Skip to main content
Top
Published in: Cardiovascular Diabetology 1/2024

Open Access 01-12-2024 | Arterial Diseases | Research

Characterizing the metabolic divide: distinctive metabolites differentiating CAD-T2DM from CAD patients

Authors: Yingjian Liu, Ju-e Liu, Huafeng He, Min Qin, Heping Lei, Jinxiu Meng, Chen Liu, Xiaoping Chen, Wenwei Luo, Shilong Zhong

Published in: Cardiovascular Diabetology | Issue 1/2024

Login to get access

Abstract

Objective

To delineate the metabolomic differences in plasma samples between patients with coronary artery disease (CAD) and those with concomitant CAD and type 2 diabetes mellitus (T2DM), and to pinpoint distinctive metabolites indicative of T2DM risk.

Method

Plasma samples from CAD and CAD-T2DM patients across three centers underwent comprehensive metabolomic and lipidomic analyses. Multivariate logistic regression was employed to discern the relationship between the identified metabolites and T2DM risk. Characteristic metabolites' metabolic impacts were further probed through hepatocyte cellular experiments. Subsequent transcriptomic analyses elucidated the potential target sites explaining the metabolic actions of these metabolites.

Results

Metabolomic analysis revealed 192 and 95 significantly altered profiles in the discovery (FDR < 0.05) and validation (P < 0.05) cohorts, respectively, that were associated with T2DM risk in univariate logistic regression. Further multivariate regression analyses identified 22 characteristic metabolites consistently associated with T2DM risk in both cohorts. Notably, pipecolinic acid and L-pipecolic acid, lysine derivatives, exhibited negative association with CAD-T2DM and influenced cellular glucose metabolism in hepatocytes. Transcriptomic insights shed light on potential metabolic action sites of these metabolites.

Conclusions

This research underscores the metabolic disparities between CAD and CAD-T2DM patients, spotlighting the protective attributes of pipecolinic acid and L-pipecolic acid. The comprehensive metabolomic and transcriptomic findings provide novel insights into the mechanism research, prophylaxis and treatment of comorbidity of CAD and T2DM.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wu T, Qiao S, Shi C, Wang S, Ji G. Metabolomics window into diabetic complications. J Diabetes Invest. 2018;9:244–55.CrossRef Wu T, Qiao S, Shi C, Wang S, Ji G. Metabolomics window into diabetic complications. J Diabetes Invest. 2018;9:244–55.CrossRef
2.
go back to reference Lima EG, Hueb W, Garcia RMR, Pereira AC, Soares PR, Favarato D, et al. Impact of diabetes on 10-year outcomes of patients with multivessel coronary artery disease in the medicine, angioplasty, or surgery study II (MASS II) trial. Am Heart J. 2013;166:250–7.PubMedCrossRef Lima EG, Hueb W, Garcia RMR, Pereira AC, Soares PR, Favarato D, et al. Impact of diabetes on 10-year outcomes of patients with multivessel coronary artery disease in the medicine, angioplasty, or surgery study II (MASS II) trial. Am Heart J. 2013;166:250–7.PubMedCrossRef
4.
go back to reference Arnold SV, Bhatt DL, Barsness GW, Beatty AL, Deedwania PC, Inzucchi SE, et al. Clinical management of stable coronary artery disease in patients with type 2 diabetes mellitus: a scientific statement from the american heart association. Circulation. 2020;141:e779-806.PubMedCrossRef Arnold SV, Bhatt DL, Barsness GW, Beatty AL, Deedwania PC, Inzucchi SE, et al. Clinical management of stable coronary artery disease in patients with type 2 diabetes mellitus: a scientific statement from the american heart association. Circulation. 2020;141:e779-806.PubMedCrossRef
5.
8.
go back to reference Xiao H, Ma Y, Zhou Z, Li X, Ding K, Wu Y, et al. Disease patterns of coronary heart disease and type 2 diabetes harbored distinct and shared genetic architecture. Cardiovasc Diabetol. 2022;21:276.PubMedPubMedCentralCrossRef Xiao H, Ma Y, Zhou Z, Li X, Ding K, Wu Y, et al. Disease patterns of coronary heart disease and type 2 diabetes harbored distinct and shared genetic architecture. Cardiovasc Diabetol. 2022;21:276.PubMedPubMedCentralCrossRef
9.
go back to reference Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20:685–95.PubMedCrossRef Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol. 2023;20:685–95.PubMedCrossRef
10.
go back to reference Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134:714–7. PubMedCrossRef Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134:714–7. PubMedCrossRef
11.
go back to reference Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, et al. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 2021;50:D622-31.PubMedCentralCrossRef Wishart DS, Guo A, Oler E, Wang F, Anjum A, Peters H, et al. HMDB 5.0: the human metabolome database for 2022. Nucleic Acids Res. 2021;50:D622-31.PubMedCentralCrossRef
14.
go back to reference Meikle PJ, Christopher MJ. Lipidomics is providing new insight into the metabolic syndrome and its sequelae. Curr Opin Lipidol. 2011;22:210.PubMedCrossRef Meikle PJ, Christopher MJ. Lipidomics is providing new insight into the metabolic syndrome and its sequelae. Curr Opin Lipidol. 2011;22:210.PubMedCrossRef
15.
go back to reference Fan Y, Li Y, Chen Y, Zhao Y-J, Liu L-W, Li J, et al. Comprehensive metabolomic characterization of coronary artery diseases. J Am Coll Cardiol. 2016;68:1281–93.PubMedCrossRef Fan Y, Li Y, Chen Y, Zhao Y-J, Liu L-W, Li J, et al. Comprehensive metabolomic characterization of coronary artery diseases. J Am Coll Cardiol. 2016;68:1281–93.PubMedCrossRef
16.
go back to reference Roberts LD, Koulman A, Griffin JL. Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome. Lancet Diabetes Endocrinol. 2014;2:65–75.PubMedCrossRef Roberts LD, Koulman A, Griffin JL. Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome. Lancet Diabetes Endocrinol. 2014;2:65–75.PubMedCrossRef
17.
go back to reference Urpi-Sarda M, Almanza-Aguilera E, Tulipani S, Tinahones FJ, Salas-Salvadó J, Andres-Lacueva C. Metabolomics for biomarkers of type 2 diabetes mellitus: advances and nutritional intervention trends. Curr Cardiovasc Risk Rep. 2015;9:12.CrossRef Urpi-Sarda M, Almanza-Aguilera E, Tulipani S, Tinahones FJ, Salas-Salvadó J, Andres-Lacueva C. Metabolomics for biomarkers of type 2 diabetes mellitus: advances and nutritional intervention trends. Curr Cardiovasc Risk Rep. 2015;9:12.CrossRef
18.
go back to reference Würtz P, Soininen P, Kangas AJ, Rönnemaa T, Lehtimäki T, Kähönen M, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36:648–55.PubMedPubMedCentralCrossRef Würtz P, Soininen P, Kangas AJ, Rönnemaa T, Lehtimäki T, Kähönen M, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36:648–55.PubMedPubMedCentralCrossRef
20.
go back to reference Yun H, Sun L, Wu Q, Zong G, Qi Q, Li H, et al. Associations among circulating sphingolipids, β-cell function, and risk of developing type 2 diabetes: a population-based cohort study in China. PLoS Med. 2020;17: e1003451.PubMedPubMedCentralCrossRef Yun H, Sun L, Wu Q, Zong G, Qi Q, Li H, et al. Associations among circulating sphingolipids, β-cell function, and risk of developing type 2 diabetes: a population-based cohort study in China. PLoS Med. 2020;17: e1003451.PubMedPubMedCentralCrossRef
21.
go back to reference Yousri NA, Suhre K, Yassin E, Al-Shakaki A, Robay A, Elshafei M, et al. Metabolic and metabo-clinical signatures of type 2 diabetes, obesity, retinopathy, and dyslipidemia. Diabetes. 2022;71:184–205.PubMedCrossRef Yousri NA, Suhre K, Yassin E, Al-Shakaki A, Robay A, Elshafei M, et al. Metabolic and metabo-clinical signatures of type 2 diabetes, obesity, retinopathy, and dyslipidemia. Diabetes. 2022;71:184–205.PubMedCrossRef
22.
go back to reference Chen Z-Z, Gerszten RE. Metabolomics and proteomics in type 2 diabetes. Circ Res. 2020;126:1613–27.PubMedCrossRef Chen Z-Z, Gerszten RE. Metabolomics and proteomics in type 2 diabetes. Circ Res. 2020;126:1613–27.PubMedCrossRef
23.
go back to reference Liu W, Guo P, Dai T, Shi X, Shen G, Feng J. Metabolic interactions and differences between coronary heart disease and diabetes mellitus: a pilot study on biomarker determination and pathogenesis. J Proteome Res. 2021;20:2364–73.PubMedCrossRef Liu W, Guo P, Dai T, Shi X, Shen G, Feng J. Metabolic interactions and differences between coronary heart disease and diabetes mellitus: a pilot study on biomarker determination and pathogenesis. J Proteome Res. 2021;20:2364–73.PubMedCrossRef
24.
go back to reference Inubushi T, Kamemura N, Oda M, Sakurai J, Nakaya Y, Harada N, et al. L-tryptophan suppresses rise in blood glucose and preserves insulin secretion in type-2 diabetes mellitus rats. J Nutr Sci Vitaminol. 2012;58:415–22.PubMedCrossRef Inubushi T, Kamemura N, Oda M, Sakurai J, Nakaya Y, Harada N, et al. L-tryptophan suppresses rise in blood glucose and preserves insulin secretion in type-2 diabetes mellitus rats. J Nutr Sci Vitaminol. 2012;58:415–22.PubMedCrossRef
25.
go back to reference Keskin E, Yoldas IH. Fructose consumption correlates with triglyceride-glucose index and glycemic status in healthy adults. Clin Nutr ESPEN. 2022;52:184–9.PubMedCrossRef Keskin E, Yoldas IH. Fructose consumption correlates with triglyceride-glucose index and glycemic status in healthy adults. Clin Nutr ESPEN. 2022;52:184–9.PubMedCrossRef
26.
go back to reference Zhou Q, Sun W-W, Chen J-C, Zhang H-L, Liu J, Lin Y, et al. Phenylalanine impairs insulin signaling and inhibits glucose uptake through modification of IRβ. Nat Commun. 2022;13:4291.PubMedPubMedCentralCrossRef Zhou Q, Sun W-W, Chen J-C, Zhang H-L, Liu J, Lin Y, et al. Phenylalanine impairs insulin signaling and inhibits glucose uptake through modification of IRβ. Nat Commun. 2022;13:4291.PubMedPubMedCentralCrossRef
28.
go back to reference Amaral N, Okonko DO. Metabolic abnormalities of the heart in type II diabetes. Diab Vasc Dis Res. 2015;12:239–48.PubMedCrossRef Amaral N, Okonko DO. Metabolic abnormalities of the heart in type II diabetes. Diab Vasc Dis Res. 2015;12:239–48.PubMedCrossRef
30.
go back to reference American Diabetes Association. 2 classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care. 2020;44:15–33.CrossRef American Diabetes Association. 2 classification and diagnosis of diabetes: standards of medical care in diabetes—2021. Diabetes Care. 2020;44:15–33.CrossRef
31.
go back to reference Luan H, Ji F, Chen Y, Cai Z. statTarget: a streamlined tool for signal drift correction and interpretations of quantitative mass spectrometry-based omics data. Anal Chim Acta. 2018;1036:66–72.PubMedCrossRef Luan H, Ji F, Chen Y, Cai Z. statTarget: a streamlined tool for signal drift correction and interpretations of quantitative mass spectrometry-based omics data. Anal Chim Acta. 2018;1036:66–72.PubMedCrossRef
32.
go back to reference van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142.PubMedPubMedCentralCrossRef van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142.PubMedPubMedCentralCrossRef
34.
go back to reference Weingarten A, Turchetti L, Krohn K, Klöting I, Kern M, Kovacs P, et al. Novel genes on rat chromosome 10 are linked to body fat mass, preadipocyte number and adipocyte size. Int J Obes. 2016;40:1832–40.CrossRef Weingarten A, Turchetti L, Krohn K, Klöting I, Kern M, Kovacs P, et al. Novel genes on rat chromosome 10 are linked to body fat mass, preadipocyte number and adipocyte size. Int J Obes. 2016;40:1832–40.CrossRef
36.
go back to reference Watanabe S, Fukumori F, Nishiwaki H, Sakurai Y, Tajima K, Watanabe Y. Novel non-phosphorylative pathway of pentose metabolism from bacteria. Sci Rep. 2019;9:155.PubMedPubMedCentralCrossRef Watanabe S, Fukumori F, Nishiwaki H, Sakurai Y, Tajima K, Watanabe Y. Novel non-phosphorylative pathway of pentose metabolism from bacteria. Sci Rep. 2019;9:155.PubMedPubMedCentralCrossRef
37.
go back to reference Sakoguchi H, Yoshihara A, Shintani T, Okuma K, Izumori K, Sato M. Growth inhibitory effect of D-arabinose against the nematode Caenorhabditis elegans: discovery of a novel bioactive monosaccharide. Bioorg Med Chem Lett. 2016;26:726–9.PubMedCrossRef Sakoguchi H, Yoshihara A, Shintani T, Okuma K, Izumori K, Sato M. Growth inhibitory effect of D-arabinose against the nematode Caenorhabditis elegans: discovery of a novel bioactive monosaccharide. Bioorg Med Chem Lett. 2016;26:726–9.PubMedCrossRef
38.
go back to reference Zhao Q, Zhang A, Zong W, An N, Zhang H, Luan Y, et al. Exploring potential biomarkers and determining the metabolic mechanism of type 2 diabetes mellitus using liquid chromatography coupled to high-resolution mass spectrometry. RSC Adv. 2017;7:44186–98.CrossRef Zhao Q, Zhang A, Zong W, An N, Zhang H, Luan Y, et al. Exploring potential biomarkers and determining the metabolic mechanism of type 2 diabetes mellitus using liquid chromatography coupled to high-resolution mass spectrometry. RSC Adv. 2017;7:44186–98.CrossRef
39.
go back to reference Ilavenil S, Kim DH, Valan Arasu M, Srigopalram S, Sivanesan R, Choi KC. Phenyllactic acid from lactobacillus plantarum promotes adipogenic activity in 3T3-L1 adipocyte via up-regulation of PPAR-γ2. Molecules. 2015;20:15359–73.PubMedPubMedCentralCrossRef Ilavenil S, Kim DH, Valan Arasu M, Srigopalram S, Sivanesan R, Choi KC. Phenyllactic acid from lactobacillus plantarum promotes adipogenic activity in 3T3-L1 adipocyte via up-regulation of PPAR-γ2. Molecules. 2015;20:15359–73.PubMedPubMedCentralCrossRef
40.
go back to reference Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15:412–26.PubMedCrossRef Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15:412–26.PubMedCrossRef
41.
go back to reference Vigili de Kreutzenberg S, Avogaro A. The role of point-of-care 3-hydroxybutyrate testing in patients with type 2 diabetes undergoing coronary angiography. J Endocrinol Invest. 2017;40:627–34.PubMedPubMedCentralCrossRef Vigili de Kreutzenberg S, Avogaro A. The role of point-of-care 3-hydroxybutyrate testing in patients with type 2 diabetes undergoing coronary angiography. J Endocrinol Invest. 2017;40:627–34.PubMedPubMedCentralCrossRef
42.
go back to reference Zhang Y, Li Z, Liu X, Chen X, Zhang S, Chen Y, et al. 3-Hydroxybutyrate ameliorates insulin resistance by inhibiting PPARγ Ser273 phosphorylation in type 2 diabetic mice. Signal Transduct Target Ther. 2023;8:190.PubMedPubMedCentralCrossRef Zhang Y, Li Z, Liu X, Chen X, Zhang S, Chen Y, et al. 3-Hydroxybutyrate ameliorates insulin resistance by inhibiting PPARγ Ser273 phosphorylation in type 2 diabetic mice. Signal Transduct Target Ther. 2023;8:190.PubMedPubMedCentralCrossRef
43.
go back to reference He M. Pipecolic acid in microbes: biosynthetic routes and enzymes. J Ind Microbiol Biotechnol. 2006;33:401–7.PubMedCrossRef He M. Pipecolic acid in microbes: biosynthetic routes and enzymes. J Ind Microbiol Biotechnol. 2006;33:401–7.PubMedCrossRef
44.
go back to reference Priyadarsini S, McKay TB, Sarker-Nag A, Allegood J, Chalfant C, Ma J-X, et al. Complete metabolome and lipidome analysis reveals novel biomarkers in the human diabetic corneal stroma. Exp Eye Res. 2016;153:90–100.PubMedPubMedCentralCrossRef Priyadarsini S, McKay TB, Sarker-Nag A, Allegood J, Chalfant C, Ma J-X, et al. Complete metabolome and lipidome analysis reveals novel biomarkers in the human diabetic corneal stroma. Exp Eye Res. 2016;153:90–100.PubMedPubMedCentralCrossRef
45.
go back to reference Ouyang Y, Qiu G, Zhao X, Su B, Feng D, Lv W, et al. Metabolome-Genome-wide association study (mGWAS) reveals novel metabolites associated with future type 2 diabetes risk and susceptibility loci in a case-control study in a Chinese prospective cohort. Global Chall. 2021;5:2000088.CrossRef Ouyang Y, Qiu G, Zhao X, Su B, Feng D, Lv W, et al. Metabolome-Genome-wide association study (mGWAS) reveals novel metabolites associated with future type 2 diabetes risk and susceptibility loci in a case-control study in a Chinese prospective cohort. Global Chall. 2021;5:2000088.CrossRef
46.
go back to reference Gu X, Al Dubayee M, Alshahrani A, Masood A, Benabdelkamel H, Zahra M, et al. Distinctive metabolomics patterns associated with insulin resistance and type 2 diabetes mellitus. Front Mol Biosci. 2020;7: 609806.PubMedPubMedCentralCrossRef Gu X, Al Dubayee M, Alshahrani A, Masood A, Benabdelkamel H, Zahra M, et al. Distinctive metabolomics patterns associated with insulin resistance and type 2 diabetes mellitus. Front Mol Biosci. 2020;7: 609806.PubMedPubMedCentralCrossRef
48.
go back to reference Li Q, You Y, Zeng Y, Wang X, Pan Z, Pang J, et al. Associations between plasma tryptophan and indole-3-propionic acid levels and mortality in patients with coronary artery disease. Am J Clin Nutr. 2022;116:1070–7.PubMedCrossRef Li Q, You Y, Zeng Y, Wang X, Pan Z, Pang J, et al. Associations between plasma tryptophan and indole-3-propionic acid levels and mortality in patients with coronary artery disease. Am J Clin Nutr. 2022;116:1070–7.PubMedCrossRef
49.
go back to reference Zhang L, Zhang Y, Ma Z, Zhu Y, Chen Z. Altered amino acid metabolism between coronary heart disease patients with and without type 2 diabetes by quantitative 1H NMR based metabolomics. J Pharm Biomed Anal. 2021;206: 114381.PubMedCrossRef Zhang L, Zhang Y, Ma Z, Zhu Y, Chen Z. Altered amino acid metabolism between coronary heart disease patients with and without type 2 diabetes by quantitative 1H NMR based metabolomics. J Pharm Biomed Anal. 2021;206: 114381.PubMedCrossRef
50.
go back to reference Rivas-Tumanyan S, Pacheco LS, Haslam DE, Liang L, Tucker KL, Joshipura KJ, et al. Novel plasma metabolomic markers associated with diabetes progression in older puerto ricans. Metabolites. 2022;12:513.PubMedPubMedCentralCrossRef Rivas-Tumanyan S, Pacheco LS, Haslam DE, Liang L, Tucker KL, Joshipura KJ, et al. Novel plasma metabolomic markers associated with diabetes progression in older puerto ricans. Metabolites. 2022;12:513.PubMedPubMedCentralCrossRef
51.
go back to reference Shetty SS, Kumari S. Fatty acids and their role in type-2 diabetes (Review). Exp Ther Med. 2021;22:1–6.CrossRef Shetty SS, Kumari S. Fatty acids and their role in type-2 diabetes (Review). Exp Ther Med. 2021;22:1–6.CrossRef
52.
go back to reference Wu H-T, Chen W, Cheng K-C, Ku P-M, Yeh C-H, Cheng J-T. Oleic acid activates peroxisome proliferator-activated receptor δ to compensate insulin resistance in steatotic cells. J Nutr Biochem. 2012;23:1264–70.PubMedCrossRef Wu H-T, Chen W, Cheng K-C, Ku P-M, Yeh C-H, Cheng J-T. Oleic acid activates peroxisome proliferator-activated receptor δ to compensate insulin resistance in steatotic cells. J Nutr Biochem. 2012;23:1264–70.PubMedCrossRef
53.
go back to reference Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and oleic acid: The Yin and Yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol Metab. 2018;29:178–90.PubMedCrossRef Palomer X, Pizarro-Delgado J, Barroso E, Vázquez-Carrera M. Palmitic and oleic acid: The Yin and Yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol Metab. 2018;29:178–90.PubMedCrossRef
54.
go back to reference Artemis P. Simopoulos. 2023. The Impact of the Bellagio Report on Healthy Agriculture Healthy Nutrition, Healthy People: Scientific and Policy Aspects and the International Network of Centers for Genetics Nutrition and Fitness for Health. Lifestyle Genomics. https://doi.org/10.1159/000375495 Artemis P. Simopoulos. 2023. The Impact of the Bellagio Report on Healthy Agriculture Healthy Nutrition, Healthy People: Scientific and Policy Aspects and the International Network of Centers for Genetics Nutrition and Fitness for Health. Lifestyle Genomics. https://​doi.​org/​10.​1159/​000375495
55.
go back to reference van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochimica et Biophysica Acta Biomembranes. 2017;1859:1558–72.PubMedCrossRef van der Veen JN, Kennelly JP, Wan S, Vance JE, Vance DE, Jacobs RL. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. Biochimica et Biophysica Acta Biomembranes. 2017;1859:1558–72.PubMedCrossRef
56.
go back to reference Morze J, Wittenbecher C, Schwingshackl L, Danielewicz A, Rynkiewicz A, Hu FB, et al. Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care. 2022;45:1013–24.PubMedPubMedCentralCrossRef Morze J, Wittenbecher C, Schwingshackl L, Danielewicz A, Rynkiewicz A, Hu FB, et al. Metabolomics and type 2 diabetes risk: an updated systematic review and meta-analysis of prospective cohort studies. Diabetes Care. 2022;45:1013–24.PubMedPubMedCentralCrossRef
57.
go back to reference Zhou W, Yao Y, Li J, Wu D, Zhao M, Yan Z, et al. TIGAR attenuates high glucose-induced neuronal apoptosis via an autophagy pathway. Front Mol Neurosci. 2019;12:193.PubMedPubMedCentralCrossRef Zhou W, Yao Y, Li J, Wu D, Zhao M, Yan Z, et al. TIGAR attenuates high glucose-induced neuronal apoptosis via an autophagy pathway. Front Mol Neurosci. 2019;12:193.PubMedPubMedCentralCrossRef
58.
59.
go back to reference Kucharczyk P, Albano G, Deisl C, Ho TM, Bargagli M, Anderegg M, et al. Thiazides attenuate insulin secretion through inhibition of mitochondrial carbonic anhydrase 5b in β -islet cells in mice. J Am Soc Nephrol. 2023;34:1179–90.PubMedCrossRef Kucharczyk P, Albano G, Deisl C, Ho TM, Bargagli M, Anderegg M, et al. Thiazides attenuate insulin secretion through inhibition of mitochondrial carbonic anhydrase 5b in β -islet cells in mice. J Am Soc Nephrol. 2023;34:1179–90.PubMedCrossRef
60.
go back to reference Shah GN, Rubbelke TS, Hendin J, Nguyen H, Waheed A, Shoemaker JD, et al. Targeted mutagenesis of mitochondrial carbonic anhydrases VA and VB implicates both enzymes in ammonia detoxification and glucose metabolism. Proc Natl Acad Sci USA. 2013;110:7423–8.PubMedPubMedCentralCrossRef Shah GN, Rubbelke TS, Hendin J, Nguyen H, Waheed A, Shoemaker JD, et al. Targeted mutagenesis of mitochondrial carbonic anhydrases VA and VB implicates both enzymes in ammonia detoxification and glucose metabolism. Proc Natl Acad Sci USA. 2013;110:7423–8.PubMedPubMedCentralCrossRef
61.
go back to reference Charkoftaki G, Wang Y, McAndrews M, Bruford EA, Thompson DC, Vasiliou V, et al. Update on the human and mouse lipocalin (LCN) gene family, including evidence the mouse Mup cluster is result of an “evolutionary bloom.” Hum Genomics. 2019;13:11.PubMedPubMedCentralCrossRef Charkoftaki G, Wang Y, McAndrews M, Bruford EA, Thompson DC, Vasiliou V, et al. Update on the human and mouse lipocalin (LCN) gene family, including evidence the mouse Mup cluster is result of an “evolutionary bloom.” Hum Genomics. 2019;13:11.PubMedPubMedCentralCrossRef
62.
go back to reference Tian Y, Yang J, Lan M, Zou T. Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure. Aging (Albany NY). 2020;12:26221–35.PubMedCrossRef Tian Y, Yang J, Lan M, Zou T. Construction and analysis of a joint diagnosis model of random forest and artificial neural network for heart failure. Aging (Albany NY). 2020;12:26221–35.PubMedCrossRef
63.
go back to reference Zhao M, Yuan MM, Yuan L, Huang LL, Liao JH, Yu XL, et al. Chronic folate deficiency induces glucose and lipid metabolism disorders and subsequent cognitive dysfunction in mice. PLoS ONE. 2018;13: e0202910.PubMedPubMedCentralCrossRef Zhao M, Yuan MM, Yuan L, Huang LL, Liao JH, Yu XL, et al. Chronic folate deficiency induces glucose and lipid metabolism disorders and subsequent cognitive dysfunction in mice. PLoS ONE. 2018;13: e0202910.PubMedPubMedCentralCrossRef
64.
go back to reference Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother. 2018;101:287–92.PubMedCrossRef Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother. 2018;101:287–92.PubMedCrossRef
65.
go back to reference Tantiwong P, Shanmugasundaram K, Monroy A, Ghosh S, Li M, DeFronzo RA, et al. NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions. Am J Physiol Endocrinol Metab. 2010;299:E794-801.PubMedPubMedCentralCrossRef Tantiwong P, Shanmugasundaram K, Monroy A, Ghosh S, Li M, DeFronzo RA, et al. NF-κB activity in muscle from obese and type 2 diabetic subjects under basal and exercise-stimulated conditions. Am J Physiol Endocrinol Metab. 2010;299:E794-801.PubMedPubMedCentralCrossRef
66.
go back to reference Raghavan S, Vassy JL, Ho Y, Song RJ, Gagnon DR, Cho K, et al. Diabetes mellitus-related all-cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc. 2019;8: e011295.PubMedPubMedCentralCrossRef Raghavan S, Vassy JL, Ho Y, Song RJ, Gagnon DR, Cho K, et al. Diabetes mellitus-related all-cause and cardiovascular mortality in a national cohort of adults. J Am Heart Assoc. 2019;8: e011295.PubMedPubMedCentralCrossRef
67.
go back to reference Ma C-X, Ma X-N, Guan C-H, Li Y-D, Mauricio D, Fu S-B. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc Diabetol. 2022;21:74.PubMedPubMedCentralCrossRef Ma C-X, Ma X-N, Guan C-H, Li Y-D, Mauricio D, Fu S-B. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc Diabetol. 2022;21:74.PubMedPubMedCentralCrossRef
68.
go back to reference Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17:83.PubMedPubMedCentralCrossRef Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol. 2018;17:83.PubMedPubMedCentralCrossRef
Metadata
Title
Characterizing the metabolic divide: distinctive metabolites differentiating CAD-T2DM from CAD patients
Authors
Yingjian Liu
Ju-e Liu
Huafeng He
Min Qin
Heping Lei
Jinxiu Meng
Chen Liu
Xiaoping Chen
Wenwei Luo
Shilong Zhong
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Cardiovascular Diabetology / Issue 1/2024
Electronic ISSN: 1475-2840
DOI
https://doi.org/10.1186/s12933-023-02102-0

Other articles of this Issue 1/2024

Cardiovascular Diabetology 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.