Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2024

Open Access 01-12-2024 | Arterial Occlusive Disease | Review

The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7

Authors: Wujun Chen, Xiaolin Wu, Jianxia Hu, Xiaolei Liu, Zhu Guo, Jianfeng Wu, Yingchun Shao, Minglu Hao, Shuangshuang Zhang, Weichao Hu, Yanhong Wang, Miao Zhang, Meng Zhu, Chao Wang, Yudong Wu, Jie Wang, Dongming Xing

Published in: Cardiovascular Diabetology | Issue 1/2024

Login to get access

Abstract

Atherosclerosis is one of the leading causes of death worldwide. miR-26 is a potential biomarker of atherosclerosis. Standardized diagnostic tests for miR-26 (MIR26-DX) have been developed, but the fastest progress has been in predicting the efficacy of IFN-α therapy for hepatocellular carcinoma (HCC, phase 3). MiR-26 slows atherosclerosis development by suppressing ACC1/2, ACLY, ACSL3/4, ALDH3A2, ALPL, BMP2, CD36, COL1A1, CPT1A, CTGF, DGAT2, EHHADH, FAS, FBP1, GATA4, GSK3β, G6PC, Gys2, HMGA1, HMGB1, LDLR, LIPC, IL-1β, IL-6, JAG2, KCNJ2, MALT1, β-MHC, NF-κB, PCK1, PLCβ1, PYGL, RUNX2, SCD1, SMAD1/4/5/7, SREBF1, TAB3, TAK1, TCF7L2, and TNF-α expression. Many agents targeting these genes, such as the ACC1/2 inhibitors GS-0976, PF-05221304, and MK-4074; the DGAT2 inhibitors IONIS-DGAT2Rx, PF-06427878, PF-0685571, and PF-07202954; the COL1A1 inhibitor HT-100; the stimulants 68Ga-CBP8 and RCT-01; the CPT1A inhibitors etomoxir, perhexiline, and teglicar; the FBP1 inhibitors CS-917 and MB07803; and the SMAD7 inhibitor mongersen, have been investigated in clinical trials. Interestingly, miR-26 better reduced intima-media thickness (IMT) than PCSK9 or CT-1 knockout. Many PCSK9 inhibitors, including alirocumab, evolocumab, inclisiran, AZD8233, Civi-007, MK-0616, and LIB003, have been investigated in clinical trials. Recombinant CT-1 was also investigated in clinical trials. Therefore, miR-26 is a promising target for agent development. miR-26 promotes foam cell formation by reducing ABCA1 and ARL4C expression. Multiple materials can be used to deliver miR-26, but it is unclear which material is most suitable for mass production and clinical applications. This review focuses on the potential use of miR-26 in treating atherosclerosis to support the development of agents targeting it.
Literature
1.
go back to reference Schiano C, Balbi C, de Nigris F, Napoli C. Basic pathogenic mechanisms and epigenetic players promoted by extracellular vesicles in vascular damage. Int J Mol Sci. 2023;24(8):7509.PubMedPubMedCentralCrossRef Schiano C, Balbi C, de Nigris F, Napoli C. Basic pathogenic mechanisms and epigenetic players promoted by extracellular vesicles in vascular damage. Int J Mol Sci. 2023;24(8):7509.PubMedPubMedCentralCrossRef
2.
go back to reference Chen W, Zhong Y, Feng N, Guo Z, Wang S, Xing D. New horizons in the roles and associations of COX-2 and novel natural inhibitors in cardiovascular diseases. Mol Med. 2021;27(1):123.PubMedPubMedCentralCrossRef Chen W, Zhong Y, Feng N, Guo Z, Wang S, Xing D. New horizons in the roles and associations of COX-2 and novel natural inhibitors in cardiovascular diseases. Mol Med. 2021;27(1):123.PubMedPubMedCentralCrossRef
3.
go back to reference Chen W, Wang Y, Ren C, Yu S, Wang C, Xing J, Xu J, Yan S, Zhang T, Li Q, et al. The role of TNC in atherosclerosis and drug development opportunities. Int J Biol Sci. 2024; 20(1):127–136. Chen W, Wang Y, Ren C, Yu S, Wang C, Xing J, Xu J, Yan S, Zhang T, Li Q, et al. The role of TNC in atherosclerosis and drug development opportunities. Int J Biol Sci. 2024; 20(1):127–136.
4.
go back to reference Shinge SAU, Zhang D, Din AU, Yu F, Nie Y. Emerging Piezo1 signaling in inflammation and atherosclerosis; a potential therapeutic target. Int J Biol Sci. 2022;18(3):923–41.PubMedPubMedCentralCrossRef Shinge SAU, Zhang D, Din AU, Yu F, Nie Y. Emerging Piezo1 signaling in inflammation and atherosclerosis; a potential therapeutic target. Int J Biol Sci. 2022;18(3):923–41.PubMedPubMedCentralCrossRef
5.
go back to reference Schiano C, Balbi C, Burrello J, Ruocco A, Infante T, Fiorito C, Panella S, Barile L, Mauro C, Vassalli G, et al. DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients. Atherosclerosis. 2022;354:41–52.PubMedCrossRef Schiano C, Balbi C, Burrello J, Ruocco A, Infante T, Fiorito C, Panella S, Barile L, Mauro C, Vassalli G, et al. DNA methylation induced by circulating extracellular vesicles from acute coronary syndrome patients. Atherosclerosis. 2022;354:41–52.PubMedCrossRef
6.
go back to reference Schiano C, D’Armiento M, Franzese M, Castaldo R, Saccone G, de Nigris F, Grimaldi V, Soricelli A, D’Armiento FP, Zullo F, et al. DNA methylation profile of the SREBF2 gene in human fetal aortas. J Vasc Res. 2022;59(1):61–8.PubMedCrossRef Schiano C, D’Armiento M, Franzese M, Castaldo R, Saccone G, de Nigris F, Grimaldi V, Soricelli A, D’Armiento FP, Zullo F, et al. DNA methylation profile of the SREBF2 gene in human fetal aortas. J Vasc Res. 2022;59(1):61–8.PubMedCrossRef
7.
go back to reference Denimal D, Monier S, Simoneau I, Duvillard L, Verges B, Bouillet B. HDL functionality in type 1 diabetes: enhancement of cholesterol efflux capacity in relationship with decreased HDL carbamylation after improvement of glycemic control. Cardiovasc Diabetol. 2022;21(1):154.PubMedPubMedCentralCrossRef Denimal D, Monier S, Simoneau I, Duvillard L, Verges B, Bouillet B. HDL functionality in type 1 diabetes: enhancement of cholesterol efflux capacity in relationship with decreased HDL carbamylation after improvement of glycemic control. Cardiovasc Diabetol. 2022;21(1):154.PubMedPubMedCentralCrossRef
8.
go back to reference Chen W, Xing J, Liu X, Wang S, Xing D. The role and transformative potential of IL-19 in atherosclerosis. Cytokine Growth Factor Rev. 2021;62:70–82.PubMedCrossRef Chen W, Xing J, Liu X, Wang S, Xing D. The role and transformative potential of IL-19 in atherosclerosis. Cytokine Growth Factor Rev. 2021;62:70–82.PubMedCrossRef
9.
go back to reference Chen W, Zhong Y, Yuan Y, Zhu M, Hu W, Liu N, Xing D. New insights into the suppression of inflammation and lipid accumulation by JAZF1. Genes Dis. 2023;10(6):2457–69.PubMedCrossRef Chen W, Zhong Y, Yuan Y, Zhu M, Hu W, Liu N, Xing D. New insights into the suppression of inflammation and lipid accumulation by JAZF1. Genes Dis. 2023;10(6):2457–69.PubMedCrossRef
10.
go back to reference Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, Zhao L, Zou L, Li M, Yu T. Targeting non-coding RNAs in unstable atherosclerotic plaques: mechanism, regulation, possibilities, and limitations. Int J Biol Sci. 2021;17(13):3413–27.PubMedPubMedCentralCrossRef Li X, Yang Y, Wang Z, Jiang S, Meng Y, Song X, Zhao L, Zou L, Li M, Yu T. Targeting non-coding RNAs in unstable atherosclerotic plaques: mechanism, regulation, possibilities, and limitations. Int J Biol Sci. 2021;17(13):3413–27.PubMedPubMedCentralCrossRef
12.
go back to reference Rouland A, Masson D, Lagrost L, Verges B, Gautier T, Bouillet B. Role of apolipoprotein C1 in lipoprotein metabolism, atherosclerosis and diabetes: a systematic review. Cardiovasc Diabetol. 2022;21(1):272.PubMedPubMedCentralCrossRef Rouland A, Masson D, Lagrost L, Verges B, Gautier T, Bouillet B. Role of apolipoprotein C1 in lipoprotein metabolism, atherosclerosis and diabetes: a systematic review. Cardiovasc Diabetol. 2022;21(1):272.PubMedPubMedCentralCrossRef
13.
go back to reference Li X, Pan X, Fu X, Yang Y, Chen J, Lin W. MicroRNA-26a: an emerging regulator of renal biology and disease. Kidney Blood Press Res. 2019;44(3):287–97.PubMedCrossRef Li X, Pan X, Fu X, Yang Y, Chen J, Lin W. MicroRNA-26a: an emerging regulator of renal biology and disease. Kidney Blood Press Res. 2019;44(3):287–97.PubMedCrossRef
14.
go back to reference Zhu Y, Lu Y, Zhang Q, Liu JJ, Li TJ, Yang JR, Zeng C, Zhuang SM. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res. 2012;40(10):4615–25.PubMedCrossRef Zhu Y, Lu Y, Zhang Q, Liu JJ, Li TJ, Yang JR, Zeng C, Zhuang SM. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res. 2012;40(10):4615–25.PubMedCrossRef
15.
go back to reference Li H, Wang Y, Song Y. MicroRNA-26b inhibits the immune response to Mycobacterium tuberculosis (M.tb) infection in THP-1 cells via targeting TGFbeta-activated kinase-1 (TAK1), a promoter of the NF-kappaB pathway. Int J Clin Exp Pathol. 2018;11(3):1218–27.PubMedPubMedCentral Li H, Wang Y, Song Y. MicroRNA-26b inhibits the immune response to Mycobacterium tuberculosis (M.tb) infection in THP-1 cells via targeting TGFbeta-activated kinase-1 (TAK1), a promoter of the NF-kappaB pathway. Int J Clin Exp Pathol. 2018;11(3):1218–27.PubMedPubMedCentral
16.
go back to reference Zhao N, Wang R, Zhou L, Zhu Y, Gong J, Zhuang SM. MicroRNA-26b suppresses the NF-kappaB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Mol Cancer. 2014;13:35.PubMedPubMedCentralCrossRef Zhao N, Wang R, Zhou L, Zhu Y, Gong J, Zhuang SM. MicroRNA-26b suppresses the NF-kappaB signaling and enhances the chemosensitivity of hepatocellular carcinoma cells by targeting TAK1 and TAB3. Mol Cancer. 2014;13:35.PubMedPubMedCentralCrossRef
17.
go back to reference Wei C, Kim IK, Kumar S, Jayasinghe S, Hong N, Castoldi G, Catalucci D, Jones WK, Gupta S. NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol. 2013;228(7):1433–42.PubMedCrossRef Wei C, Kim IK, Kumar S, Jayasinghe S, Hong N, Castoldi G, Catalucci D, Jones WK, Gupta S. NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol. 2013;228(7):1433–42.PubMedCrossRef
19.
go back to reference Wu W, Shang YQ, Dai SL, Yi F, Wang XC. MiR-26a regulates vascular smooth muscle cell calcification in vitro through targeting CTGF. Bratisl Lek Listy. 2017;118(8):499–503.PubMed Wu W, Shang YQ, Dai SL, Yi F, Wang XC. MiR-26a regulates vascular smooth muscle cell calcification in vitro through targeting CTGF. Bratisl Lek Listy. 2017;118(8):499–503.PubMed
20.
go back to reference Nigam V, Sievers HH, Jensen BC, Sier HA, Simpson PC, Srivastava D, Mohamed SA. Altered microRNAs in bicuspid aortic valve: a comparison between stenotic and insufficient valves. J Heart Valve Dis. 2010;19(4):459–65.PubMedPubMedCentral Nigam V, Sievers HH, Jensen BC, Sier HA, Simpson PC, Srivastava D, Mohamed SA. Altered microRNAs in bicuspid aortic valve: a comparison between stenotic and insufficient valves. J Heart Valve Dis. 2010;19(4):459–65.PubMedPubMedCentral
21.
go back to reference Wu W, Cheng L, Wang J, Yang C, Shang Y. miRNA-26a reduces vascular smooth muscle cell calcification by regulating connective tissue growth factor. Nan Fang Yi Ke Da Xue Xue Bao. 2022;42(9):1303–8.PubMed Wu W, Cheng L, Wang J, Yang C, Shang Y. miRNA-26a reduces vascular smooth muscle cell calcification by regulating connective tissue growth factor. Nan Fang Yi Ke Da Xue Xue Bao. 2022;42(9):1303–8.PubMed
22.
go back to reference Fu X, Dong B, Tian Y, Lefebvre P, Meng Z, Wang X, Pattou F, Han W, Wang X, Lou F, et al. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J Clin Invest. 2015;125(6):2497–509.PubMedPubMedCentralCrossRef Fu X, Dong B, Tian Y, Lefebvre P, Meng Z, Wang X, Pattou F, Han W, Wang X, Lou F, et al. MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J Clin Invest. 2015;125(6):2497–509.PubMedPubMedCentralCrossRef
23.
go back to reference Sun D, Zhang J, Xie J, Wei W, Chen M, Zhao X. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett. 2012;586(10):1472–9.PubMedCrossRef Sun D, Zhang J, Xie J, Wei W, Chen M, Zhao X. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett. 2012;586(10):1472–9.PubMedCrossRef
24.
go back to reference He Y, Liu H, Jiang L, Rui B, Mei J, Xiao H. miR-26 induces apoptosis and inhibits autophagy in non-small cell lung cancer cells by suppressing TGF-beta1-JNK signaling pathway. Front Pharmacol. 2018;9:1509.PubMedCrossRef He Y, Liu H, Jiang L, Rui B, Mei J, Xiao H. miR-26 induces apoptosis and inhibits autophagy in non-small cell lung cancer cells by suppressing TGF-beta1-JNK signaling pathway. Front Pharmacol. 2018;9:1509.PubMedCrossRef
25.
go back to reference Yin J, Zhao X, Chen X, Shen G. Emodin suppresses hepatocellular carcinoma growth by regulating macrophage polarization via microRNA-26a/transforming growth factor beta 1/protein kinase B. Bioengineered. 2022;13(4):9548–63.PubMedCrossRef Yin J, Zhao X, Chen X, Shen G. Emodin suppresses hepatocellular carcinoma growth by regulating macrophage polarization via microRNA-26a/transforming growth factor beta 1/protein kinase B. Bioengineered. 2022;13(4):9548–63.PubMedCrossRef
26.
go back to reference Chen CY, Chang JT, Ho YF, Shyu AB. MiR-26 down-regulates TNF-alpha/NF-kappaB signalling and IL-6 expression by silencing HMGA1 and MALT1. Nucleic Acids Res. 2016;44(8):3772–87.PubMedPubMedCentralCrossRef Chen CY, Chang JT, Ho YF, Shyu AB. MiR-26 down-regulates TNF-alpha/NF-kappaB signalling and IL-6 expression by silencing HMGA1 and MALT1. Nucleic Acids Res. 2016;44(8):3772–87.PubMedPubMedCentralCrossRef
27.
go back to reference Chen W, Wu Y, Wang J, Yu W, Shen X, Zhao K, Liang B, Hu X, Wang S, Jiang H, et al. Clinical advances in TNC delivery vectors and their conjugate agents. Pharmacol Ther. 2023;253:108577. Chen W, Wu Y, Wang J, Yu W, Shen X, Zhao K, Liang B, Hu X, Wang S, Jiang H, et al. Clinical advances in TNC delivery vectors and their conjugate agents. Pharmacol Ther. 2023;253:108577.
28.
go back to reference Liu C, Lou CH, Shah V, Ritter R, Talley J, Soibam B, Benham A, Zhu H, Perez E, Shieh YE, et al. Identification of microRNAs and microRNA targets in Xenopus gastrulae: The role of miR-26 in the regulation of Smad1. Dev Biol. 2016;409(1):26–38.PubMedCrossRef Liu C, Lou CH, Shah V, Ritter R, Talley J, Soibam B, Benham A, Zhu H, Perez E, Shieh YE, et al. Identification of microRNAs and microRNA targets in Xenopus gastrulae: The role of miR-26 in the regulation of Smad1. Dev Biol. 2016;409(1):26–38.PubMedCrossRef
29.
go back to reference Kwon Y, Kim Y, Eom S, Kim M, Park D, Kim H, Noh K, Lee H, Lee YS, Choe J, et al. MicroRNA-26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. J Biol Chem. 2015;290(22):14245–66.PubMedPubMedCentralCrossRef Kwon Y, Kim Y, Eom S, Kim M, Park D, Kim H, Noh K, Lee H, Lee YS, Choe J, et al. MicroRNA-26a/-26b-COX-2-MIP-2 loop regulates allergic inflammation and allergic inflammation-promoted enhanced tumorigenic and metastatic potential of cancer cells. J Biol Chem. 2015;290(22):14245–66.PubMedPubMedCentralCrossRef
30.
go back to reference Banik SK, Baishya S, Das Talukdar A, Choudhury MD. Network analysis of atherosclerotic genes elucidates druggable targets. BMC Med Genomics. 2022;15(1):42.PubMedPubMedCentralCrossRef Banik SK, Baishya S, Das Talukdar A, Choudhury MD. Network analysis of atherosclerotic genes elucidates druggable targets. BMC Med Genomics. 2022;15(1):42.PubMedPubMedCentralCrossRef
31.
go back to reference Dlouha D, Blaha M, Huckova P, Lanska V, Hubacek JA, Blaha V. Long-term LDL-apheresis treatment and dynamics of circulating miRNAs in patients with severe familial hypercholesterolemia. Genes (Basel). 2023;14(8):1571.PubMedCrossRef Dlouha D, Blaha M, Huckova P, Lanska V, Hubacek JA, Blaha V. Long-term LDL-apheresis treatment and dynamics of circulating miRNAs in patients with severe familial hypercholesterolemia. Genes (Basel). 2023;14(8):1571.PubMedCrossRef
33.
go back to reference Marketou M, Kontaraki J, Kalogerakos P, Plevritaki A, Chlouverakis G, Kassotakis S, Maragkoudakis S, Danelatos C, Zervakis S, Savva E, et al. Differences in MicroRNA expression in pericoronary adipose tissue in coronary artery disease compared to severe valve dysfunction. Angiology. 2023;74(1):22–30.PubMedCrossRef Marketou M, Kontaraki J, Kalogerakos P, Plevritaki A, Chlouverakis G, Kassotakis S, Maragkoudakis S, Danelatos C, Zervakis S, Savva E, et al. Differences in MicroRNA expression in pericoronary adipose tissue in coronary artery disease compared to severe valve dysfunction. Angiology. 2023;74(1):22–30.PubMedCrossRef
34.
go back to reference Volny O, Kasickova L, Coufalova D, Cimflova P, Novak J. microRNAs in cerebrovascular disease. Adv Exp Med Biol. 2015;888:155–95.PubMedCrossRef Volny O, Kasickova L, Coufalova D, Cimflova P, Novak J. microRNAs in cerebrovascular disease. Adv Exp Med Biol. 2015;888:155–95.PubMedCrossRef
35.
go back to reference Zhang Y, Qin W, Zhang L, Wu X, Du N, Hu Y, Li X, Shen N, Xiao D, Zhang H, et al. MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis. Sci Rep. 2015;5:9401.PubMedPubMedCentralCrossRef Zhang Y, Qin W, Zhang L, Wu X, Du N, Hu Y, Li X, Shen N, Xiao D, Zhang H, et al. MicroRNA-26a prevents endothelial cell apoptosis by directly targeting TRPC6 in the setting of atherosclerosis. Sci Rep. 2015;5:9401.PubMedPubMedCentralCrossRef
36.
go back to reference Han G, Li H, Guo H, Yi C, Yu B, Lin Y, Zheng B, He D. The roles and mechanisms of miR-26 derived from exosomes of adipose-derived stem cells in the formation of carotid atherosclerotic plaque. Ann Transl Med. 2022;10(20):1134.PubMedPubMedCentralCrossRef Han G, Li H, Guo H, Yi C, Yu B, Lin Y, Zheng B, He D. The roles and mechanisms of miR-26 derived from exosomes of adipose-derived stem cells in the formation of carotid atherosclerotic plaque. Ann Transl Med. 2022;10(20):1134.PubMedPubMedCentralCrossRef
37.
go back to reference Santamarina-Fojo S, Gonzalez-Navarro H, Freeman L, Wagner E, Nong Z. Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol. 2004;24(10):1750–4.PubMedCrossRef Santamarina-Fojo S, Gonzalez-Navarro H, Freeman L, Wagner E, Nong Z. Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol. 2004;24(10):1750–4.PubMedCrossRef
38.
go back to reference Dijk W, Di Filippo M, Kooijman S, van Eenige R, Rimbert A, Caillaud A, Thedrez A, Arnaud L, Pronk A, Garcon D, et al. Identification of a gain-of-function LIPC variant as a novel cause of familial combined hypocholesterolemia. Circulation. 2022;146(10):724–39.PubMedPubMedCentralCrossRef Dijk W, Di Filippo M, Kooijman S, van Eenige R, Rimbert A, Caillaud A, Thedrez A, Arnaud L, Pronk A, Garcon D, et al. Identification of a gain-of-function LIPC variant as a novel cause of familial combined hypocholesterolemia. Circulation. 2022;146(10):724–39.PubMedPubMedCentralCrossRef
40.
go back to reference Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009;361(15):1437–47.PubMedPubMedCentralCrossRef Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, Ambs S, Chen Y, Meltzer PS, Croce CM, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009;361(15):1437–47.PubMedPubMedCentralCrossRef
41.
go back to reference Li C, Li Y, Lu Y, Niu Z, Zhao H, Peng Y, Li M. miR-26 family and its target genes in tumorigenesis and development. Crit Rev Oncol Hematol. 2021;157: 103124.PubMedCrossRef Li C, Li Y, Lu Y, Niu Z, Zhao H, Peng Y, Li M. miR-26 family and its target genes in tumorigenesis and development. Crit Rev Oncol Hematol. 2021;157: 103124.PubMedCrossRef
42.
go back to reference Ji J, Yu L, Yu Z, Forgues M, Uenishi T, Kubo S, Wakasa K, Zhou J, Fan J, Tang ZY, et al. Development of a miR-26 companion diagnostic test for adjuvant interferon-alpha therapy in hepatocellular carcinoma. Int J Biol Sci. 2013;9(3):303–12.PubMedPubMedCentralCrossRef Ji J, Yu L, Yu Z, Forgues M, Uenishi T, Kubo S, Wakasa K, Zhou J, Fan J, Tang ZY, et al. Development of a miR-26 companion diagnostic test for adjuvant interferon-alpha therapy in hepatocellular carcinoma. Int J Biol Sci. 2013;9(3):303–12.PubMedPubMedCentralCrossRef
43.
go back to reference Vidal P. Interferon alpha in cancer immunoediting: From elimination to escape. Scand J Immunol. 2020;91(5): e12863.PubMedCrossRef Vidal P. Interferon alpha in cancer immunoediting: From elimination to escape. Scand J Immunol. 2020;91(5): e12863.PubMedCrossRef
45.
go back to reference Lewczuk N, Zdebik A, Boguslawska J. Interferon alpha 2a and 2b in ophthalmology: a review. J Interferon Cytokine Res. 2019;39(5):259–72.PubMedCrossRef Lewczuk N, Zdebik A, Boguslawska J. Interferon alpha 2a and 2b in ophthalmology: a review. J Interferon Cytokine Res. 2019;39(5):259–72.PubMedCrossRef
46.
go back to reference Levy Z, Rachmani R, Trestman S, Dvir A, Shaish A, Ravid M, Harats D. Low-dose interferon-alpha accelerates atherosclerosis in an LDL receptor-deficient mouse model. Eur J Intern Med. 2003;14(8):479–83.PubMedCrossRef Levy Z, Rachmani R, Trestman S, Dvir A, Shaish A, Ravid M, Harats D. Low-dose interferon-alpha accelerates atherosclerosis in an LDL receptor-deficient mouse model. Eur J Intern Med. 2003;14(8):479–83.PubMedCrossRef
47.
go back to reference Kirchler C, Husar-Memmer E, Rappersberger K, Thaler K, Fritsch-Stork R. Type I Interferon as cardiovascular risk factor in systemic and cutaneous lupus erythematosus: a systematic review. Autoimmun Rev. 2021;20(5): 102794.PubMedCrossRef Kirchler C, Husar-Memmer E, Rappersberger K, Thaler K, Fritsch-Stork R. Type I Interferon as cardiovascular risk factor in systemic and cutaneous lupus erythematosus: a systematic review. Autoimmun Rev. 2021;20(5): 102794.PubMedCrossRef
48.
go back to reference Wang G, Sun Y, He Y, Ji C, Hu B, Sun Y. miR-26a promoted by interferon-alpha inhibits hepatocellular carcinoma proliferation and migration by blocking EZH2. Genet Test Mol Biomarkers. 2015;19(1):30–6.PubMedCrossRef Wang G, Sun Y, He Y, Ji C, Hu B, Sun Y. miR-26a promoted by interferon-alpha inhibits hepatocellular carcinoma proliferation and migration by blocking EZH2. Genet Test Mol Biomarkers. 2015;19(1):30–6.PubMedCrossRef
49.
go back to reference Gao S, Li J, Song L, Wu J, Huang W. Influenza A virus-induced downregulation of miR-26a contributes to reduced IFNalpha/beta production. Virol Sin. 2017;32(4):261–70.PubMedPubMedCentralCrossRef Gao S, Li J, Song L, Wu J, Huang W. Influenza A virus-induced downregulation of miR-26a contributes to reduced IFNalpha/beta production. Virol Sin. 2017;32(4):261–70.PubMedPubMedCentralCrossRef
50.
go back to reference Gauthier BR, Cobo-Vuilleumier N, Lopez-Noriega L. Roles of extracellular vesicles associated non-coding RNAs in Diabetes Mellitus. Front Endocrinol (Lausanne). 2022;13:1057407.PubMedCrossRef Gauthier BR, Cobo-Vuilleumier N, Lopez-Noriega L. Roles of extracellular vesicles associated non-coding RNAs in Diabetes Mellitus. Front Endocrinol (Lausanne). 2022;13:1057407.PubMedCrossRef
51.
go back to reference Montone RA, Cosentino N, Graziani F, Gorla R, Del Buono MG, La Vecchia G, Rinaldi R, Marenzi G, Bartorelli AL, De Marco F, et al. Precision medicine versus standard of care for patients with myocardial infarction with non-obstructive coronary arteries (MINOCA): rationale and design of the multicentre, randomised PROMISE trial. EuroIntervention. 2022;18(11):e933–9.PubMedPubMedCentralCrossRef Montone RA, Cosentino N, Graziani F, Gorla R, Del Buono MG, La Vecchia G, Rinaldi R, Marenzi G, Bartorelli AL, De Marco F, et al. Precision medicine versus standard of care for patients with myocardial infarction with non-obstructive coronary arteries (MINOCA): rationale and design of the multicentre, randomised PROMISE trial. EuroIntervention. 2022;18(11):e933–9.PubMedPubMedCentralCrossRef
52.
go back to reference Durand T, Jacob S, Lebouil L, Douzane H, Lestaevel P, Rahimian A, Psimaras D, Feuvret L, Leclercq D, Brochet B, et al. EpiBrainRad: an epidemiologic study of the neurotoxicity induced by radiotherapy in high grade glioma patients. BMC Neurol. 2015;15:261.PubMedPubMedCentralCrossRef Durand T, Jacob S, Lebouil L, Douzane H, Lestaevel P, Rahimian A, Psimaras D, Feuvret L, Leclercq D, Brochet B, et al. EpiBrainRad: an epidemiologic study of the neurotoxicity induced by radiotherapy in high grade glioma patients. BMC Neurol. 2015;15:261.PubMedPubMedCentralCrossRef
56.
go back to reference Li X, Wang J, Wu C, Lu X, Huang J. MicroRNAs involved in the TGF-beta signaling pathway in atherosclerosis. Biomed Pharmacother. 2022;146: 112499.PubMedCrossRef Li X, Wang J, Wu C, Lu X, Huang J. MicroRNAs involved in the TGF-beta signaling pathway in atherosclerosis. Biomed Pharmacother. 2022;146: 112499.PubMedCrossRef
57.
go back to reference Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011;226(4):1035–43.PubMedPubMedCentralCrossRef Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L, Kundu RK, Quertermous T, Tsao PS, Spin JM. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011;226(4):1035–43.PubMedPubMedCentralCrossRef
58.
60.
go back to reference Davalos A, Fernandez-Hernando C. From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport. Pharmacol Res. 2013;75:60–72.PubMedCrossRef Davalos A, Fernandez-Hernando C. From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport. Pharmacol Res. 2013;75:60–72.PubMedCrossRef
61.
go back to reference Novak J, Olejnickova V, Tkacova N, Santulli G. Mechanistic role of MicroRNAs in coupling lipid metabolism and atherosclerosis. Adv Exp Med Biol. 2015;887:79–100.PubMedPubMedCentralCrossRef Novak J, Olejnickova V, Tkacova N, Santulli G. Mechanistic role of MicroRNAs in coupling lipid metabolism and atherosclerosis. Adv Exp Med Biol. 2015;887:79–100.PubMedPubMedCentralCrossRef
62.
go back to reference Hu M, Han T, Pan Q, Ni D, Gao F, Wang L, Ren H, Zhang X, Jiao H, Wang Y, et al. The GR-gp78 Pathway is involved in Hepatic Lipid Accumulation Induced by Overexpression of 11beta-HSD1. Int J Biol Sci. 2022;18(8):3107–21.PubMedPubMedCentralCrossRef Hu M, Han T, Pan Q, Ni D, Gao F, Wang L, Ren H, Zhang X, Jiao H, Wang Y, et al. The GR-gp78 Pathway is involved in Hepatic Lipid Accumulation Induced by Overexpression of 11beta-HSD1. Int J Biol Sci. 2022;18(8):3107–21.PubMedPubMedCentralCrossRef
63.
go back to reference Liu F, Zhu X, Jiang X, Li S, Lv Y. Transcriptional control by HNF-1: emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Dis. 2022;9(5):1248–57.PubMedCrossRef Liu F, Zhu X, Jiang X, Li S, Lv Y. Transcriptional control by HNF-1: emerging evidence showing its role in lipid metabolism and lipid metabolism disorders. Genes Dis. 2022;9(5):1248–57.PubMedCrossRef
64.
go back to reference Alkhouri N, Herring R, Kabler H, Kayali Z, Hassanein T, Kohli A, Huss RS, Zhu Y, Billin AN, Damgaard LH, et al. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: a randomised, open-label phase II trial. J Hepatol. 2022;77(3):607–18.PubMedCrossRef Alkhouri N, Herring R, Kabler H, Kayali Z, Hassanein T, Kohli A, Huss RS, Zhu Y, Billin AN, Damgaard LH, et al. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: a randomised, open-label phase II trial. J Hepatol. 2022;77(3):607–18.PubMedCrossRef
66.
go back to reference Calle RA, Amin NB, Carvajal-Gonzalez S, Ross TT, Bergman A, Aggarwal S, Crowley C, Rinaldi A, Mancuso J, Aggarwal N, et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials. Nat Med. 2021;27(10):1836–48.PubMedCrossRef Calle RA, Amin NB, Carvajal-Gonzalez S, Ross TT, Bergman A, Aggarwal S, Crowley C, Rinaldi A, Mancuso J, Aggarwal N, et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials. Nat Med. 2021;27(10):1836–48.PubMedCrossRef
68.
go back to reference Li ZY, Wu G, Qiu C, Zhou ZJ, Wang YP, Song GH, Xiao C, Zhang X, Deng GL, Wang RT, et al. Mechanism and therapeutic strategy of hepatic TM6SF2-deficient non-alcoholic fatty liver diseases via in vivo and in vitro experiments. World J Gastroenterol. 2022;28(25):2937–54.PubMedPubMedCentralCrossRef Li ZY, Wu G, Qiu C, Zhou ZJ, Wang YP, Song GH, Xiao C, Zhang X, Deng GL, Wang RT, et al. Mechanism and therapeutic strategy of hepatic TM6SF2-deficient non-alcoholic fatty liver diseases via in vivo and in vitro experiments. World J Gastroenterol. 2022;28(25):2937–54.PubMedPubMedCentralCrossRef
69.
go back to reference Lally JSV, Ghoshal S, DePeralta DK, Moaven O, Wei L, Masia R, Erstad DJ, Fujiwara N, Leong V, Houde VP, et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 2019;29(1):174-182 e175.PubMedCrossRef Lally JSV, Ghoshal S, DePeralta DK, Moaven O, Wei L, Masia R, Erstad DJ, Fujiwara N, Leong V, Houde VP, et al. Inhibition of acetyl-CoA carboxylase by phosphorylation or the inhibitor ND-654 suppresses lipogenesis and hepatocellular carcinoma. Cell Metab. 2019;29(1):174-182 e175.PubMedCrossRef
70.
go back to reference Chu Q, An J, Liu P, Song Y, Zhai X, Yang R, Niu J, Yang C, Li B. Repurposing a tricyclic antidepressant in tumor and metabolism disease treatment through fatty acid uptake inhibition. J Exp Med. 2023;220(3): e20221316.PubMedCrossRef Chu Q, An J, Liu P, Song Y, Zhai X, Yang R, Niu J, Yang C, Li B. Repurposing a tricyclic antidepressant in tumor and metabolism disease treatment through fatty acid uptake inhibition. J Exp Med. 2023;220(3): e20221316.PubMedCrossRef
71.
go back to reference Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, Lombardo PS, Van Nostrand JL, Hutchins A, Vera L, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 2016;22(10):1108–19.PubMedPubMedCentralCrossRef Svensson RU, Parker SJ, Eichner LJ, Kolar MJ, Wallace M, Brun SN, Lombardo PS, Van Nostrand JL, Hutchins A, Vera L, et al. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat Med. 2016;22(10):1108–19.PubMedPubMedCentralCrossRef
72.
73.
go back to reference Chitraju C, Walther TC, Farese RV Jr. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J Lipid Res. 2019;60(6):1112–20.PubMedPubMedCentralCrossRef Chitraju C, Walther TC, Farese RV Jr. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J Lipid Res. 2019;60(6):1112–20.PubMedPubMedCentralCrossRef
74.
go back to reference Luo W, Wang H, Ren L, Lu Z, Zheng Q, Ding L, Xie H, Wang R, Yu C, Lin Y, et al. Adding fuel to the fire: the lipid droplet and its associated proteins in cancer progression. Int J Biol Sci. 2022;18(16):6020–34.PubMedPubMedCentralCrossRef Luo W, Wang H, Ren L, Lu Z, Zheng Q, Ding L, Xie H, Wang R, Yu C, Lin Y, et al. Adding fuel to the fire: the lipid droplet and its associated proteins in cancer progression. Int J Biol Sci. 2022;18(16):6020–34.PubMedPubMedCentralCrossRef
75.
go back to reference Amin NB, Darekar A, Anstee QM, Wong VW, Tacke F, Vourvahis M, Lee DS, Charlton M, Alkhouri N, Nakajima A, et al. Efficacy and safety of an orally administered DGAT2 inhibitor alone or coadministered with a liver-targeted ACC inhibitor in adults with non-alcoholic steatohepatitis (NASH): rationale and design of the phase II, dose-ranging, dose-finding, randomised, placebo-controlled MIRNA (Metabolic Interventions to Resolve NASH with fibrosis) study. BMJ Open. 2022;12(3): e056159.PubMedPubMedCentralCrossRef Amin NB, Darekar A, Anstee QM, Wong VW, Tacke F, Vourvahis M, Lee DS, Charlton M, Alkhouri N, Nakajima A, et al. Efficacy and safety of an orally administered DGAT2 inhibitor alone or coadministered with a liver-targeted ACC inhibitor in adults with non-alcoholic steatohepatitis (NASH): rationale and design of the phase II, dose-ranging, dose-finding, randomised, placebo-controlled MIRNA (Metabolic Interventions to Resolve NASH with fibrosis) study. BMJ Open. 2022;12(3): e056159.PubMedPubMedCentralCrossRef
78.
go back to reference Loomba R, Morgan E, Watts L, Xia S, Hannan LA, Geary RS, Baker BF, Bhanot S. Novel antisense inhibition of diacylglycerol O-acyltransferase 2 for treatment of non-alcoholic fatty liver disease: a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol Hepatol. 2020;5(9):829–38.PubMedCrossRef Loomba R, Morgan E, Watts L, Xia S, Hannan LA, Geary RS, Baker BF, Bhanot S. Novel antisense inhibition of diacylglycerol O-acyltransferase 2 for treatment of non-alcoholic fatty liver disease: a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol Hepatol. 2020;5(9):829–38.PubMedCrossRef
79.
go back to reference Filipski KJ, Edmonds DJ, Garnsey MR, Smaltz DJ, Coffman K, Futatsugi K, Lee J, O’Neil SV, Wright A, Nason D, et al. Design of next-generation DGAT2 inhibitor PF-07202954 with longer predicted half-life. ACS Med Chem Lett. 2023;14(10):1427–33.PubMedCrossRef Filipski KJ, Edmonds DJ, Garnsey MR, Smaltz DJ, Coffman K, Futatsugi K, Lee J, O’Neil SV, Wright A, Nason D, et al. Design of next-generation DGAT2 inhibitor PF-07202954 with longer predicted half-life. ACS Med Chem Lett. 2023;14(10):1427–33.PubMedCrossRef
80.
go back to reference Futatsugi K, Cabral S, Kung DW, Huard K, Lee E, Boehm M, Bauman J, Clark RW, Coffey SB, Crowley C, et al. Discovery of ervogastat (PF-06865571): a potent and selective inhibitor of diacylglycerol acyltransferase 2 for the treatment of non-alcoholic steatohepatitis. J Med Chem. 2022;65(22):15000–13.PubMedCrossRef Futatsugi K, Cabral S, Kung DW, Huard K, Lee E, Boehm M, Bauman J, Clark RW, Coffey SB, Crowley C, et al. Discovery of ervogastat (PF-06865571): a potent and selective inhibitor of diacylglycerol acyltransferase 2 for the treatment of non-alcoholic steatohepatitis. J Med Chem. 2022;65(22):15000–13.PubMedCrossRef
81.
go back to reference Amin NB, Carvajal-Gonzalez S, Purkal J, Zhu T, Crowley C, Perez S, Chidsey K, Kim AM, Goodwin B. Targeting diacylglycerol acyltransferase 2 for the treatment of nonalcoholic steatohepatitis. Sci Transl Med. 2019;11(520):eaav9701.PubMedCrossRef Amin NB, Carvajal-Gonzalez S, Purkal J, Zhu T, Crowley C, Perez S, Chidsey K, Kim AM, Goodwin B. Targeting diacylglycerol acyltransferase 2 for the treatment of nonalcoholic steatohepatitis. Sci Transl Med. 2019;11(520):eaav9701.PubMedCrossRef
82.
go back to reference Almanza A, Mnich K, Blomme A, Robinson CM, Rodriguez-Blanco G, Kierszniowska S, McGrath EP, Le Gallo M, Pilalis E, Swinnen JV, et al. Regulated IRE1alpha-dependent decay (RIDD)-mediated reprograming of lipid metabolism in cancer. Nat Commun. 2022;13(1):2493.PubMedPubMedCentralCrossRef Almanza A, Mnich K, Blomme A, Robinson CM, Rodriguez-Blanco G, Kierszniowska S, McGrath EP, Le Gallo M, Pilalis E, Swinnen JV, et al. Regulated IRE1alpha-dependent decay (RIDD)-mediated reprograming of lipid metabolism in cancer. Nat Commun. 2022;13(1):2493.PubMedPubMedCentralCrossRef
84.
go back to reference Cao T, Ni R, Ding W, Ji X, Li L, Liao G, Lu Y, Fan GC, Zhang Z, Peng T. MLKL-mediated necroptosis is a target for cardiac protection in mouse models of type-1 diabetes. Cardiovasc Diabetol. 2022;21(1):165.PubMedPubMedCentralCrossRef Cao T, Ni R, Ding W, Ji X, Li L, Liao G, Lu Y, Fan GC, Zhang Z, Peng T. MLKL-mediated necroptosis is a target for cardiac protection in mouse models of type-1 diabetes. Cardiovasc Diabetol. 2022;21(1):165.PubMedPubMedCentralCrossRef
85.
go back to reference Kisling A, Lust RM, Katwa LC. What is the role of peptide fragments of collagen I and IV in health and disease? Life Sci. 2019;228:30–4.PubMedCrossRef Kisling A, Lust RM, Katwa LC. What is the role of peptide fragments of collagen I and IV in health and disease? Life Sci. 2019;228:30–4.PubMedCrossRef
86.
go back to reference You M, Liu Y, Wang B, Li L, Zhang H, He H, Zhou Q, Cao T, Wang L, Zhao Z, et al. Asprosin induces vascular endothelial-to-mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol. 2022;21(1):25.PubMedPubMedCentralCrossRef You M, Liu Y, Wang B, Li L, Zhang H, He H, Zhou Q, Cao T, Wang L, Zhao Z, et al. Asprosin induces vascular endothelial-to-mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol. 2022;21(1):25.PubMedPubMedCentralCrossRef
87.
go back to reference Shi R, Zhang Z, Zhu A, Xiong X, Zhang J, Xu J, Sy MS, Li C. Targeting type I collagen for cancer treatment. Int J Cancer. 2022;151(5):665–83.PubMedCrossRef Shi R, Zhang Z, Zhu A, Xiong X, Zhang J, Xu J, Sy MS, Li C. Targeting type I collagen for cancer treatment. Int J Cancer. 2022;151(5):665–83.PubMedCrossRef
88.
go back to reference Ponticos M, Smith BD. Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis. J Biomed Res. 2014;28(1):25–39.PubMedCrossRef Ponticos M, Smith BD. Extracellular matrix synthesis in vascular disease: hypertension, and atherosclerosis. J Biomed Res. 2014;28(1):25–39.PubMedCrossRef
89.
go back to reference Nikolov A, Popovski N. Extracellular matrix in heart disease: focus on circulating collagen type I and III derived peptides as biomarkers of myocardial fibrosis and their potential in the prognosis of heart failure: a concise review. Metabolites. 2022;12(4):297.PubMedPubMedCentralCrossRef Nikolov A, Popovski N. Extracellular matrix in heart disease: focus on circulating collagen type I and III derived peptides as biomarkers of myocardial fibrosis and their potential in the prognosis of heart failure: a concise review. Metabolites. 2022;12(4):297.PubMedPubMedCentralCrossRef
90.
go back to reference Marini JC, Forlino A, Bachinger HP, Bishop NJ, Byers PH, Paepe A, Fassier F, Fratzl-Zelman N, Kozloff KM, Krakow D, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052.PubMedCrossRef Marini JC, Forlino A, Bachinger HP, Bishop NJ, Byers PH, Paepe A, Fassier F, Fratzl-Zelman N, Kozloff KM, Krakow D, et al. Osteogenesis imperfecta. Nat Rev Dis Primers. 2017;3:17052.PubMedCrossRef
91.
92.
go back to reference Desogere P, Tapias LF, Hariri LP, Rotile NJ, Rietz TA, Probst CK, Blasi F, Day H, Mino-Kenudson M, Weinreb P, et al. Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models. Sci Transl Med. 2017;9(384):eaaf4696.PubMedPubMedCentralCrossRef Desogere P, Tapias LF, Hariri LP, Rotile NJ, Rietz TA, Probst CK, Blasi F, Day H, Mino-Kenudson M, Weinreb P, et al. Type I collagen-targeted PET probe for pulmonary fibrosis detection and staging in preclinical models. Sci Transl Med. 2017;9(384):eaaf4696.PubMedPubMedCentralCrossRef
93.
go back to reference Bellaye PS, Beltramo G, Burgy O, Collin B, Cochet A, Bonniaud P. Measurement of hypoxia in the lung in idiopathic pulmonary fibrosis: a matter of control. Eur Respir J. 2022;59(3):2102711.PubMedPubMedCentralCrossRef Bellaye PS, Beltramo G, Burgy O, Collin B, Cochet A, Bonniaud P. Measurement of hypoxia in the lung in idiopathic pulmonary fibrosis: a matter of control. Eur Respir J. 2022;59(3):2102711.PubMedPubMedCentralCrossRef
100.
go back to reference Izquierdo-Garcia D, Desogere P, Fur ML, Shuvaev S, Zhou IY, Ramsay I, Lanuti M, Catalano OA, Catana C, Caravan P, et al. Biodistribution, Dosimetry, and pharmacokinetics of (68)Ga-CBP8: A type I collagen-targeted PET probe. J Nucl Med. 2023;64(5):775–81.PubMedPubMedCentralCrossRef Izquierdo-Garcia D, Desogere P, Fur ML, Shuvaev S, Zhou IY, Ramsay I, Lanuti M, Catalano OA, Catana C, Caravan P, et al. Biodistribution, Dosimetry, and pharmacokinetics of (68)Ga-CBP8: A type I collagen-targeted PET probe. J Nucl Med. 2023;64(5):775–81.PubMedPubMedCentralCrossRef
101.
go back to reference Granot I, Halevy O, Hurwitz S, Pines M. Halofuginone: an inhibitor of collagen type I synthesis. Biochim Biophys Acta. 1993;1156(2):107–12.PubMedCrossRef Granot I, Halevy O, Hurwitz S, Pines M. Halofuginone: an inhibitor of collagen type I synthesis. Biochim Biophys Acta. 1993;1156(2):107–12.PubMedCrossRef
102.
go back to reference Pines M, Knopov V, Genina O, Lavelin I, Nagler A. Halofuginone, a specific inhibitor of collagen type I synthesis, prevents dimethylnitrosamine-induced liver cirrhosis. J Hepatol. 1997;27(2):391–8.PubMedCrossRef Pines M, Knopov V, Genina O, Lavelin I, Nagler A. Halofuginone, a specific inhibitor of collagen type I synthesis, prevents dimethylnitrosamine-induced liver cirrhosis. J Hepatol. 1997;27(2):391–8.PubMedCrossRef
111.
go back to reference Luo L, Gao Y, Yang C, Shao Z, Wu X, Li S, Xiong L, Chen C. Halofuginone attenuates intervertebral discs degeneration by suppressing collagen I production and inactivating TGFbeta and NF-small ka, CyrillicB pathway. Biomed Pharmacother. 2018;101:745–53.PubMedCrossRef Luo L, Gao Y, Yang C, Shao Z, Wu X, Li S, Xiong L, Chen C. Halofuginone attenuates intervertebral discs degeneration by suppressing collagen I production and inactivating TGFbeta and NF-small ka, CyrillicB pathway. Biomed Pharmacother. 2018;101:745–53.PubMedCrossRef
112.
go back to reference Pinthus JH, Sheffer Y, Nagler A, Fridman E, Mor Y, Genina O, Pines M. Inhibition of Wilms tumor xenograft progression by halofuginone is accompanied by activation of WT-1 gene expression. J Urol. 2005;174(4 Pt 2):1527–31.PubMedCrossRef Pinthus JH, Sheffer Y, Nagler A, Fridman E, Mor Y, Genina O, Pines M. Inhibition of Wilms tumor xenograft progression by halofuginone is accompanied by activation of WT-1 gene expression. J Urol. 2005;174(4 Pt 2):1527–31.PubMedCrossRef
113.
go back to reference Nagler A, Ohana M, Shibolet O, Shapira MY, Alper R, Vlodavsky I, Pines M, Ilan Y. Suppression of hepatocellular carcinoma growth in mice by the alkaloid coccidiostat halofuginone. Eur J Cancer. 2004;40(9):1397–403.PubMedCrossRef Nagler A, Ohana M, Shibolet O, Shapira MY, Alper R, Vlodavsky I, Pines M, Ilan Y. Suppression of hepatocellular carcinoma growth in mice by the alkaloid coccidiostat halofuginone. Eur J Cancer. 2004;40(9):1397–403.PubMedCrossRef
114.
go back to reference McGaha TL, Phelps RG, Spiera H, Bona C. Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-beta-mediated Smad3 activation in fibroblasts. J Invest Dermatol. 2002;118(3):461–70.PubMedCrossRef McGaha TL, Phelps RG, Spiera H, Bona C. Halofuginone, an inhibitor of type-I collagen synthesis and skin sclerosis, blocks transforming-growth-factor-beta-mediated Smad3 activation in fibroblasts. J Invest Dermatol. 2002;118(3):461–70.PubMedCrossRef
115.
go back to reference Leiba M, Cahalon L, Shimoni A, Lider O, Zanin-Zhorov A, Hecht I, Sela U, Vlodavsky I, Nagler A. Halofuginone inhibits NF-kappaB and p38 MAPK in activated T cells. J Leukoc Biol. 2006;80(2):399–406.PubMedCrossRef Leiba M, Cahalon L, Shimoni A, Lider O, Zanin-Zhorov A, Hecht I, Sela U, Vlodavsky I, Nagler A. Halofuginone inhibits NF-kappaB and p38 MAPK in activated T cells. J Leukoc Biol. 2006;80(2):399–406.PubMedCrossRef
116.
go back to reference Herman JD, Pepper LR, Cortese JF, Estiu G, Galinsky K, Zuzarte-Luis V, Derbyshire ER, Ribacke U, Lukens AK, Santos SA, et al. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Sci Transl Med. 2015;7(288):288ra277.CrossRef Herman JD, Pepper LR, Cortese JF, Estiu G, Galinsky K, Zuzarte-Luis V, Derbyshire ER, Ribacke U, Lukens AK, Santos SA, et al. The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Sci Transl Med. 2015;7(288):288ra277.CrossRef
117.
go back to reference Gnainsky Y, Spira G, Paizi M, Bruck R, Nagler A, Genina O, Taub R, Halevy O, Pines M. Involvement of the tyrosine phosphatase early gene of liver regeneration (PRL-1) in cell cycle and in liver regeneration and fibrosis effect of halofuginone. Cell Tissue Res. 2006;324(3):385–94.PubMedCrossRef Gnainsky Y, Spira G, Paizi M, Bruck R, Nagler A, Genina O, Taub R, Halevy O, Pines M. Involvement of the tyrosine phosphatase early gene of liver regeneration (PRL-1) in cell cycle and in liver regeneration and fibrosis effect of halofuginone. Cell Tissue Res. 2006;324(3):385–94.PubMedCrossRef
124.
go back to reference Raud B, McGuire PJ, Jones RG, Sparwasser T, Berod L. Fatty acid metabolism in CD8(+) T cell memory: challenging current concepts. Immunol Rev. 2018;283(1):213–31.PubMedPubMedCentralCrossRef Raud B, McGuire PJ, Jones RG, Sparwasser T, Berod L. Fatty acid metabolism in CD8(+) T cell memory: challenging current concepts. Immunol Rev. 2018;283(1):213–31.PubMedPubMedCentralCrossRef
127.
go back to reference Vickers AE. Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors. Toxicol Pathol. 2009;37(1):78–88.PubMedCrossRef Vickers AE. Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors. Toxicol Pathol. 2009;37(1):78–88.PubMedCrossRef
128.
go back to reference Rupp H, Zarain-Herzberg A, Maisch B. The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Herz. 2002;27(7):621–36.PubMedCrossRef Rupp H, Zarain-Herzberg A, Maisch B. The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Herz. 2002;27(7):621–36.PubMedCrossRef
129.
go back to reference Murray AJ, Panagia M, Hauton D, Gibbons GF, Clarke K. Plasma free fatty acids and peroxisome proliferator-activated receptor alpha in the control of myocardial uncoupling protein levels. Diabetes. 2005;54(12):3496–502.PubMedCrossRef Murray AJ, Panagia M, Hauton D, Gibbons GF, Clarke K. Plasma free fatty acids and peroxisome proliferator-activated receptor alpha in the control of myocardial uncoupling protein levels. Diabetes. 2005;54(12):3496–502.PubMedCrossRef
130.
go back to reference Gerondaes P, Alberti KG, Agius L. Interactions of inhibitors of carnitine palmitoyltransferase I and fibrates in cultured hepatocytes. Biochem J. 1988;253(1):169–73.PubMedPubMedCentralCrossRef Gerondaes P, Alberti KG, Agius L. Interactions of inhibitors of carnitine palmitoyltransferase I and fibrates in cultured hepatocytes. Biochem J. 1988;253(1):169–73.PubMedPubMedCentralCrossRef
132.
go back to reference Sawada H, Takami K, Asahi S. A toxicogenomic approach to drug-induced phospholipidosis: analysis of its induction mechanism and establishment of a novel in vitro screening system. Toxicol Sci. 2005;83(2):282–92.PubMedCrossRef Sawada H, Takami K, Asahi S. A toxicogenomic approach to drug-induced phospholipidosis: analysis of its induction mechanism and establishment of a novel in vitro screening system. Toxicol Sci. 2005;83(2):282–92.PubMedCrossRef
133.
go back to reference Saheb Sharif-Askari N, Saheb Sharif-Askari F, Mdkhana B, Al Heialy S, Ratemi E, Alghamdi M, Abusnana S, Kashour T, Hamid Q, Halwani R. Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020;94(12):4037–41.PubMedPubMedCentralCrossRef Saheb Sharif-Askari N, Saheb Sharif-Askari F, Mdkhana B, Al Heialy S, Ratemi E, Alghamdi M, Abusnana S, Kashour T, Hamid Q, Halwani R. Effect of common medications on the expression of SARS-CoV-2 entry receptors in liver tissue. Arch Toxicol. 2020;94(12):4037–41.PubMedPubMedCentralCrossRef
134.
go back to reference Ren Z, Chen S, Qin X, Li F, Guo L. Study of the roles of cytochrome P450 (CYPs) in the metabolism and cytotoxicity of perhexiline. Arch Toxicol. 2022;96(12):3219–31.PubMedPubMedCentralCrossRef Ren Z, Chen S, Qin X, Li F, Guo L. Study of the roles of cytochrome P450 (CYPs) in the metabolism and cytotoxicity of perhexiline. Arch Toxicol. 2022;96(12):3219–31.PubMedPubMedCentralCrossRef
135.
go back to reference Perrin MJ, Kuchel PW, Campbell TJ, Vandenberg JI. Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether-a-go-go-related gene channels. Mol Pharmacol. 2008;74(5):1443–52.PubMedCrossRef Perrin MJ, Kuchel PW, Campbell TJ, Vandenberg JI. Drug binding to the inactivated state is necessary but not sufficient for high-affinity binding to human ether-a-go-go-related gene channels. Mol Pharmacol. 2008;74(5):1443–52.PubMedCrossRef
136.
go back to reference Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG, Nabi IR, Roberge M. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS ONE. 2009;4(9): e7124.PubMedPubMedCentralCrossRef Balgi AD, Fonseca BD, Donohue E, Tsang TC, Lajoie P, Proud CG, Nabi IR, Roberge M. Screen for chemical modulators of autophagy reveals novel therapeutic inhibitors of mTORC1 signaling. PLoS ONE. 2009;4(9): e7124.PubMedPubMedCentralCrossRef
137.
go back to reference Atienzar F, Gerets H, Dufrane S, Tilmant K, Cornet M, Dhalluin S, Ruty B, Rose G, Canning M. Determination of phospholipidosis potential based on gene expression analysis in HepG2 cells. Toxicol Sci. 2007;96(1):101–14.PubMedCrossRef Atienzar F, Gerets H, Dufrane S, Tilmant K, Cornet M, Dhalluin S, Ruty B, Rose G, Canning M. Determination of phospholipidosis potential based on gene expression analysis in HepG2 cells. Toxicol Sci. 2007;96(1):101–14.PubMedCrossRef
138.
go back to reference Cacciola NA, Sepe F, Fioriniello S, Petillo O, Margarucci S, Scivicco M, Peluso G, Balestrieri A, Bifulco G, Restucci B, et al. The carnitine palmitoyltransferase 1A inhibitor teglicar shows promising antitumour activity against canine mammary cancer cells by inducing apoptosis. Pharmaceuticals (Basel). 2023;16(7):987.PubMedCrossRef Cacciola NA, Sepe F, Fioriniello S, Petillo O, Margarucci S, Scivicco M, Peluso G, Balestrieri A, Bifulco G, Restucci B, et al. The carnitine palmitoyltransferase 1A inhibitor teglicar shows promising antitumour activity against canine mammary cancer cells by inducing apoptosis. Pharmaceuticals (Basel). 2023;16(7):987.PubMedCrossRef
139.
go back to reference Abstracts of the 44th Annual Meeting of the European Association for the Study of Diabetes, 8–11 September 2008, Rome, Italy. Diabetologia 2008, 51(Suppl 1):S5–564. Abstracts of the 44th Annual Meeting of the European Association for the Study of Diabetes, 8–11 September 2008, Rome, Italy. Diabetologia 2008, 51(Suppl 1):S5–564.
141.
go back to reference van Poelje PD, Potter SC, Erion MD. Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes. Handb Exp Pharmacol. 2011;203:279–301.CrossRef van Poelje PD, Potter SC, Erion MD. Fructose-1, 6-bisphosphatase inhibitors for reducing excessive endogenous glucose production in type 2 diabetes. Handb Exp Pharmacol. 2011;203:279–301.CrossRef
142.
go back to reference Erion MD, van Poelje PD, Dang Q, Kasibhatla SR, Potter SC, Reddy MR, Reddy KR, Jiang T, Lipscomb WN. MB06322 (CS-917): a potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes. Proc Natl Acad Sci U S A. 2005;102(22):7970–5.PubMedPubMedCentralCrossRef Erion MD, van Poelje PD, Dang Q, Kasibhatla SR, Potter SC, Reddy MR, Reddy KR, Jiang T, Lipscomb WN. MB06322 (CS-917): a potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes. Proc Natl Acad Sci U S A. 2005;102(22):7970–5.PubMedPubMedCentralCrossRef
143.
go back to reference Kubota K, Inaba S, Nakano R, Watanabe M, Sakurai H, Fukushima Y, Ichikawa K, Takahashi T, Izumi T, Shinagawa A. Identification of activating enzymes of a novel FBPase inhibitor prodrug, CS-917. Pharmacol Res Perspect. 2015;3(3): e00138.PubMedPubMedCentralCrossRef Kubota K, Inaba S, Nakano R, Watanabe M, Sakurai H, Fukushima Y, Ichikawa K, Takahashi T, Izumi T, Shinagawa A. Identification of activating enzymes of a novel FBPase inhibitor prodrug, CS-917. Pharmacol Res Perspect. 2015;3(3): e00138.PubMedPubMedCentralCrossRef
144.
go back to reference Yoshida T, Okuno A, Takahashi K, Ogawa J, Hagisawa Y, Kanda S, Fujiwara T. Contributions of hepatic gluconeogenesis suppression and compensative glycogenolysis on the glucose-lowering effect of CS-917, a fructose 1,6-bisphosphatase inhibitor, in non-obese type 2 diabetes Goto-Kakizaki rats. J Pharmacol Sci. 2011;115(3):329–35.PubMedCrossRef Yoshida T, Okuno A, Takahashi K, Ogawa J, Hagisawa Y, Kanda S, Fujiwara T. Contributions of hepatic gluconeogenesis suppression and compensative glycogenolysis on the glucose-lowering effect of CS-917, a fructose 1,6-bisphosphatase inhibitor, in non-obese type 2 diabetes Goto-Kakizaki rats. J Pharmacol Sci. 2011;115(3):329–35.PubMedCrossRef
145.
go back to reference Yoshida T, Okuno A, Izumi M, Takahashi K, Hagisawa Y, Ohsumi J, Fujiwara T. CS-917, a fructose 1,6-bisphosphatase inhibitor, improves postprandial hyperglycemia after meal loading in non-obese type 2 diabetic Goto-Kakizaki rats. Eur J Pharmacol. 2008;601(1–3):192–7.PubMedCrossRef Yoshida T, Okuno A, Izumi M, Takahashi K, Hagisawa Y, Ohsumi J, Fujiwara T. CS-917, a fructose 1,6-bisphosphatase inhibitor, improves postprandial hyperglycemia after meal loading in non-obese type 2 diabetic Goto-Kakizaki rats. Eur J Pharmacol. 2008;601(1–3):192–7.PubMedCrossRef
146.
go back to reference Kastrissios H, Walker JR, Carrothers TJ, Kshirsagar S, Khariton T, Habtemariam B, Mager DE, Rohatagi S. Population pharmacokinetic model for a novel oral hypoglycemic formed in vivo: comparing the use of active metabolite data alone versus using data of upstream and downstream metabolites. J Clin Pharmacol. 2012;52(3):404–15.PubMedCrossRef Kastrissios H, Walker JR, Carrothers TJ, Kshirsagar S, Khariton T, Habtemariam B, Mager DE, Rohatagi S. Population pharmacokinetic model for a novel oral hypoglycemic formed in vivo: comparing the use of active metabolite data alone versus using data of upstream and downstream metabolites. J Clin Pharmacol. 2012;52(3):404–15.PubMedCrossRef
147.
go back to reference Dang Q, Liu Y, Cashion DK, Kasibhatla SR, Jiang T, Taplin F, Jacintho JD, Li H, Sun Z, Fan Y, et al. Discovery of a series of phosphonic acid-containing thiazoles and orally bioavailable diamide prodrugs that lower glucose in diabetic animals through inhibition of fructose-1,6-bisphosphatase. J Med Chem. 2011;54(1):153–65.PubMedCrossRef Dang Q, Liu Y, Cashion DK, Kasibhatla SR, Jiang T, Taplin F, Jacintho JD, Li H, Sun Z, Fan Y, et al. Discovery of a series of phosphonic acid-containing thiazoles and orally bioavailable diamide prodrugs that lower glucose in diabetic animals through inhibition of fructose-1,6-bisphosphatase. J Med Chem. 2011;54(1):153–65.PubMedCrossRef
148.
go back to reference Johansson KS, Sonne DP, Knop FK, Christensen MB. What is on the horizon for type 2 diabetes pharmacotherapy?—An overview of the antidiabetic drug development pipeline. Expert Opin Drug Discov. 2020;15(11):1253–65.PubMedCrossRef Johansson KS, Sonne DP, Knop FK, Christensen MB. What is on the horizon for type 2 diabetes pharmacotherapy?—An overview of the antidiabetic drug development pipeline. Expert Opin Drug Discov. 2020;15(11):1253–65.PubMedCrossRef
150.
go back to reference Gao Y, Liu Y, Zheng D, Ho C, Wen D, Sun J, Huang L, Liu Y, Li Q, Zhang Y. HDAC5-mediated Smad7 silencing through MEF2A is critical for fibroblast activation and hypertrophic scar formation. Int J Biol Sci. 2022;18(15):5724–39.PubMedPubMedCentralCrossRef Gao Y, Liu Y, Zheng D, Ho C, Wen D, Sun J, Huang L, Liu Y, Li Q, Zhang Y. HDAC5-mediated Smad7 silencing through MEF2A is critical for fibroblast activation and hypertrophic scar formation. Int J Biol Sci. 2022;18(15):5724–39.PubMedPubMedCentralCrossRef
151.
go back to reference Ren L, Jiang M, Xue D, Wang H, Lu Z, Ding L, Xie H, Wang R, Luo W, Xu L, et al. Nitroxoline suppresses metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway. Int J Biol Sci. 2022;18(13):5207–20.PubMedPubMedCentralCrossRef Ren L, Jiang M, Xue D, Wang H, Lu Z, Ding L, Xie H, Wang R, Luo W, Xu L, et al. Nitroxoline suppresses metastasis in bladder cancer via EGR1/circNDRG1/miR-520h/smad7/EMT signaling pathway. Int J Biol Sci. 2022;18(13):5207–20.PubMedPubMedCentralCrossRef
153.
go back to reference Jankauskas SS, Mone P, Avvisato R, Varzideh F, De Gennaro S, Salemme L, Macina G, Kansakar U, Cioppa A, Frullone S, et al. miR-181c targets Parkin and SMAD7 in human cardiac fibroblasts: Validation of differential microRNA expression in patients with diabetes and heart failure with preserved ejection fraction. Mech Ageing Dev. 2023;212: 111818.PubMedPubMedCentralCrossRef Jankauskas SS, Mone P, Avvisato R, Varzideh F, De Gennaro S, Salemme L, Macina G, Kansakar U, Cioppa A, Frullone S, et al. miR-181c targets Parkin and SMAD7 in human cardiac fibroblasts: Validation of differential microRNA expression in patients with diabetes and heart failure with preserved ejection fraction. Mech Ageing Dev. 2023;212: 111818.PubMedPubMedCentralCrossRef
155.
go back to reference Monteleone G, Neurath MF, Ardizzone S, Di Sabatino A, Fantini MC, Castiglione F, Scribano ML, Armuzzi A, Caprioli F, Sturniolo GC, et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med. 2015;372(12):1104–13.PubMedCrossRef Monteleone G, Neurath MF, Ardizzone S, Di Sabatino A, Fantini MC, Castiglione F, Scribano ML, Armuzzi A, Caprioli F, Sturniolo GC, et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn’s disease. N Engl J Med. 2015;372(12):1104–13.PubMedCrossRef
156.
go back to reference Monteleone G, Fantini MC, Onali S, Zorzi F, Sancesario G, Bernardini S, Calabrese E, Viti F, Monteleone I, Biancone L, et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Mol Ther. 2012;20(4):870–6.PubMedPubMedCentralCrossRef Monteleone G, Fantini MC, Onali S, Zorzi F, Sancesario G, Bernardini S, Calabrese E, Viti F, Monteleone I, Biancone L, et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn’s disease. Mol Ther. 2012;20(4):870–6.PubMedPubMedCentralCrossRef
157.
go back to reference Marafini I, Stolfi C, Troncone E, Lolli E, Onali S, Paoluzi OA, Fantini MC, Biancone L, Calabrese E, Di Grazia A, et al. A Pharmacological batch of mongersen that downregulates Smad7 is Effective as induction therapy in active Crohn’s disease: a phase II. Open-Label Study BioDrugs. 2021;35(3):325–36.PubMedCrossRef Marafini I, Stolfi C, Troncone E, Lolli E, Onali S, Paoluzi OA, Fantini MC, Biancone L, Calabrese E, Di Grazia A, et al. A Pharmacological batch of mongersen that downregulates Smad7 is Effective as induction therapy in active Crohn’s disease: a phase II. Open-Label Study BioDrugs. 2021;35(3):325–36.PubMedCrossRef
158.
go back to reference Feagan BG, Sands BE, Rossiter G, Li X, Usiskin K, Zhan X, Colombel JF. Effects of Mongersen (GED-0301) on endoscopic and clinical outcomes in patients with active Crohn’s disease. Gastroenterology. 2018;154(1):61-64 e66.PubMedCrossRef Feagan BG, Sands BE, Rossiter G, Li X, Usiskin K, Zhan X, Colombel JF. Effects of Mongersen (GED-0301) on endoscopic and clinical outcomes in patients with active Crohn’s disease. Gastroenterology. 2018;154(1):61-64 e66.PubMedCrossRef
159.
go back to reference Monteleone G, Stolfi C, Marafini I, Atreya R, Neurath MF. Smad7 antisense oligonucleotide-based therapy in Crohn’s disease: is it time to re-evaluate? Mol Diagn Ther. 2022;26(5):477–81.PubMedPubMedCentralCrossRef Monteleone G, Stolfi C, Marafini I, Atreya R, Neurath MF. Smad7 antisense oligonucleotide-based therapy in Crohn’s disease: is it time to re-evaluate? Mol Diagn Ther. 2022;26(5):477–81.PubMedPubMedCentralCrossRef
160.
go back to reference Arrico L, Stolfi C, Marafini I, Monteleone G, Demartis S, Bellinvia S, Viti F, McNulty M, Cabani I, Falezza A, et al. Inhomogeneous diastereomeric composition of mongersen antisense phosphorothioate oligonucleotide preparations and related pharmacological activity impairment. Nucleic Acid Ther. 2022;32(4):312–20.PubMedPubMedCentralCrossRef Arrico L, Stolfi C, Marafini I, Monteleone G, Demartis S, Bellinvia S, Viti F, McNulty M, Cabani I, Falezza A, et al. Inhomogeneous diastereomeric composition of mongersen antisense phosphorothioate oligonucleotide preparations and related pharmacological activity impairment. Nucleic Acid Ther. 2022;32(4):312–20.PubMedPubMedCentralCrossRef
161.
go back to reference Papadakis KA, Prehn J, Moreno ST, Cheng L, Kouroumalis EA, Deem R, Breaverman T, Ponath PD, Andrew DP, Green PH, et al. CCR9-positive lymphocytes and thymus-expressed chemokine distinguish small bowel from colonic Crohn’s disease. Gastroenterology. 2001;121(2):246–54.PubMedCrossRef Papadakis KA, Prehn J, Moreno ST, Cheng L, Kouroumalis EA, Deem R, Breaverman T, Ponath PD, Andrew DP, Green PH, et al. CCR9-positive lymphocytes and thymus-expressed chemokine distinguish small bowel from colonic Crohn’s disease. Gastroenterology. 2001;121(2):246–54.PubMedCrossRef
162.
go back to reference Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Lazure C, Seidah NG, Prat A. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation. 2012;125(7):894–901.PubMedCrossRef Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Lazure C, Seidah NG, Prat A. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation. 2012;125(7):894–901.PubMedCrossRef
163.
go back to reference Lopez-Andres N, Calvier L, Labat C, Fay R, Diez J, Benetos A, Zannad F, Lacolley P, Rossignol P. Absence of cardiotrophin 1 is associated with decreased age-dependent arterial stiffness and increased longevity in mice. Hypertension. 2013;61(1):120–9.PubMedCrossRef Lopez-Andres N, Calvier L, Labat C, Fay R, Diez J, Benetos A, Zannad F, Lacolley P, Rossignol P. Absence of cardiotrophin 1 is associated with decreased age-dependent arterial stiffness and increased longevity in mice. Hypertension. 2013;61(1):120–9.PubMedCrossRef
164.
go back to reference Gill PK, Hegele RA. New biological therapies for low-density lipoprotein cholesterol. Can J Cardiol. 2023;39:1913–30.PubMedCrossRef Gill PK, Hegele RA. New biological therapies for low-density lipoprotein cholesterol. Can J Cardiol. 2023;39:1913–30.PubMedCrossRef
165.
go back to reference Banach M, Surma S, Reiner Z, Katsiki N, Penson PE, Fras Z, Sahebkar A, Paneni F, Rizzo M, Kastelein J. Personalized management of dyslipidemias in patients with diabetes-it is time for a new approach (2022). Cardiovasc Diabetol. 2022;21(1):263.PubMedPubMedCentralCrossRef Banach M, Surma S, Reiner Z, Katsiki N, Penson PE, Fras Z, Sahebkar A, Paneni F, Rizzo M, Kastelein J. Personalized management of dyslipidemias in patients with diabetes-it is time for a new approach (2022). Cardiovasc Diabetol. 2022;21(1):263.PubMedPubMedCentralCrossRef
166.
go back to reference Samuel E, Watford M, Egolum UO, Ombengi DN, Ling H, Cates DW. Inclisiran: a first-in-class siRNA therapy for lowering low-density lipoprotein cholesterol. Ann Pharmacother. 2023;57(3):317–24.PubMedCrossRef Samuel E, Watford M, Egolum UO, Ombengi DN, Ling H, Cates DW. Inclisiran: a first-in-class siRNA therapy for lowering low-density lipoprotein cholesterol. Ann Pharmacother. 2023;57(3):317–24.PubMedCrossRef
168.
go back to reference Sposito AC, Breder I, Barreto J, Breder J, Bonilha I, Lima M, Oliveira A, Wolf V, Luchiari B, do Carmo HR, et al. Evolocumab on top of empagliflozin improves endothelial function of individuals with diabetes: randomized active-controlled trial. Cardiovasc Diabetol. 2022;21(1):147.PubMedPubMedCentralCrossRef Sposito AC, Breder I, Barreto J, Breder J, Bonilha I, Lima M, Oliveira A, Wolf V, Luchiari B, do Carmo HR, et al. Evolocumab on top of empagliflozin improves endothelial function of individuals with diabetes: randomized active-controlled trial. Cardiovasc Diabetol. 2022;21(1):147.PubMedPubMedCentralCrossRef
169.
go back to reference Raal F, Fourie N, Scott R, Blom D, De Vries BM, Kayikcioglu M, Caldwell K, Kallend D, Stein E. Investigators LI-H: Long-term efficacy and safety of lerodalcibep in heterozygous familial hypercholesterolaemia: the LIBerate-HeFH trial. Eur Heart J. 2023;44:4272–80.PubMedPubMedCentralCrossRef Raal F, Fourie N, Scott R, Blom D, De Vries BM, Kayikcioglu M, Caldwell K, Kallend D, Stein E. Investigators LI-H: Long-term efficacy and safety of lerodalcibep in heterozygous familial hypercholesterolaemia: the LIBerate-HeFH trial. Eur Heart J. 2023;44:4272–80.PubMedPubMedCentralCrossRef
170.
go back to reference Wang X, Wen D, Chen Y, Ma L, You C. PCSK9 inhibitors for secondary prevention in patients with cardiovascular diseases: a bayesian network meta-analysis. Cardiovasc Diabetol. 2022;21(1):107.PubMedPubMedCentralCrossRef Wang X, Wen D, Chen Y, Ma L, You C. PCSK9 inhibitors for secondary prevention in patients with cardiovascular diseases: a bayesian network meta-analysis. Cardiovasc Diabetol. 2022;21(1):107.PubMedPubMedCentralCrossRef
172.
go back to reference Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005–17.PubMedPubMedCentralCrossRef Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell. 2009;137(6):1005–17.PubMedPubMedCentralCrossRef
173.
go back to reference Zhang X, Zhang X, Wang T, Wang L, Tan Z, Wei W, Yan B, Zhao J, Wu K, Yang A, et al. MicroRNA-26a is a key regulon that inhibits progression and metastasis of c-Myc/EZH2 double high advanced hepatocellular carcinoma. Cancer Lett. 2018;426:98–108.PubMedCrossRef Zhang X, Zhang X, Wang T, Wang L, Tan Z, Wei W, Yan B, Zhao J, Wu K, Yang A, et al. MicroRNA-26a is a key regulon that inhibits progression and metastasis of c-Myc/EZH2 double high advanced hepatocellular carcinoma. Cancer Lett. 2018;426:98–108.PubMedCrossRef
174.
go back to reference Tanno T, Zhang P, Lazarski CA, Liu Y, Zheng P. An aptamer-based targeted delivery of miR-26a protects mice against chemotherapy toxicity while suppressing tumor growth. Blood Adv. 2017;1(15):1107–19.PubMedPubMedCentralCrossRef Tanno T, Zhang P, Lazarski CA, Liu Y, Zheng P. An aptamer-based targeted delivery of miR-26a protects mice against chemotherapy toxicity while suppressing tumor growth. Blood Adv. 2017;1(15):1107–19.PubMedPubMedCentralCrossRef
175.
go back to reference Mi B, Chen L, Xiong Y, Yang Y, Panayi AC, Xue H, Hu Y, Yan C, Hu L, Xie X, et al. Osteoblast/osteoclast and immune cocktail therapy of an exosome/drug delivery multifunctional hydrogel accelerates fracture repair. ACS Nano. 2022;16(1):771–82.PubMedCrossRef Mi B, Chen L, Xiong Y, Yang Y, Panayi AC, Xue H, Hu Y, Yan C, Hu L, Xie X, et al. Osteoblast/osteoclast and immune cocktail therapy of an exosome/drug delivery multifunctional hydrogel accelerates fracture repair. ACS Nano. 2022;16(1):771–82.PubMedCrossRef
176.
go back to reference Liang G, Kan S, Zhu Y, Feng S, Feng W, Gao S. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int J Nanomed. 2018;13:585–99.CrossRef Liang G, Kan S, Zhu Y, Feng S, Feng W, Gao S. Engineered exosome-mediated delivery of functionally active miR-26a and its enhanced suppression effect in HepG2 cells. Int J Nanomed. 2018;13:585–99.CrossRef
177.
go back to reference Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J, et al. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials. 2013;34(21):5048–58.PubMedCrossRef Li Y, Fan L, Liu S, Liu W, Zhang H, Zhou T, Wu D, Yang P, Shen L, Chen J, et al. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a. Biomaterials. 2013;34(21):5048–58.PubMedCrossRef
178.
go back to reference Zheng H, Ji J, Zhao T, Wang E, Zhang A. Exosome-encapsulated miR-26a attenuates aldosterone-induced tubulointerstitial fibrosis by inhibiting the CTGF/SMAD3 signaling pathway. Int J Mol Med. 2023;51(2):1–14. Zheng H, Ji J, Zhao T, Wang E, Zhang A. Exosome-encapsulated miR-26a attenuates aldosterone-induced tubulointerstitial fibrosis by inhibiting the CTGF/SMAD3 signaling pathway. Int J Mol Med. 2023;51(2):1–14.
179.
go back to reference Li R, Wang H, John JV, Song H, Teusink MJ, Xie J. 3D hybrid nanofiber aerogels combining with nanoparticles made of a biocleavable and targeting polycation and MiR-26a for bone repair. Adv Funct Mater. 2020;30(49):2005531.PubMedPubMedCentralCrossRef Li R, Wang H, John JV, Song H, Teusink MJ, Xie J. 3D hybrid nanofiber aerogels combining with nanoparticles made of a biocleavable and targeting polycation and MiR-26a for bone repair. Adv Funct Mater. 2020;30(49):2005531.PubMedPubMedCentralCrossRef
180.
go back to reference Wang B, Zhang A, Wang H, Klein JD, Tan L, Wang ZM, Du J, Naqvi N, Liu BC, Wang XH. miR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease. Theranostics. 2019;9(7):1864–77.PubMedPubMedCentralCrossRef Wang B, Zhang A, Wang H, Klein JD, Tan L, Wang ZM, Du J, Naqvi N, Liu BC, Wang XH. miR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease. Theranostics. 2019;9(7):1864–77.PubMedPubMedCentralCrossRef
181.
go back to reference Tanno T, Zhang P, Bailey C, Wang Y, Ittiprasert W, Devenport M, Zheng P, Liu Y. A novel aptamer-based small RNA delivery platform and its application to cancer therapy. Genes Dis. 2023;10(3):1075–89.PubMedCrossRef Tanno T, Zhang P, Bailey C, Wang Y, Ittiprasert W, Devenport M, Zheng P, Liu Y. A novel aptamer-based small RNA delivery platform and its application to cancer therapy. Genes Dis. 2023;10(3):1075–89.PubMedCrossRef
182.
go back to reference Yan J, Lu X, Zhu X, Hu X, Wang L, Qian J, Zhang F, Liu M. Effects of miR-26a on osteogenic differentiation of bone marrow mesenchymal stem cells by a mesoporous silica nanoparticle—PEI—peptide system. Int J Nanomedicine. 2020;15:497–511.PubMedPubMedCentralCrossRef Yan J, Lu X, Zhu X, Hu X, Wang L, Qian J, Zhang F, Liu M. Effects of miR-26a on osteogenic differentiation of bone marrow mesenchymal stem cells by a mesoporous silica nanoparticle—PEI—peptide system. Int J Nanomedicine. 2020;15:497–511.PubMedPubMedCentralCrossRef
183.
go back to reference Mahati S, Fu X, Ma X, Zhang H, Xiao L. Delivery of miR-26a using an exosomes-based nanosystem inhibited proliferation of hepatocellular carcinoma. Front Mol Biosci. 2021;8: 738219.PubMedPubMedCentralCrossRef Mahati S, Fu X, Ma X, Zhang H, Xiao L. Delivery of miR-26a using an exosomes-based nanosystem inhibited proliferation of hepatocellular carcinoma. Front Mol Biosci. 2021;8: 738219.PubMedPubMedCentralCrossRef
184.
go back to reference Zhang X, Li Y, Chen YE, Chen J, Ma PX. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat Commun. 2016;7:10376.PubMedPubMedCentralCrossRef Zhang X, Li Y, Chen YE, Chen J, Ma PX. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects. Nat Commun. 2016;7:10376.PubMedPubMedCentralCrossRef
185.
go back to reference Liang GF, Zhu YL, Sun B, Hu FH, Tian T, Li SC, Xiao ZD. PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells. Nanoscale Res Lett. 2011;6(1):447.PubMedPubMedCentralCrossRef Liang GF, Zhu YL, Sun B, Hu FH, Tian T, Li SC, Xiao ZD. PLGA-based gene delivering nanoparticle enhance suppression effect of miRNA in HePG2 cells. Nanoscale Res Lett. 2011;6(1):447.PubMedPubMedCentralCrossRef
186.
go back to reference Bao S, Huang S, Liu Y, Hu Y, Wang W, Ji M, Li H, Zhang NX, Song C, Duan S. Gold nanocages with dual modality for image-guided therapeutics. Nanoscale. 2017;9(21):7284–96.PubMedCrossRef Bao S, Huang S, Liu Y, Hu Y, Wang W, Ji M, Li H, Zhang NX, Song C, Duan S. Gold nanocages with dual modality for image-guided therapeutics. Nanoscale. 2017;9(21):7284–96.PubMedCrossRef
187.
go back to reference Liang G, Li Y, Feng W, Wang X, Jing A, Li J, Ma K. Polyethyleneimine-coated quantum dots for miRNA delivery and its enhanced suppression in HepG2 cells. Int J Nanomedicine. 2016;11:6079–88.PubMedPubMedCentralCrossRef Liang G, Li Y, Feng W, Wang X, Jing A, Li J, Ma K. Polyethyleneimine-coated quantum dots for miRNA delivery and its enhanced suppression in HepG2 cells. Int J Nanomedicine. 2016;11:6079–88.PubMedPubMedCentralCrossRef
188.
go back to reference Hu Y, Liu H, Fang C, Li C, Xhyliu F, Dysert H, Bodo J, Habermehl G, Russell BE, Li W, et al. Targeting of CD38 by the tumor suppressor miR-26a serves as a novel potential therapeutic agent in multiple myeloma. Cancer Res. 2020;80(10):2031–44.PubMedPubMedCentralCrossRef Hu Y, Liu H, Fang C, Li C, Xhyliu F, Dysert H, Bodo J, Habermehl G, Russell BE, Li W, et al. Targeting of CD38 by the tumor suppressor miR-26a serves as a novel potential therapeutic agent in multiple myeloma. Cancer Res. 2020;80(10):2031–44.PubMedPubMedCentralCrossRef
189.
go back to reference Gan M, Zhou Q, Ge J, Zhao J, Wang Y, Yan Q, Wu C, Yu H, Xiao Q, Wang W, et al. Precise in-situ release of microRNA from an injectable hydrogel induces bone regeneration. Acta Biomater. 2021;135:289–303.PubMedCrossRef Gan M, Zhou Q, Ge J, Zhao J, Wang Y, Yan Q, Wu C, Yu H, Xiao Q, Wang W, et al. Precise in-situ release of microRNA from an injectable hydrogel induces bone regeneration. Acta Biomater. 2021;135:289–303.PubMedCrossRef
190.
go back to reference Greene CM, Varley RB, Lawless MW. MicroRNAs and liver cancer associated with iron overload: therapeutic targets unravelled. World J Gastroenterol. 2013;19(32):5212–26.PubMedPubMedCentralCrossRef Greene CM, Varley RB, Lawless MW. MicroRNAs and liver cancer associated with iron overload: therapeutic targets unravelled. World J Gastroenterol. 2013;19(32):5212–26.PubMedPubMedCentralCrossRef
191.
go back to reference Ji JL, Shi HM, Li ZL, Jin R, Qu GT, Zheng H, Wang E, Qiao YY, Li XY, Ding L, et al. Satellite cell-derived exosome-mediated delivery of microRNA-23a/27a/26a cluster ameliorates the renal tubulointerstitial fibrosis in mouse diabetic nephropathy. Acta Pharmacol Sin. 2023;44:2455–68.PubMedCrossRef Ji JL, Shi HM, Li ZL, Jin R, Qu GT, Zheng H, Wang E, Qiao YY, Li XY, Ding L, et al. Satellite cell-derived exosome-mediated delivery of microRNA-23a/27a/26a cluster ameliorates the renal tubulointerstitial fibrosis in mouse diabetic nephropathy. Acta Pharmacol Sin. 2023;44:2455–68.PubMedCrossRef
192.
go back to reference Chambers P, Ziminska M, Elkashif A, Wilson J, Redmond J, Tzagiollari A, Ferreira C, Balouch A, Bogle J, Donahue SW, et al. The osteogenic and angiogenic potential of microRNA-26a delivered via a non-viral delivery peptide for bone repair. J Control Release. 2023;362:489–501.PubMedCrossRef Chambers P, Ziminska M, Elkashif A, Wilson J, Redmond J, Tzagiollari A, Ferreira C, Balouch A, Bogle J, Donahue SW, et al. The osteogenic and angiogenic potential of microRNA-26a delivered via a non-viral delivery peptide for bone repair. J Control Release. 2023;362:489–501.PubMedCrossRef
193.
go back to reference Hu J, Liu WF, Zhang XY, Shi GM, Yang XR, Zhou KQ, Hu B, Chen FY, Zhou C, Lau WY, et al. Synthetic miR-26a mimics delivered by tumor exosomes repress hepatocellular carcinoma through downregulating lymphoid enhancer factor 1. Hepatol Int. 2023;17:1265–78.PubMedCrossRef Hu J, Liu WF, Zhang XY, Shi GM, Yang XR, Zhou KQ, Hu B, Chen FY, Zhou C, Lau WY, et al. Synthetic miR-26a mimics delivered by tumor exosomes repress hepatocellular carcinoma through downregulating lymphoid enhancer factor 1. Hepatol Int. 2023;17:1265–78.PubMedCrossRef
Metadata
Title
The translational potential of miR-26 in atherosclerosis and development of agents for its target genes ACC1/2, COL1A1, CPT1A, FBP1, DGAT2, and SMAD7
Authors
Wujun Chen
Xiaolin Wu
Jianxia Hu
Xiaolei Liu
Zhu Guo
Jianfeng Wu
Yingchun Shao
Minglu Hao
Shuangshuang Zhang
Weichao Hu
Yanhong Wang
Miao Zhang
Meng Zhu
Chao Wang
Yudong Wu
Jie Wang
Dongming Xing
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2024
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-024-02119-z

Other articles of this Issue 1/2024

Cardiovascular Diabetology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.