dye, silver stains, and endothelial derived relaxing factor. J Card Surg 4: 140–148.PubMedCrossRef
17.
go back to reference Hu, R.J., and V. Bennett. 1991. In vitro proteolysis of brain spectrin by calpain I inhibits association of spectrin with ankyrin-independent membrane binding site(s). J Biol Chem 266: 18200–18205.PubMed Hu, R.J., and V. Bennett. 1991. In vitro proteolysis of brain spectrin by calpain I inhibits association of spectrin with ankyrin-independent membrane binding site(s). J Biol Chem 266: 18200–18205.PubMed
18.
go back to reference Lee, A., J.S. Morrow, and V.M. Fowler. 2001. Caspase remodeling of the spectrin membrane skeleton during lens development and aging. J Biol Chem 276: 20735–20742.PubMedCrossRef Lee, A., J.S. Morrow, and V.M. Fowler. 2001. Caspase remodeling of the spectrin membrane skeleton during lens development and aging. J Biol Chem 276: 20735–20742.PubMedCrossRef
19.
go back to reference Roberts-Lewis, J.M., and R. Siman. 1993. Spectrin proteolysis in the hippocampus: a biochemical marker for neuronal injury and neuroprotection. Ann NY Acad Sci 679: 78–86.PubMedCrossRef Roberts-Lewis, J.M., and R. Siman. 1993. Spectrin proteolysis in the hippocampus: a biochemical marker for neuronal injury and neuroprotection. Ann NY Acad Sci 679: 78–86.PubMedCrossRef
20.
go back to reference Garcia, J.G., A.D. Verin, and K.L. Schaphorst. 1996. Regulation of thrombin-mediated endothelial cell contraction and permeability. Semin Thromb Hemost 22: 309–315.PubMedCrossRef Garcia, J.G., A.D. Verin, and K.L. Schaphorst. 1996. Regulation of thrombin-mediated endothelial cell contraction and permeability. Semin Thromb Hemost 22: 309–315.PubMedCrossRef
21.
go back to reference Kolodney, M.S., and R.B. Wysolmerski. 1992. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J Cell Biol 117: 73–82.PubMedCrossRef Kolodney, M.S., and R.B. Wysolmerski. 1992. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J Cell Biol 117: 73–82.PubMedCrossRef
22.
go back to reference Garcia, J.G., A. Siflinger-Birnboim, R. Bizios, P.J. Del Vecchio, J.W. Fenton 2nd, and A.B. Malik. 1986. Thrombin-induced increase in albumin permeability across the endothelium. J Cell Physiol 128: 96–104.PubMedCrossRef Garcia, J.G., A. Siflinger-Birnboim, R. Bizios, P.J. Del Vecchio, J.W. Fenton 2nd, and A.B. Malik. 1986. Thrombin-induced increase in albumin permeability across the endothelium. J Cell Physiol 128: 96–104.PubMedCrossRef
23.
go back to reference Wu, N.Z., and A.L. Baldwin. 1992. Transient venular permeability increase and endothelial gap formation induced by histamine. Am J Physiol 262: H1238–H1247.PubMed Wu, N.Z., and A.L. Baldwin. 1992. Transient venular permeability increase and endothelial gap formation induced by histamine. Am J Physiol 262: H1238–H1247.PubMed
24.
go back to reference Bouvry, D., C. Planes, L. Malbert-Colas, V. Escabasse, and C. Clerici. 2006. Hypoxia-induced cytoskeleton disruption in alveolar epithelial cells. Am J Respir Cell Mol Biol 35: 519–527.PubMedCrossRef Bouvry, D., C. Planes, L. Malbert-Colas, V. Escabasse, and C. Clerici. 2006. Hypoxia-induced cytoskeleton disruption in alveolar epithelial cells. Am J Respir Cell Mol Biol 35: 519–527.PubMedCrossRef
25.
go back to reference Bogatcheva, N.V., and A.D. Verin. 2008. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc Res 76: 202–207.PubMedCrossRef Bogatcheva, N.V., and A.D. Verin. 2008. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc Res 76: 202–207.PubMedCrossRef
26.
go back to reference Kwon, O., C.L. Phillips, and B.A. Molitoris. 2002. Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol 282: F1012–F1019.PubMed Kwon, O., C.L. Phillips, and B.A. Molitoris. 2002. Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol 282: F1012–F1019.PubMed
27.
go back to reference Molitoris, B.A. 1991. Ischemia-induced loss of epithelial polarity: potential role of the actin cytoskeleton. Am J Physiol 260: F769–F778.PubMed Molitoris, B.A. 1991. Ischemia-induced loss of epithelial polarity: potential role of the actin cytoskeleton. Am J Physiol 260: F769–F778.PubMed
28.
go back to reference Henes, J., M.A. Schmit, J.C. Morote-Garcia, V. Mirakaj, D. Kohler, L. Glover, et al. 2009. Inflammation-associated repression of vasodilator-stimulated phosphoprotein (VASP) reduces alveolar-capillary barrier function during acute lung injury. FASEB J 23: 4244–4255.PubMedCrossRef Henes, J., M.A. Schmit, J.C. Morote-Garcia, V. Mirakaj, D. Kohler, L. Glover, et al. 2009. Inflammation-associated repression of vasodilator-stimulated phosphoprotein (VASP) reduces alveolar-capillary barrier function during acute lung injury. FASEB J 23: 4244–4255.PubMedCrossRef
29.
go back to reference Rius, J., M. Guma, C. Schachtrup, K. Akassoglou, A.S. Zinkernagel, V. Nizet, et al. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453: 807–811.PubMedCrossRef Rius, J., M. Guma, C. Schachtrup, K. Akassoglou, A.S. Zinkernagel, V. Nizet, et al. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 453: 807–811.PubMedCrossRef
30.
go back to reference Bonello, S., C. Zahringer, R.S. BelAiba, T. Djordjevic, J. Hess, C. Michiels, et al. 2007. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 27: 755–761.PubMedCrossRef Bonello, S., C. Zahringer, R.S. BelAiba, T. Djordjevic, J. Hess, C. Michiels, et al. 2007. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 27: 755–761.PubMedCrossRef
31.
go back to reference Sitkovsky, M., and D. Lukashev. 2005. Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5: 712–721.PubMedCrossRef Sitkovsky, M., and D. Lukashev. 2005. Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 5: 712–721.PubMedCrossRef
32.
go back to reference Sitkovsky, M.V., D. Lukashev, S. Apasov, H. Kojima, M. Koshiba, C. Caldwell, et al. 2004. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22: 657–682.PubMedCrossRef Sitkovsky, M.V., D. Lukashev, S. Apasov, H. Kojima, M. Koshiba, C. Caldwell, et al. 2004. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu Rev Immunol 22: 657–682.PubMedCrossRef
33.
go back to reference Cummins, E.P., E. Berra, K.M. Comerford, A. Ginouves, K.T. Fitzgerald, F. Seeballuck, et al. 2006. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA 103: 18154–18159.PubMedCrossRef Cummins, E.P., E. Berra, K.M. Comerford, A. Ginouves, K.T. Fitzgerald, F. Seeballuck, et al. 2006. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc Natl Acad Sci USA 103: 18154–18159.PubMedCrossRef
34.
go back to reference Walmsley, S.R., C. Print, N. Farahi, C. Peyssonnaux, R.S. Johnson, T. Cramer, et al. 2005. Hypoxia-induced neutrophil survival is mediated by HIF-1{alpha}-dependent NF-{kappa}B activity. J Exp Med 201: 105–115.PubMedCrossRef Walmsley, S.R., C. Print, N. Farahi, C. Peyssonnaux, R.S. Johnson, T. Cramer, et al. 2005. Hypoxia-induced neutrophil survival is mediated by HIF-1{alpha}-dependent NF-{kappa}B activity. J Exp Med 201: 105–115.PubMedCrossRef
35.
go back to reference Rius, J., M. Guma, C. Schachtrup, K. Akassoglou, A.S. Zinkernagel, V. Nizet, et al. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 53(7196): 807–811.CrossRef Rius, J., M. Guma, C. Schachtrup, K. Akassoglou, A.S. Zinkernagel, V. Nizet, et al. 2008. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 53(7196): 807–811.CrossRef
36.
go back to reference Eckle, T., M. Faigle, A. Grenz, S. Laucher, L.F. Thompson, and H.K. Eltzschig. 2008. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111: 2024–2035.PubMedCrossRef Eckle, T., M. Faigle, A. Grenz, S. Laucher, L.F. Thompson, and H.K. Eltzschig. 2008. A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood 111: 2024–2035.PubMedCrossRef
37.
go back to reference Eltzschig, H.K., P. Abdulla, E. Hoffman, K.E. Hamilton, D. Daniels, C. Schonfeld, et al. 2005. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med 202: 1493–1505.PubMedCrossRef Eltzschig, H.K., P. Abdulla, E. Hoffman, K.E. Hamilton, D. Daniels, C. Schonfeld, et al. 2005. HIF-1-dependent repression of equilibrative nucleoside transporter (ENT) in hypoxia. J Exp Med 202: 1493–1505.PubMedCrossRef
38.
go back to reference Eltzschig, H.K., J.C. Ibla, G.T. Furuta, M.O. Leonard, K.A. Jacobson, K. Enjyoji, et al. 2003. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J Exp Med 198: 783–796.PubMedCrossRef Eltzschig, H.K., J.C. Ibla, G.T. Furuta, M.O. Leonard, K.A. Jacobson, K. Enjyoji, et al. 2003. Coordinated adenine nucleotide phosphohydrolysis and nucleoside signaling in posthypoxic endothelium: role of ectonucleotidases and adenosine A2B receptors. J Exp Med 198: 783–796.PubMedCrossRef
39.
go back to reference Eltzschig, H.K., L.F. Thompson, J. Karhausen, R.J. Cotta, J.C. Ibla, S.C. Robson, et al. 2004. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104: 3986–3992.PubMedCrossRef Eltzschig, H.K., L.F. Thompson, J. Karhausen, R.J. Cotta, J.C. Ibla, S.C. Robson, et al. 2004. Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: coordination by extracellular nucleotide metabolism. Blood 104: 3986–3992.PubMedCrossRef
40.
go back to reference Morote-Garcia, J.C., P. Rosenberger, J. Kuhlicke, and H.K. Eltzschig. 2008. HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 111: 5571–5580.PubMedCrossRef Morote-Garcia, J.C., P. Rosenberger, J. Kuhlicke, and H.K. Eltzschig. 2008. HIF-1-dependent repression of adenosine kinase attenuates hypoxia-induced vascular leak. Blood 111: 5571–5580.PubMedCrossRef
41.
go back to reference Synnestvedt, K., G.T. Furuta, K.M. Comerford, N. Louis, J. Karhausen, H.K. Eltzschig, et al. 2002. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110: 993–1002.PubMed Synnestvedt, K., G.T. Furuta, K.M. Comerford, N. Louis, J. Karhausen, H.K. Eltzschig, et al. 2002. Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110: 993–1002.PubMed
42.
go back to reference Rosenberger, P., J.M. Schwab, V. Mirakaj, E. Masekowsky, A. Mager, J.C. Morote-Garcia, et al. 2009. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 10: 195–202.PubMedCrossRef Rosenberger, P., J.M. Schwab, V. Mirakaj, E. Masekowsky, A. Mager, J.C. Morote-Garcia, et al. 2009. Hypoxia-inducible factor-dependent induction of netrin-1 dampens inflammation caused by hypoxia. Nat Immunol 10: 195–202.PubMedCrossRef
43.
go back to reference Profirovic, J., J. Han, A.V. Andreeva, R.F. Neamu, S. Pavlovic, S.M. Vogel, et al. 2011. Vasodilator-stimulated phosphoprotein deficiency potentiates PAR-1-induced increase in endothelial permeability in mouse lungs. J Cell Physiol 226: 1255–1264.PubMedCrossRef Profirovic, J., J. Han, A.V. Andreeva, R.F. Neamu, S. Pavlovic, S.M. Vogel, et al. 2011. Vasodilator-stimulated phosphoprotein deficiency potentiates PAR-1-induced increase in endothelial permeability in mouse lungs. J Cell Physiol 226: 1255–1264.PubMedCrossRef
Metadata
Title
Vasodilator Phosphostimulated Protein (VASP) Protects Endothelial Barrier Function During Hypoxia
Authors
Marthe A. Schmit
Valbona Mirakaj
Manfred Stangassinger
Klemens König
David Köhler
Peter Rosenberger
Publication date
01-04-2012
Publisher
Springer US
Published in
Inflammation / Issue 2/2012
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-011-9347-z

Other articles of this Issue 2/2012

Inflammation 2/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.