Skip to main content
Top
Published in: BMC Cardiovascular Disorders 1/2024

Open Access 01-12-2024 | Arterial Occlusive Disease | Research

Procyanidin B2 alleviates oxidized low-density lipoprotein-induced cell injury, inflammation, monocyte chemotaxis, and oxidative stress by inhibiting the nuclear factor kappa-B pathway in human umbilical vein endothelial cells

Authors: Limei Yuan, Lihua Fan, Zhiqiang Zhang, Xing Huang, Qingle Liu, Zhiguo Zhang

Published in: BMC Cardiovascular Disorders | Issue 1/2024

Login to get access

Abstract

Background

Oxidized low-density lipoprotein (ox-LDL) can initiate and affect almost all atherosclerotic events including endothelial dysfunction. In this text, the role and underlying molecular basis of procyanidin B2 (PCB2) with potential anti-oxidant and anti-inflammatory activities in ox-LDL-induced HUVEC injury were examined.

Methods

HUVECs were treated with ox-LDL in the presence or absence of PCB2. Cell viability and apoptotic rate were examined by CCK-8 assay and flow cytometry, respectively. The mRNA and protein levels of genes were tested by RT-qPCR and western blot assays, respectively. Potential downstream targets and pathways of apple procyanidin oligomers were examined by bioinformatics analysis for the GSE9647 dataset. The effect of PCB2 on THP-1 cell migration was examined by recruitment assay. The effect of PCB2 on oxidative stress was assessed by reactive oxygen species (ROS) level, malondialdehyde (MDA) content, and mitochondrial membrane potential (MMP).

Results

ox-LDL reduced cell viability, induced cell apoptosis, and facilitated the expression of oxidized low-density lipoprotein receptor 1 (LOX-1), C-C motif chemokine ligand 2 (MCP-1), vascular cell adhesion protein 1 (VCAM-1) in HUVECs. PCB2 alleviated ox-LDL-induced cell injury in HUVECs. Apple procyanidin oligomers triggered the differential expression of 592 genes in HUVECs (|log2fold-change| > 0.58 and adjusted p-value < 0.05). These dysregulated genes might be implicated in apoptosis, endothelial cell proliferation, inflammation, and monocyte chemotaxis. PCB2 inhibited C-X-C motif chemokine ligand 1/8 (CXCL1/8) expression and THP-1 cell recruitment in ox-LDL-stimulated HUVECs. PCB2 inhibited ox-LDL-induced oxidative stress and nuclear factor kappa-B (NF-κB) activation in HUVECs.

Conclusion

PCB2 weakened ox-LDL-induced cell injury, inflammation, monocyte recruitment, and oxidative stress by inhibiting the NF-κB pathway in HUVECs.
Appendix
Available only for authorised users
Literature
1.
go back to reference Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF. Atherosclerosis. Nat Reviews Disease Primers. 2019;5(1):56.CrossRefPubMed Libby P, Buring JE, Badimon L, Hansson GK, Deanfield J, Bittencourt MS, Tokgözoğlu L, Lewis EF. Atherosclerosis. Nat Reviews Disease Primers. 2019;5(1):56.CrossRefPubMed
2.
go back to reference Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al. Global Burden of Cardiovascular diseases and Risk factors, 1990–2019: Update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021.CrossRefPubMedPubMedCentral Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al. Global Burden of Cardiovascular diseases and Risk factors, 1990–2019: Update from the GBD 2019 study. J Am Coll Cardiol. 2020;76(25):2982–3021.CrossRefPubMedPubMedCentral
4.
go back to reference Xu S, Ilyas I, Little PJ. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. 2021, 73(3):924–967. Xu S, Ilyas I, Little PJ. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. 2021, 73(3):924–967.
5.
go back to reference Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. 2020, 2020:5245308. Khatana C, Saini NK, Chakrabarti S, Saini V, Sharma A, Saini RV. Mechanistic Insights into the Oxidized Low-Density Lipoprotein-Induced Atherosclerosis. 2020, 2020:5245308.
6.
go back to reference Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr Med Chem. 2019;26(9):1693–700.CrossRefPubMed Kattoor AJ, Kanuri SH, Mehta JL. Role of Ox-LDL and LOX-1 in Atherogenesis. Curr Med Chem. 2019;26(9):1693–700.CrossRefPubMed
7.
go back to reference Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxid Med Cell Longev 2019, 2019:8563845. Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxid Med Cell Longev 2019, 2019:8563845.
8.
go back to reference Lu J, Mitra S, Wang X, Khaidakov M, Mehta JL. Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis. Antioxid Redox Signal. 2011;15(8):2301–33.CrossRefPubMed Lu J, Mitra S, Wang X, Khaidakov M, Mehta JL. Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis. Antioxid Redox Signal. 2011;15(8):2301–33.CrossRefPubMed
9.
go back to reference Pothineni NVK, Karathanasis SK, Ding Z, Arulandu A, Varughese KI, Mehta JL. LOX-1 in atherosclerosis and myocardial ischemia: Biology, Genetics, and Modulation. J Am Coll Cardiol. 2017;69(22):2759–68.CrossRefPubMed Pothineni NVK, Karathanasis SK, Ding Z, Arulandu A, Varughese KI, Mehta JL. LOX-1 in atherosclerosis and myocardial ischemia: Biology, Genetics, and Modulation. J Am Coll Cardiol. 2017;69(22):2759–68.CrossRefPubMed
10.
go back to reference Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci. 2013;70(16):2859–72.CrossRefPubMed Xu S, Ogura S, Chen J, Little PJ, Moss J, Liu P. LOX-1 in atherosclerosis: biological functions and pharmacological modifiers. Cell Mol Life Sci. 2013;70(16):2859–72.CrossRefPubMed
11.
go back to reference Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27(11):2292–301.CrossRefPubMed Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27(11):2292–301.CrossRefPubMed
12.
go back to reference Valencia-Hernandez LJ, Wong-Paz JE, Ascacio-Valdés JA. Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. 2021, 10(12). Valencia-Hernandez LJ, Wong-Paz JE, Ascacio-Valdés JA. Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. 2021, 10(12).
13.
go back to reference González-Quilen C, Rodríguez-Gallego E, Beltrán-Debón R, Pinent M, Ardévol A, Blay MT, Terra X. Health-promoting properties of proanthocyanidins for Intestinal Dysfunction. Nutrients 2020, 12(1). González-Quilen C, Rodríguez-Gallego E, Beltrán-Debón R, Pinent M, Ardévol A, Blay MT, Terra X. Health-promoting properties of proanthocyanidins for Intestinal Dysfunction. Nutrients 2020, 12(1).
14.
go back to reference Nie Y, Stürzenbaum SR. Proanthocyanidins of natural origin: molecular mechanisms and implications for lipid disorder and aging-Associated diseases. Adv Nutr (Bethesda Md). 2019;10(3):464–78.CrossRef Nie Y, Stürzenbaum SR. Proanthocyanidins of natural origin: molecular mechanisms and implications for lipid disorder and aging-Associated diseases. Adv Nutr (Bethesda Md). 2019;10(3):464–78.CrossRef
15.
go back to reference Wang L, Fumoto T, Masumoto S, Shoji T, Miura T, Naraoka M, Matsuda N, Imaizumi T, Ohkuma H. Regression of atherosclerosis with apple procyanidins by activating the ATP-binding cassette subfamily a member 1 in a rabbit model. Atherosclerosis. 2017;258:56–64.CrossRefPubMed Wang L, Fumoto T, Masumoto S, Shoji T, Miura T, Naraoka M, Matsuda N, Imaizumi T, Ohkuma H. Regression of atherosclerosis with apple procyanidins by activating the ATP-binding cassette subfamily a member 1 in a rabbit model. Atherosclerosis. 2017;258:56–64.CrossRefPubMed
16.
go back to reference Rong S, Zhao S, Kai X, Zhang L, Zhao Y, Xiao X, Bao W, Liu L. Procyanidins extracted from the litchi pericarp attenuate atherosclerosis and hyperlipidemia associated with consumption of a high fat diet in apolipoprotein-E knockout mice. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie. 2018;97:1639–44.CrossRefPubMed Rong S, Zhao S, Kai X, Zhang L, Zhao Y, Xiao X, Bao W, Liu L. Procyanidins extracted from the litchi pericarp attenuate atherosclerosis and hyperlipidemia associated with consumption of a high fat diet in apolipoprotein-E knockout mice. Biomed Pharmacotherapy = Biomedecine Pharmacotherapie. 2018;97:1639–44.CrossRefPubMed
17.
go back to reference Rong S, Hu X, Zhao S, Zhao Y, Xiao X, Bao W, Liu L. Procyanidins extracted from the litchi pericarp ameliorate atherosclerosis in ApoE knockout mice: their effects on nitric oxide bioavailability and oxidative stress. Food Funct. 2017;8(11):4210–6.CrossRefPubMed Rong S, Hu X, Zhao S, Zhao Y, Xiao X, Bao W, Liu L. Procyanidins extracted from the litchi pericarp ameliorate atherosclerosis in ApoE knockout mice: their effects on nitric oxide bioavailability and oxidative stress. Food Funct. 2017;8(11):4210–6.CrossRefPubMed
18.
go back to reference Yin W, Li B, Li X, Yu F, Cai Q, Zhang Z, Wang J, Zhang J, Zhou R, Cheng M, et al. Critical role of prohibitin in endothelial cell apoptosis caused by glycated low-density lipoproteins and protective effects of grape seed procyanidin B2. J Cardiovasc Pharmacol. 2015;65(1):13–21.CrossRefPubMed Yin W, Li B, Li X, Yu F, Cai Q, Zhang Z, Wang J, Zhang J, Zhou R, Cheng M, et al. Critical role of prohibitin in endothelial cell apoptosis caused by glycated low-density lipoproteins and protective effects of grape seed procyanidin B2. J Cardiovasc Pharmacol. 2015;65(1):13–21.CrossRefPubMed
19.
go back to reference Li BY, Li XL, Gao HQ, Zhang JH, Cai Q, Cheng M, Lu M. Grape seed procyanidin B2 inhibits advanced glycation end product-induced endothelial cell apoptosis through regulating GSK3β phosphorylation. Cell Biol Int. 2011;35(7):663–9.CrossRefPubMed Li BY, Li XL, Gao HQ, Zhang JH, Cai Q, Cheng M, Lu M. Grape seed procyanidin B2 inhibits advanced glycation end product-induced endothelial cell apoptosis through regulating GSK3β phosphorylation. Cell Biol Int. 2011;35(7):663–9.CrossRefPubMed
20.
go back to reference Yang H, Xiao L, Yuan Y, Luo X, Jiang M, Ni J, Wang N. Procyanidin B2 inhibits NLRP3 inflammasome activation in human vascular endothelial cells. Biochem Pharmacol. 2014;92(4):599–606.CrossRefPubMed Yang H, Xiao L, Yuan Y, Luo X, Jiang M, Ni J, Wang N. Procyanidin B2 inhibits NLRP3 inflammasome activation in human vascular endothelial cells. Biochem Pharmacol. 2014;92(4):599–606.CrossRefPubMed
21.
go back to reference Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23(1):37–45.CrossRefPubMed Chanput W, Mes JJ, Wichers HJ. THP-1 cell line: an in vitro cell model for immune modulation approach. Int Immunopharmacol. 2014;23(1):37–45.CrossRefPubMed
22.
go back to reference Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, Wu Y, Zhao L, Liu J, Guo J, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49(W1):W317–25.CrossRefPubMedPubMedCentral Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, Wu Y, Zhao L, Liu J, Guo J, et al. KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res. 2021;49(W1):W317–25.CrossRefPubMedPubMedCentral
23.
go back to reference Zhu Z, Li J, Zhang X. Salidroside protects against ox-LDL-induced endothelial injury by enhancing autophagy mediated by SIRT1-FoxO1 pathway. BMC Complement Altern Med. 2019;19(1):111.CrossRefPubMedPubMedCentral Zhu Z, Li J, Zhang X. Salidroside protects against ox-LDL-induced endothelial injury by enhancing autophagy mediated by SIRT1-FoxO1 pathway. BMC Complement Altern Med. 2019;19(1):111.CrossRefPubMedPubMedCentral
24.
go back to reference Gong L, Lei Y, Liu Y, Tan F, Li S, Wang X, Xu M, Cai W, Du B, Xu F, et al. Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling. Am J Transl Res. 2019;11(4):2140–54.PubMedPubMedCentral Gong L, Lei Y, Liu Y, Tan F, Li S, Wang X, Xu M, Cai W, Du B, Xu F, et al. Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling. Am J Transl Res. 2019;11(4):2140–54.PubMedPubMedCentral
25.
go back to reference Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Münzel T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017;174(12):1591–619.CrossRefPubMed Daiber A, Steven S, Weber A, Shuvaev VV, Muzykantov VR, Laher I, Li H, Lamas S, Münzel T. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017;174(12):1591–619.CrossRefPubMed
26.
go back to reference Li BY, Li XL, Cai Q, Gao HQ, Cheng M, Zhang JH, Wang JF, Yu F, Zhou RH. Induction of lactadherin mediates the apoptosis of endothelial cells in response to advanced glycation end products and protective effects of grape seed procyanidin B2 and resveratrol. Apoptosis: Int J Program cell Death. 2011;16(7):732–45.CrossRef Li BY, Li XL, Cai Q, Gao HQ, Cheng M, Zhang JH, Wang JF, Yu F, Zhou RH. Induction of lactadherin mediates the apoptosis of endothelial cells in response to advanced glycation end products and protective effects of grape seed procyanidin B2 and resveratrol. Apoptosis: Int J Program cell Death. 2011;16(7):732–45.CrossRef
27.
go back to reference Steven S, Frenis K, Oelze M, Kalinovic S, Kuntic M, Bayo Jimenez MT, Vujacic-Mirski K, Helmstädter J, Kröller-Schön S, Münzel T et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxid Med Cell Longev 2019, 2019:7092151. Steven S, Frenis K, Oelze M, Kalinovic S, Kuntic M, Bayo Jimenez MT, Vujacic-Mirski K, Helmstädter J, Kröller-Schön S, Münzel T et al. Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. Oxid Med Cell Longev 2019, 2019:7092151.
28.
go back to reference Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60.CrossRefPubMed Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, Yuan Q, Yu H, Xu W, Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019;20:247–60.CrossRefPubMed
29.
30.
go back to reference Chen X, Lin J, Hu T, Ren Z, Li L, Hameed I, Zhang X, Men C, Guo Y, Xu D, et al. Galectin-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation. J Cell Physiol. 2019;234(7):10990–1000.CrossRefPubMed Chen X, Lin J, Hu T, Ren Z, Li L, Hameed I, Zhang X, Men C, Guo Y, Xu D, et al. Galectin-3 exacerbates ox-LDL-mediated endothelial injury by inducing inflammation via integrin β1-RhoA-JNK signaling activation. J Cell Physiol. 2019;234(7):10990–1000.CrossRefPubMed
31.
go back to reference Song DQ, Liu J, Wang F, Li XF, Liu MH, Zhang Z, Cao SS, Jiang X. Procyanidin B2 inhibits lipopolysaccharide–induced apoptosis by suppressing the Bcl–2/Bax and NF–κB signalling pathways in human umbilical vein endothelial cells. Mol Med Rep 2021, 23(4). Song DQ, Liu J, Wang F, Li XF, Liu MH, Zhang Z, Cao SS, Jiang X. Procyanidin B2 inhibits lipopolysaccharide–induced apoptosis by suppressing the Bcl–2/Bax and NF–κB signalling pathways in human umbilical vein endothelial cells. Mol Med Rep 2021, 23(4).
32.
go back to reference Lee CC, Kim JH, Kim JS, Oh YS, Han SM, Park JHY, Lee KW, Lee CY. 5-(3’,4’-Dihydroxyphenyl-γ-valerolactone), a Major Microbial Metabolite of Proanthocyanidin, Attenuates THP-1 Monocyte-Endothelial Adhesion. International journal of molecular sciences 2017, 18(7). Lee CC, Kim JH, Kim JS, Oh YS, Han SM, Park JHY, Lee KW, Lee CY. 5-(3’,4’-Dihydroxyphenyl-γ-valerolactone), a Major Microbial Metabolite of Proanthocyanidin, Attenuates THP-1 Monocyte-Endothelial Adhesion. International journal of molecular sciences 2017, 18(7).
33.
go back to reference Lee CC, Dudonné S, Dubé P, Desjardins Y, Kim JH, Kim JS, Kim JE, Park JHY, Lee KW, Lee CY. Comprehensive phenolic composition analysis and evaluation of Yak-Kong soybean (Glycine max) for the prevention of atherosclerosis. Food Chem. 2017;234:486–93.CrossRefPubMed Lee CC, Dudonné S, Dubé P, Desjardins Y, Kim JH, Kim JS, Kim JE, Park JHY, Lee KW, Lee CY. Comprehensive phenolic composition analysis and evaluation of Yak-Kong soybean (Glycine max) for the prevention of atherosclerosis. Food Chem. 2017;234:486–93.CrossRefPubMed
34.
go back to reference Liu L, Wang R, Xu R, Chu Y, Gu W. Procyanidin B2 ameliorates endothelial dysfunction and impaired angiogenesis via the Nrf2/PPARγ/sFlt-1 axis in preeclampsia. Pharmacol Res. 2022;177:106127.CrossRefPubMed Liu L, Wang R, Xu R, Chu Y, Gu W. Procyanidin B2 ameliorates endothelial dysfunction and impaired angiogenesis via the Nrf2/PPARγ/sFlt-1 axis in preeclampsia. Pharmacol Res. 2022;177:106127.CrossRefPubMed
35.
go back to reference Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21(1):103–15.CrossRefPubMed Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011;21(1):103–15.CrossRefPubMed
36.
go back to reference Ming S, Tian J, Ma K, Pei C, Li L, Wang Z, Fang Z, Liu M, Dong H, Li W, et al. Oxalate-induced apoptosis through ERS-ROS-NF-κB signalling pathway in renal tubular epithelial cell. Mol Med (Cambridge Mass). 2022;28(1):88.CrossRef Ming S, Tian J, Ma K, Pei C, Li L, Wang Z, Fang Z, Liu M, Dong H, Li W, et al. Oxalate-induced apoptosis through ERS-ROS-NF-κB signalling pathway in renal tubular epithelial cell. Mol Med (Cambridge Mass). 2022;28(1):88.CrossRef
37.
go back to reference Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Therapy. 2020;5(1):209.CrossRef Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Therapy. 2020;5(1):209.CrossRef
38.
go back to reference Li XL, Li BY, Cheng M, Yu F, Yin WB, Cai Q, Zhang Z, Zhang JH, Wang JF, Zhou RH, et al. PIMT prevents the apoptosis of endothelial cells in response to glycated low density lipoproteins and protective effects of grape seed procyanidin B2. PLoS ONE. 2013;8(7):e69979.CrossRefPubMedPubMedCentral Li XL, Li BY, Cheng M, Yu F, Yin WB, Cai Q, Zhang Z, Zhang JH, Wang JF, Zhou RH, et al. PIMT prevents the apoptosis of endothelial cells in response to glycated low density lipoproteins and protective effects of grape seed procyanidin B2. PLoS ONE. 2013;8(7):e69979.CrossRefPubMedPubMedCentral
Metadata
Title
Procyanidin B2 alleviates oxidized low-density lipoprotein-induced cell injury, inflammation, monocyte chemotaxis, and oxidative stress by inhibiting the nuclear factor kappa-B pathway in human umbilical vein endothelial cells
Authors
Limei Yuan
Lihua Fan
Zhiqiang Zhang
Xing Huang
Qingle Liu
Zhiguo Zhang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Cardiovascular Disorders / Issue 1/2024
Electronic ISSN: 1471-2261
DOI
https://doi.org/10.1186/s12872-024-03858-3

Other articles of this Issue 1/2024

BMC Cardiovascular Disorders 1/2024 Go to the issue