Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2023

Open Access 01-12-2023 | Aphasia | Research

The neural substrates of transdiagnostic cognitive-linguistic heterogeneity in primary progressive aphasia

Authors: Siddharth Ramanan, Ajay D. Halai, Lorna Garcia-Penton, Alistair G. Perry, Nikil Patel, Katie A. Peterson, Ruth U. Ingram, Ian Storey, Stefano F. Cappa, Eleonora Catricala, Karalyn Patterson, James B. Rowe, Peter Garrard, Matthew A. Lambon Ralph

Published in: Alzheimer's Research & Therapy | Issue 1/2023

Login to get access

Abstract

Background

Clinical variants of primary progressive aphasia (PPA) are diagnosed based on characteristic patterns of language deficits, supported by corresponding neural changes on brain imaging. However, there is (i) considerable phenotypic variability within and between each diagnostic category with partially overlapping profiles of language performance between variants and (ii) accompanying non-linguistic cognitive impairments that may be independent of aphasia magnitude and disease severity. The neurobiological basis of this cognitive-linguistic heterogeneity remains unclear. Understanding the relationship between these variables would improve PPA clinical/research characterisation and strengthen clinical trial and symptomatic treatment design. We address these knowledge gaps using a data-driven transdiagnostic approach to chart cognitive-linguistic differences and their associations with grey/white matter degeneration across multiple PPA variants.

Methods

Forty-seven patients (13 semantic, 15 non-fluent, and 19 logopenic variant PPA) underwent assessment of general cognition, errors on language performance, and structural and diffusion magnetic resonance imaging to index whole-brain grey and white matter changes. Behavioural data were entered into varimax-rotated principal component analyses to derive orthogonal dimensions explaining the majority of cognitive variance. To uncover neural correlates of cognitive heterogeneity, derived components were used as covariates in neuroimaging analyses of grey matter (voxel-based morphometry) and white matter (network-based statistics of structural connectomes).

Results

Four behavioural components emerged: general cognition, semantic memory, working memory, and motor speech/phonology. Performance patterns on the latter three principal components were in keeping with each variant’s characteristic profile, but with a spectrum rather than categorical distribution across the cohort. General cognitive changes were most marked in logopenic variant PPA. Regardless of clinical diagnosis, general cognitive impairment was associated with inferior/posterior parietal grey/white matter involvement, semantic memory deficits with bilateral anterior temporal grey/white matter changes, working memory impairment with temporoparietal and frontostriatal grey/white matter involvement, and motor speech/phonology deficits with inferior/middle frontal grey matter alterations.

Conclusions

Cognitive-linguistic heterogeneity in PPA closely relates to individual-level variations on multiple behavioural dimensions and grey/white matter degeneration of regions within and beyond the language network. We further show that employment of transdiagnostic approaches may help to understand clinical symptom boundaries and reveal clinical and neural profiles that are shared across categorically defined variants of PPA.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14.PubMedPubMedCentralCrossRef Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14.PubMedPubMedCentralCrossRef
3.
go back to reference Hodges JR, Patterson K. Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol. 2007;6(11):1004–14.PubMedCrossRef Hodges JR, Patterson K. Semantic dementia: a unique clinicopathological syndrome. Lancet Neurol. 2007;6(11):1004–14.PubMedCrossRef
4.
go back to reference Snowden J, Goulding PJ, David N. Semantic dementia: a form of circumscribed cerebral atrophy. Behav Neurol. 1989;2(3):167–82.CrossRef Snowden J, Goulding PJ, David N. Semantic dementia: a form of circumscribed cerebral atrophy. Behav Neurol. 1989;2(3):167–82.CrossRef
6.
go back to reference Gorno-Tempini ML, Brambati SM, Ginex V, Ogar J, Dronkers NF, Marcone A, et al. The logopenic/phonological variant of primary progressive aphasia. Neurology. 2008;71(16):1227–34.PubMedPubMedCentralCrossRef Gorno-Tempini ML, Brambati SM, Ginex V, Ogar J, Dronkers NF, Marcone A, et al. The logopenic/phonological variant of primary progressive aphasia. Neurology. 2008;71(16):1227–34.PubMedPubMedCentralCrossRef
7.
go back to reference Ingram RU, Halai AD, Pobric G, Sajjadi S, Patterson K, Lambon Ralph MA. Graded, multidimensional intra- and intergroup variations in primary progressive aphasia and post-stroke aphasia. Brain. 2020;143(10):3121–35.PubMedPubMedCentralCrossRef Ingram RU, Halai AD, Pobric G, Sajjadi S, Patterson K, Lambon Ralph MA. Graded, multidimensional intra- and intergroup variations in primary progressive aphasia and post-stroke aphasia. Brain. 2020;143(10):3121–35.PubMedPubMedCentralCrossRef
8.
go back to reference Sajjadi SA, Patterson K, Arnold RJ, Watson PC, Nestor PJ. Primary progressive aphasia: a tale of two syndromes and the rest. Neurology. 2012;78(21):1670–7.PubMedPubMedCentralCrossRef Sajjadi SA, Patterson K, Arnold RJ, Watson PC, Nestor PJ. Primary progressive aphasia: a tale of two syndromes and the rest. Neurology. 2012;78(21):1670–7.PubMedPubMedCentralCrossRef
9.
go back to reference Watanabe H, Hikida S, Ikeda M, Mori E. Unclassified fluent variants of primary progressive aphasia: distinction from semantic and logopenic variants. Brain Commun. 2022;4(3):fcac015.PubMedPubMedCentralCrossRef Watanabe H, Hikida S, Ikeda M, Mori E. Unclassified fluent variants of primary progressive aphasia: distinction from semantic and logopenic variants. Brain Commun. 2022;4(3):fcac015.PubMedPubMedCentralCrossRef
10.
go back to reference Harris JM, Saxon JA, Jones M, Snowden JS, Thompson JC. Neuropsychological differentiation of progressive aphasic disorders. J Neuropsychol. 2019;13(2):214–39.PubMedCrossRef Harris JM, Saxon JA, Jones M, Snowden JS, Thompson JC. Neuropsychological differentiation of progressive aphasic disorders. J Neuropsychol. 2019;13(2):214–39.PubMedCrossRef
11.
go back to reference Mesulam MM, Wieneke C, Thompson C, Rogalski E, Weintraub S. Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain. 2012;135(Pt 5):1537–53.PubMedPubMedCentralCrossRef Mesulam MM, Wieneke C, Thompson C, Rogalski E, Weintraub S. Quantitative classification of primary progressive aphasia at early and mild impairment stages. Brain. 2012;135(Pt 5):1537–53.PubMedPubMedCentralCrossRef
12.
go back to reference Wilson SM, Henry ML, Besbris M, Ogar JM, Dronkers NF, Jarrold W, et al. Connected speech production in three variants of primary progressive aphasia. Brain. 2010;133(Pt 7):2069–88.PubMedPubMedCentralCrossRef Wilson SM, Henry ML, Besbris M, Ogar JM, Dronkers NF, Jarrold W, et al. Connected speech production in three variants of primary progressive aphasia. Brain. 2010;133(Pt 7):2069–88.PubMedPubMedCentralCrossRef
13.
go back to reference Vonk JM, Jonkers R, Hubbard HI, Gorno-Tempini ML, Brickman AM, Obler LK. Semantic and lexical features of words dissimilarly affected by non-fluent, logopenic, and semantic primary progressive aphasia. J Int Neuropsychol Soc. 2019;25(10):1011–22.PubMedPubMedCentralCrossRef Vonk JM, Jonkers R, Hubbard HI, Gorno-Tempini ML, Brickman AM, Obler LK. Semantic and lexical features of words dissimilarly affected by non-fluent, logopenic, and semantic primary progressive aphasia. J Int Neuropsychol Soc. 2019;25(10):1011–22.PubMedPubMedCentralCrossRef
14.
go back to reference Dalton SGH, Shultz C, Henry ML, Hillis AE, Richardson JD. Describing phonological paraphasias in three variants of primary progressive aphasia. Am J Speech Lang Pathol. 2018;27(1S):336–49.PubMedPubMedCentralCrossRef Dalton SGH, Shultz C, Henry ML, Hillis AE, Richardson JD. Describing phonological paraphasias in three variants of primary progressive aphasia. Am J Speech Lang Pathol. 2018;27(1S):336–49.PubMedPubMedCentralCrossRef
15.
go back to reference Leyton CE, Savage S, Irish M, Schubert S, Piguet O, Ballard KJ, et al. Verbal repetition in primary progressive aphasia and Alzheimer’s disease. J Alzheimers Dis. 2014;41(2):575–85.PubMedCrossRef Leyton CE, Savage S, Irish M, Schubert S, Piguet O, Ballard KJ, et al. Verbal repetition in primary progressive aphasia and Alzheimer’s disease. J Alzheimers Dis. 2014;41(2):575–85.PubMedCrossRef
16.
go back to reference Croot K, Ballard K, Leyton CE, Hodges JR. Apraxia of speech and phonological errors in the diagnosis of nonfluent/agrammatic and logopenic variants of primary progressive aphasia. J Speech Lang Hear Res. 2012;55(5):S1562–72.PubMedCrossRef Croot K, Ballard K, Leyton CE, Hodges JR. Apraxia of speech and phonological errors in the diagnosis of nonfluent/agrammatic and logopenic variants of primary progressive aphasia. J Speech Lang Hear Res. 2012;55(5):S1562–72.PubMedCrossRef
17.
go back to reference Sajjadi SA, Patterson K, Tomek M, Nestor PJ. Abnormalities of connected speech in the non-semantic variants of primary progressive aphasia. Aphasiology. 2012;26(10):1219–37.CrossRef Sajjadi SA, Patterson K, Tomek M, Nestor PJ. Abnormalities of connected speech in the non-semantic variants of primary progressive aphasia. Aphasiology. 2012;26(10):1219–37.CrossRef
18.
go back to reference Knibb JA, Woollams AM, Hodges JR, Patterson K. Making sense of progressive non-fluent aphasia: an analysis of conversational speech. Brain. 2009;132(Pt 10):2734–46.PubMedPubMedCentralCrossRef Knibb JA, Woollams AM, Hodges JR, Patterson K. Making sense of progressive non-fluent aphasia: an analysis of conversational speech. Brain. 2009;132(Pt 10):2734–46.PubMedPubMedCentralCrossRef
19.
go back to reference Migliaccio R, Boutet C, Valabregue R, Ferrieux S, Nogues M, Lehéricy S, et al. The brain network of naming: a lesson from primary progressive aphasia. PLoS ONE. 2016;11(2):e0148707.PubMedPubMedCentralCrossRef Migliaccio R, Boutet C, Valabregue R, Ferrieux S, Nogues M, Lehéricy S, et al. The brain network of naming: a lesson from primary progressive aphasia. PLoS ONE. 2016;11(2):e0148707.PubMedPubMedCentralCrossRef
20.
go back to reference Ramanan S, Roquet D, Goldberg ZL, Hodges JR, Piguet O, Irish M, et al. Establishing two principal dimensions of cognitive variation in logopenic progressive aphasia. Brain communications. 2020;2(2):fcaa125.PubMedPubMedCentralCrossRef Ramanan S, Roquet D, Goldberg ZL, Hodges JR, Piguet O, Irish M, et al. Establishing two principal dimensions of cognitive variation in logopenic progressive aphasia. Brain communications. 2020;2(2):fcaa125.PubMedPubMedCentralCrossRef
21.
go back to reference Catricalà E, Santi GC, Polito C, Conca F, Esposito V, Caminiti SP, et al. Comprehensive qualitative characterization of linguistic performance profiles in primary progressive aphasia: a multivariate study with FDG-PET. Neurobiol Aging. 2022;120:137–48.PubMedCrossRef Catricalà E, Santi GC, Polito C, Conca F, Esposito V, Caminiti SP, et al. Comprehensive qualitative characterization of linguistic performance profiles in primary progressive aphasia: a multivariate study with FDG-PET. Neurobiol Aging. 2022;120:137–48.PubMedCrossRef
22.
go back to reference Enderby P, Crow E. Frenchay Aphasia Screening Test: validity and comparability. Disabil Rehabil. 1996;18(5):238–40.PubMedCrossRef Enderby P, Crow E. Frenchay Aphasia Screening Test: validity and comparability. Disabil Rehabil. 1996;18(5):238–40.PubMedCrossRef
23.
go back to reference Swinburn K, Porter G, Howard D. Comprehensive aphasia test. 2004. Swinburn K, Porter G, Howard D. Comprehensive aphasia test. 2004.
24.
go back to reference Azuar C, Leger A, Arbizu C, Henry-Amar F, Chomel-Guillaume S, Samson Y. The Aphasia Rapid Test: an NIHSS-like aphasia test. J Neurol. 2013;260(8):2110–7.PubMedPubMedCentralCrossRef Azuar C, Leger A, Arbizu C, Henry-Amar F, Chomel-Guillaume S, Samson Y. The Aphasia Rapid Test: an NIHSS-like aphasia test. J Neurol. 2013;260(8):2110–7.PubMedPubMedCentralCrossRef
25.
go back to reference Clark HM, Utianski RL, Duffy JR, Strand EA, Botha H, Josephs KA, et al. Western aphasia battery-revised profiles in primary progressive aphasia and primary progressive apraxia of speech. Am J Speech Lang Pathol. 2020;29(1S):498–510.PubMedCrossRef Clark HM, Utianski RL, Duffy JR, Strand EA, Botha H, Josephs KA, et al. Western aphasia battery-revised profiles in primary progressive aphasia and primary progressive apraxia of speech. Am J Speech Lang Pathol. 2020;29(1S):498–510.PubMedCrossRef
26.
go back to reference Rogalski E, Cobia D, Harrison TM, Wieneke C, Weintraub S, Mesulam MM. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology. 2011;76(21):1804–10.PubMedPubMedCentralCrossRef Rogalski E, Cobia D, Harrison TM, Wieneke C, Weintraub S, Mesulam MM. Progression of language decline and cortical atrophy in subtypes of primary progressive aphasia. Neurology. 2011;76(21):1804–10.PubMedPubMedCentralCrossRef
27.
go back to reference Mesulam MM. Slowly progressive aphasia without generalized dementia. Ann Neurol. 1982;11(6):592–8.PubMedCrossRef Mesulam MM. Slowly progressive aphasia without generalized dementia. Ann Neurol. 1982;11(6):592–8.PubMedCrossRef
28.
go back to reference Ulugut H, Stek S, Wagemans LE, Jutten RJ, Keulen MA, Bouwman FH, et al. The natural history of primary progressive aphasia: beyond aphasia. J Neurol. 2022;269(3):1375–85.PubMedCrossRef Ulugut H, Stek S, Wagemans LE, Jutten RJ, Keulen MA, Bouwman FH, et al. The natural history of primary progressive aphasia: beyond aphasia. J Neurol. 2022;269(3):1375–85.PubMedCrossRef
29.
go back to reference Bozeat S, Lambon Ralph MA, Patterson K, Garrard P, Hodges JR. Non-verbal semantic impairment in semantic dementia. Neuropsychologia. 2000;38(9):1207–15.PubMedCrossRef Bozeat S, Lambon Ralph MA, Patterson K, Garrard P, Hodges JR. Non-verbal semantic impairment in semantic dementia. Neuropsychologia. 2000;38(9):1207–15.PubMedCrossRef
30.
go back to reference Macoir J, Lavoie M, Laforce R Jr, Brambati SM, Wilson MA. Dysexecutive symptoms in primary progressive aphasia: beyond diagnostic criteria. J Geriatr Psychiatry Neurol. 2017;30(3):151–61.PubMedCrossRef Macoir J, Lavoie M, Laforce R Jr, Brambati SM, Wilson MA. Dysexecutive symptoms in primary progressive aphasia: beyond diagnostic criteria. J Geriatr Psychiatry Neurol. 2017;30(3):151–61.PubMedCrossRef
31.
go back to reference Ramanan S, Marstaller L, Hodges JR, Piguet O, Irish M. Understanding the neural basis of episodic amnesia in logopenic progressive aphasia: a multimodal neuroimaging study. Cortex. 2020;125:272–87.PubMedCrossRef Ramanan S, Marstaller L, Hodges JR, Piguet O, Irish M. Understanding the neural basis of episodic amnesia in logopenic progressive aphasia: a multimodal neuroimaging study. Cortex. 2020;125:272–87.PubMedCrossRef
32.
go back to reference Watson CL, Possin K, Allen IE, Hubbard HI, Meyer M, Welch AE, et al. Visuospatial functioning in the primary progressive aphasias. J Int Neuropsychol Soc. 2018;24(3):259–68.PubMedCrossRef Watson CL, Possin K, Allen IE, Hubbard HI, Meyer M, Welch AE, et al. Visuospatial functioning in the primary progressive aphasias. J Int Neuropsychol Soc. 2018;24(3):259–68.PubMedCrossRef
33.
go back to reference Kamath V, Sutherland ER, Chaney G-A. A meta-analysis of neuropsychological functioning in the logopenic variant of primary progressive aphasia: comparison with the semantic and non-fluent variants. J Int Neuropsychol Soc. 2020;26(3):322–30.PubMedCrossRef Kamath V, Sutherland ER, Chaney G-A. A meta-analysis of neuropsychological functioning in the logopenic variant of primary progressive aphasia: comparison with the semantic and non-fluent variants. J Int Neuropsychol Soc. 2020;26(3):322–30.PubMedCrossRef
34.
go back to reference Ramanan S, Flanagan E, Leyton CE, Villemagne VL, Rowe CC, Hodges JR, et al. Non-verbal episodic memory deficits in primary progressive aphasias are highly predictive of underlying amyloid pathology. J Alzheimer’s Dis. 2016;51(2):367–76.CrossRef Ramanan S, Flanagan E, Leyton CE, Villemagne VL, Rowe CC, Hodges JR, et al. Non-verbal episodic memory deficits in primary progressive aphasias are highly predictive of underlying amyloid pathology. J Alzheimer’s Dis. 2016;51(2):367–76.CrossRef
35.
go back to reference Ramanan S, Foxe D, El-Omar H, Ahmed RM, Hodges JR, Piguet O, et al. Evidence for a pervasive autobiographical memory impairment in Logopenic Progressive Aphasia. Neurobiol Aging. 2021;108:168–78.PubMedCrossRef Ramanan S, Foxe D, El-Omar H, Ahmed RM, Hodges JR, Piguet O, et al. Evidence for a pervasive autobiographical memory impairment in Logopenic Progressive Aphasia. Neurobiol Aging. 2021;108:168–78.PubMedCrossRef
36.
go back to reference Foxe D, Leyton CE, Hodges JR, Burrell JR, Irish M, Piguet O. The neural correlates of auditory and visuospatial span in logopenic progressive aphasia and Alzheimer’s disease. Cortex. 2016;83:39–50.PubMedCrossRef Foxe D, Leyton CE, Hodges JR, Burrell JR, Irish M, Piguet O. The neural correlates of auditory and visuospatial span in logopenic progressive aphasia and Alzheimer’s disease. Cortex. 2016;83:39–50.PubMedCrossRef
37.
go back to reference Conca F, Esposito V, Giusto G, Cappa SF, Catricala E. Characterization of the logopenic variant of Primary Progressive Aphasia: a systematic review and meta-analysis. Ageing Res Rev. 2022;82:101760.PubMedCrossRef Conca F, Esposito V, Giusto G, Cappa SF, Catricala E. Characterization of the logopenic variant of Primary Progressive Aphasia: a systematic review and meta-analysis. Ageing Res Rev. 2022;82:101760.PubMedCrossRef
38.
go back to reference Ramanan S, Irish M, Patterson K, Rowe JB, Gorno-Tempini ML, Lambon Ralph MA. Understanding the multidimensional cognitive deficits of logopenic variant primary progressive aphasia. Brain. 2022. Ramanan S, Irish M, Patterson K, Rowe JB, Gorno-Tempini ML, Lambon Ralph MA. Understanding the multidimensional cognitive deficits of logopenic variant primary progressive aphasia. Brain. 2022.
39.
go back to reference Owens TE, Machulda MM, Duffy JR, Strand EA, Clark HM, Boland S, et al. Patterns of Neuropsychological dysfunction and cortical volume changes in Logopenic Aphasia. J Alzheimers Dis. 2018;66(3):1015–25.PubMedPubMedCentralCrossRef Owens TE, Machulda MM, Duffy JR, Strand EA, Clark HM, Boland S, et al. Patterns of Neuropsychological dysfunction and cortical volume changes in Logopenic Aphasia. J Alzheimers Dis. 2018;66(3):1015–25.PubMedPubMedCentralCrossRef
40.
go back to reference Brown JA, Deng J, Neuhaus J, Sible IJ, Sias AC, Lee SE, et al. Patient-tailored, connectivity-based forecasts of spreading brain atrophy. Neuron. 2019;104(5):856-68 e5.PubMedPubMedCentralCrossRef Brown JA, Deng J, Neuhaus J, Sible IJ, Sias AC, Lee SE, et al. Patient-tailored, connectivity-based forecasts of spreading brain atrophy. Neuron. 2019;104(5):856-68 e5.PubMedPubMedCentralCrossRef
41.
go back to reference Mandelli ML, Vilaplana E, Brown JA, Hubbard HI, Binney RJ, Attygalle S, et al. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia. Brain. 2016;139(Pt 10):2778–91.PubMedPubMedCentralCrossRef Mandelli ML, Vilaplana E, Brown JA, Hubbard HI, Binney RJ, Attygalle S, et al. Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia. Brain. 2016;139(Pt 10):2778–91.PubMedPubMedCentralCrossRef
42.
go back to reference Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62(1):42–52.PubMedPubMedCentralCrossRef Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. Neurodegenerative diseases target large-scale human brain networks. Neuron. 2009;62(1):42–52.PubMedPubMedCentralCrossRef
43.
go back to reference Collins JA, Montal V, Hochberg D, Quimby M, Mandelli ML, Makris N, et al. Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia. Brain. 2017;140(2):457–71.PubMedCrossRef Collins JA, Montal V, Hochberg D, Quimby M, Mandelli ML, Makris N, et al. Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia. Brain. 2017;140(2):457–71.PubMedCrossRef
44.
go back to reference Bonakdarpour B, Hurley RS, Wang AR, Fereira HR, Basu A, Chatrathi A, et al. Perturbations of language network connectivity in primary progressive aphasia. Cortex. 2019;121:468–80.PubMedPubMedCentralCrossRef Bonakdarpour B, Hurley RS, Wang AR, Fereira HR, Basu A, Chatrathi A, et al. Perturbations of language network connectivity in primary progressive aphasia. Cortex. 2019;121:468–80.PubMedPubMedCentralCrossRef
45.
go back to reference Mesulam MM, Rogalski EJ, Wieneke C, Hurley RS, Geula C, Bigio EH, et al. Primary progressive aphasia and the evolving neurology of the language network. Nat Rev Neurol. 2014;10(10):554–69.PubMedPubMedCentralCrossRef Mesulam MM, Rogalski EJ, Wieneke C, Hurley RS, Geula C, Bigio EH, et al. Primary progressive aphasia and the evolving neurology of the language network. Nat Rev Neurol. 2014;10(10):554–69.PubMedPubMedCentralCrossRef
46.
go back to reference Schwindt GC, Graham NL, Rochon E, Tang-Wai DF, Lobaugh NJ, Chow TW, et al. Whole-brain white matter disruption in semantic and nonfluent variants of primary progressive aphasia. Hum Brain Mapp. 2013;34(4):973–84.PubMedCrossRef Schwindt GC, Graham NL, Rochon E, Tang-Wai DF, Lobaugh NJ, Chow TW, et al. Whole-brain white matter disruption in semantic and nonfluent variants of primary progressive aphasia. Hum Brain Mapp. 2013;34(4):973–84.PubMedCrossRef
47.
go back to reference Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, et al. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011;134(10):3011–29.PubMedPubMedCentralCrossRef Galantucci S, Tartaglia MC, Wilson SM, Henry ML, Filippi M, Agosta F, et al. White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain. 2011;134(10):3011–29.PubMedPubMedCentralCrossRef
48.
go back to reference Agosta F, Ferraro PM, Canu E, Copetti M, Galantucci S, Magnani G, et al. Differentiation between subtypes of primary progressive aphasia by using cortical thickness and diffusion-tensor MR imaging measures. Radiology. 2015;276(1):219–27.PubMedCrossRef Agosta F, Ferraro PM, Canu E, Copetti M, Galantucci S, Magnani G, et al. Differentiation between subtypes of primary progressive aphasia by using cortical thickness and diffusion-tensor MR imaging measures. Radiology. 2015;276(1):219–27.PubMedCrossRef
49.
go back to reference Acosta-Cabronero J, Patterson K, Fryer TD, Hodges JR, Pengas G, Williams GB, et al. Atrophy, hypometabolism and white matter abnormalities in semantic dementia tell a coherent story. Brain. 2011;134(Pt 7):2025–35.PubMedCrossRef Acosta-Cabronero J, Patterson K, Fryer TD, Hodges JR, Pengas G, Williams GB, et al. Atrophy, hypometabolism and white matter abnormalities in semantic dementia tell a coherent story. Brain. 2011;134(Pt 7):2025–35.PubMedCrossRef
50.
go back to reference Mahoney CJ, Malone IB, Ridgway GR, Buckley AH, Downey LE, Golden HL, et al. White matter tract signatures of the progressive aphasias. Neurobiol Aging. 2013;34(6):1687–99.PubMedPubMedCentralCrossRef Mahoney CJ, Malone IB, Ridgway GR, Buckley AH, Downey LE, Golden HL, et al. White matter tract signatures of the progressive aphasias. Neurobiol Aging. 2013;34(6):1687–99.PubMedPubMedCentralCrossRef
51.
go back to reference Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C, et al. A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain. 2013;136(Pt 8):2619–28.PubMedPubMedCentralCrossRef Catani M, Mesulam MM, Jakobsen E, Malik F, Martersteck A, Wieneke C, et al. A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain. 2013;136(Pt 8):2619–28.PubMedPubMedCentralCrossRef
52.
go back to reference Powers JP, McMillan CT, Brun CC, Yushkevich PA, Zhang H, Gee JC, et al. White matter disease correlates with lexical retrieval deficits in primary progressive aphasia. Front Neurol. 2013;4:212.PubMedPubMedCentralCrossRef Powers JP, McMillan CT, Brun CC, Yushkevich PA, Zhang H, Gee JC, et al. White matter disease correlates with lexical retrieval deficits in primary progressive aphasia. Front Neurol. 2013;4:212.PubMedPubMedCentralCrossRef
53.
go back to reference Luo C, Makaretz S, Stepanovic M, Papadimitriou G, Quimby M, Palanivelu S, et al. Middle longitudinal fascicle is associated with semantic processing deficits in primary progressive aphasia. Neuroimage Clin. 2020;25:102115.PubMedCrossRef Luo C, Makaretz S, Stepanovic M, Papadimitriou G, Quimby M, Palanivelu S, et al. Middle longitudinal fascicle is associated with semantic processing deficits in primary progressive aphasia. Neuroimage Clin. 2020;25:102115.PubMedCrossRef
54.
go back to reference D’Anna L, Mesulam MM, de ThiebautSchotten M, Dell’Acqua F, Murphy D, Wieneke C, et al. Frontotemporal networks and behavioral symptoms in primary progressive aphasia. Neurology. 2016;86(15):1393–9.PubMedPubMedCentralCrossRef D’Anna L, Mesulam MM, de ThiebautSchotten M, Dell’Acqua F, Murphy D, Wieneke C, et al. Frontotemporal networks and behavioral symptoms in primary progressive aphasia. Neurology. 2016;86(15):1393–9.PubMedPubMedCentralCrossRef
55.
go back to reference Agosta F, Galantucci S, Canu E, Cappa SF, Magnani G, Franceschi M, et al. Disruption of structural connectivity along the dorsal and ventral language pathways in patients with nonfluent and semantic variant primary progressive aphasia: a DT MRI study and a literature review. Brain Lang. 2013;127(2):157–66.PubMedCrossRef Agosta F, Galantucci S, Canu E, Cappa SF, Magnani G, Franceschi M, et al. Disruption of structural connectivity along the dorsal and ventral language pathways in patients with nonfluent and semantic variant primary progressive aphasia: a DT MRI study and a literature review. Brain Lang. 2013;127(2):157–66.PubMedCrossRef
56.
go back to reference Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34(11):2747–66.PubMedCrossRef Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging. Hum Brain Mapp. 2013;34(11):2747–66.PubMedCrossRef
57.
go back to reference Dell’Acqua F, Tournier JD. Modelling white matter with spherical deconvolution: how and why? NMR Biomed. 2019;32(4):e3945.PubMedCrossRef Dell’Acqua F, Tournier JD. Modelling white matter with spherical deconvolution: how and why? NMR Biomed. 2019;32(4):e3945.PubMedCrossRef
58.
go back to reference Patel N, Peterson KA, Ingram RU, Storey I, Cappa SF, Catricala E, et al. A “Mini Linguistic State Examination” to classify primary progressive aphasia. Brain Commun. 2022;4(2):fcab299.PubMedCrossRef Patel N, Peterson KA, Ingram RU, Storey I, Cappa SF, Catricala E, et al. A “Mini Linguistic State Examination” to classify primary progressive aphasia. Brain Commun. 2022;4(2):fcab299.PubMedCrossRef
59.
go back to reference Peterson KA, Jones PS, Patel N, Tsvetanov KA, Ingram R, Cappa SF, et al. Language disorder in progressive supranuclear palsy and corticobasal syndrome: neural correlates and detection by the MLSE screening tool. Front Aging Neurosci. 2021;13:675739.PubMedPubMedCentralCrossRef Peterson KA, Jones PS, Patel N, Tsvetanov KA, Ingram R, Cappa SF, et al. Language disorder in progressive supranuclear palsy and corticobasal syndrome: neural correlates and detection by the MLSE screening tool. Front Aging Neurosci. 2021;13:675739.PubMedPubMedCentralCrossRef
60.
go back to reference Matias-Guiu JA, Pytel V, Hernandez-Lorenzo L, Patel N, Peterson KA, Matias-Guiu J, et al. Spanish version of the mini-linguistic state examination for the diagnosis of primary progressive aphasia. J Alzheimers Dis. 2021;83(2):771–8.PubMedCrossRef Matias-Guiu JA, Pytel V, Hernandez-Lorenzo L, Patel N, Peterson KA, Matias-Guiu J, et al. Spanish version of the mini-linguistic state examination for the diagnosis of primary progressive aphasia. J Alzheimers Dis. 2021;83(2):771–8.PubMedCrossRef
61.
go back to reference Catricalà E, Polito C, Presotto L, Esposito V, Sala A, Conca F, et al. Neural correlates of naming errors across different neurodegenerative diseases: An FDG-PET study. Neurology. 2020;95(20):e2816–30.PubMedCrossRef Catricalà E, Polito C, Presotto L, Esposito V, Sala A, Conca F, et al. Neural correlates of naming errors across different neurodegenerative diseases: An FDG-PET study. Neurology. 2020;95(20):e2816–30.PubMedCrossRef
62.
go back to reference Bruffaerts R, Schaeverbeke J, De Weer A-S, Nelissen N, Dries E, Van Bouwel K, et al. Multivariate analysis reveals anatomical correlates of naming errors in primary progressive aphasia. Neurobiol Aging. 2020;88:71–82.PubMedCrossRef Bruffaerts R, Schaeverbeke J, De Weer A-S, Nelissen N, Dries E, Van Bouwel K, et al. Multivariate analysis reveals anatomical correlates of naming errors in primary progressive aphasia. Neurobiol Aging. 2020;88:71–82.PubMedCrossRef
63.
go back to reference Budd MA, Kortte K, Cloutman L, Newhart M, Gottesman RF, Davis C, et al. The nature of naming errors in primary progressive aphasia versus acute post-stroke aphasia. Neuropsychology. 2010;24(5):581.PubMedPubMedCentralCrossRef Budd MA, Kortte K, Cloutman L, Newhart M, Gottesman RF, Davis C, et al. The nature of naming errors in primary progressive aphasia versus acute post-stroke aphasia. Neuropsychology. 2010;24(5):581.PubMedPubMedCentralCrossRef
64.
go back to reference Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR. Validation of the Addenbrooke’s Cognitive Examination III in frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord. 2013;36(3–4):242–50.PubMedCrossRef Hsieh S, Schubert S, Hoon C, Mioshi E, Hodges JR. Validation of the Addenbrooke’s Cognitive Examination III in frontotemporal dementia and Alzheimer’s disease. Dement Geriatr Cogn Disord. 2013;36(3–4):242–50.PubMedCrossRef
65.
go back to reference Leyton CE, Hornberger M, Mioshi E, Hodges JR. Application of Addenbrooke’s cognitive examination to diagnosis and monitoring of progressive primary aphasia. Dement Geriatr Cogn Disord. 2010;29(6):504–9.PubMedCrossRef Leyton CE, Hornberger M, Mioshi E, Hodges JR. Application of Addenbrooke’s cognitive examination to diagnosis and monitoring of progressive primary aphasia. Dement Geriatr Cogn Disord. 2010;29(6):504–9.PubMedCrossRef
66.
go back to reference Schilling K, Janve V, Gao Y, Stepniewska I, Landman BA, Anderson AW. Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI. Neuroimage. 2016;129:185–97.PubMedCrossRef Schilling K, Janve V, Gao Y, Stepniewska I, Landman BA, Anderson AW. Comparison of 3D orientation distribution functions measured with confocal microscopy and diffusion MRI. Neuroimage. 2016;129:185–97.PubMedCrossRef
67.
go back to reference Dhollander T, Clemente A, Singh M, Boonstra F, Civier O, Duque JD, et al. Fixel-based analysis of diffusion MRI: methods, applications, challenges and opportunities. Neuroimage. 2021;241:118417.PubMedCrossRef Dhollander T, Clemente A, Singh M, Boonstra F, Civier O, Duque JD, et al. Fixel-based analysis of diffusion MRI: methods, applications, challenges and opportunities. Neuroimage. 2021;241:118417.PubMedCrossRef
68.
go back to reference Savard M, Pascoal TA, Servaes S, Dhollander T, Iturria-Medina Y, Kang MS, et al. Impact of long-and short-range fibre depletion on the cognitive deficits of fronto-temporal dementia. Elife. 2022;11. Savard M, Pascoal TA, Servaes S, Dhollander T, Iturria-Medina Y, Kang MS, et al. Impact of long-and short-range fibre depletion on the cognitive deficits of fronto-temporal dementia. Elife. 2022;11.
69.
go back to reference Mito R, Raffelt D, Dhollander T, Vaughan DN, Tournier J-D, Salvado O, et al. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain. 2018;141(3):888–902.PubMedCrossRef Mito R, Raffelt D, Dhollander T, Vaughan DN, Tournier J-D, Salvado O, et al. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain. 2018;141(3):888–902.PubMedCrossRef
70.
go back to reference Murley AG, Coyle-Gilchrist I, Rouse MA, Jones PS, Li W, Wiggins J, et al. Redefining the multidimensional clinical phenotypes of frontotemporal lobar degeneration syndromes. Brain. 2020;143(5):1555–71.PubMedPubMedCentralCrossRef Murley AG, Coyle-Gilchrist I, Rouse MA, Jones PS, Li W, Wiggins J, et al. Redefining the multidimensional clinical phenotypes of frontotemporal lobar degeneration syndromes. Brain. 2020;143(5):1555–71.PubMedPubMedCentralCrossRef
71.
go back to reference Ramanan S, El-Omar H, Roquet D, Ahmed RM, Hodges JR, Piguet O, et al. Mapping behavioural, cognitive and affective transdiagnostic dimensions in frontotemporal dementia. Brain Commun. 2023;5(1):fcac344.PubMedPubMedCentralCrossRef Ramanan S, El-Omar H, Roquet D, Ahmed RM, Hodges JR, Piguet O, et al. Mapping behavioural, cognitive and affective transdiagnostic dimensions in frontotemporal dementia. Brain Commun. 2023;5(1):fcac344.PubMedPubMedCentralCrossRef
72.
go back to reference Fan JM, Gorno-Tempini ML, Dronkers NF, Miller BL, Berger MS, Chang EF. Data-Driven, Visual framework for the characterization of aphasias across stroke, post-resective, and neurodegenerative disorders over time. Front Neurol. 2020;11:616764.PubMedPubMedCentralCrossRef Fan JM, Gorno-Tempini ML, Dronkers NF, Miller BL, Berger MS, Chang EF. Data-Driven, Visual framework for the characterization of aphasias across stroke, post-resective, and neurodegenerative disorders over time. Front Neurol. 2020;11:616764.PubMedPubMedCentralCrossRef
73.
go back to reference Butler RA, Lambon Ralph MA, Woollams AM. Capturing multidimensionality in stroke aphasia: mapping principal behavioural components to neural structures. Brain. 2014;137(Pt 12):3248–66.PubMedPubMedCentralCrossRef Butler RA, Lambon Ralph MA, Woollams AM. Capturing multidimensionality in stroke aphasia: mapping principal behavioural components to neural structures. Brain. 2014;137(Pt 12):3248–66.PubMedPubMedCentralCrossRef
74.
go back to reference Cornblath EJ, Robinson JL, Irwin DJ, Lee EB, Lee VM, Trojanowski JQ, et al. Defining and predicting transdiagnostic categories of neurodegenerative disease. Nat Biomed Eng. 2020;4(8):787–800.PubMedPubMedCentralCrossRef Cornblath EJ, Robinson JL, Irwin DJ, Lee EB, Lee VM, Trojanowski JQ, et al. Defining and predicting transdiagnostic categories of neurodegenerative disease. Nat Biomed Eng. 2020;4(8):787–800.PubMedPubMedCentralCrossRef
75.
go back to reference Ding J, Chen K, Liu H, Huang L, Chen Y, Lv Y, et al. A unified neurocognitive model of semantics language social behaviour and face recognition in semantic dementia. Nat Commun. 2020;11(1):2595.PubMedPubMedCentralCrossRef Ding J, Chen K, Liu H, Huang L, Chen Y, Lv Y, et al. A unified neurocognitive model of semantics language social behaviour and face recognition in semantic dementia. Nat Commun. 2020;11(1):2595.PubMedPubMedCentralCrossRef
76.
go back to reference Verdi S, Marquand AF, Schott JM, Cole JH. Beyond the average patient: how neuroimaging models can address heterogeneity in dementia. Brain. 2021;144(10):2946–53.PubMedPubMedCentralCrossRef Verdi S, Marquand AF, Schott JM, Cole JH. Beyond the average patient: how neuroimaging models can address heterogeneity in dementia. Brain. 2021;144(10):2946–53.PubMedPubMedCentralCrossRef
77.
78.
go back to reference Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137.PubMedCrossRef Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, et al. MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137.PubMedCrossRef
79.
go back to reference Avants BB, Tustison N, Song G. Advanced normalization tools (ANTS). Insight j. 2009;2(365):1–35. Avants BB, Tustison N, Song G. Advanced normalization tools (ANTS). Insight j. 2009;2(365):1–35.
80.
go back to reference Schilling KG, Blaber J, Hansen C, Cai L, Rogers B, Anderson AW, et al. Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps. PLoS ONE. 2020;15(7):e0236418.PubMedPubMedCentralCrossRef Schilling KG, Blaber J, Hansen C, Cai L, Rogers B, Anderson AW, et al. Distortion correction of diffusion weighted MRI without reverse phase-encoding scans or field-maps. PLoS ONE. 2020;15(7):e0236418.PubMedPubMedCentralCrossRef
82.
go back to reference Cordero-Grande L, Christiaens D, Hutter J, Price AN, Hajnal JV. Complex diffusion-weighted image estimation via matrix recovery under general noise models. Neuroimage. 2019;200:391–404.PubMedCrossRef Cordero-Grande L, Christiaens D, Hutter J, Price AN, Hajnal JV. Complex diffusion-weighted image estimation via matrix recovery under general noise models. Neuroimage. 2019;200:391–404.PubMedCrossRef
83.
go back to reference Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med. 2016;76(5):1574–81.PubMedCrossRef Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn Reson Med. 2016;76(5):1574–81.PubMedCrossRef
84.
go back to reference Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage. 2016;141:556–72.PubMedCrossRef Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage. 2016;141:556–72.PubMedCrossRef
85.
go back to reference Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–78.PubMedCrossRef Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–78.PubMedCrossRef
86.
go back to reference Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310–20.PubMedPubMedCentralCrossRef Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging. 2010;29(6):1310–20.PubMedPubMedCentralCrossRef
87.
go back to reference Dhollander T, Raffelt D, Connelly A. Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. ISMRM Workshop on Breaking the Barriers of Diffusion MRI. 2016. Dhollander T, Raffelt D, Connelly A. Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. ISMRM Workshop on Breaking the Barriers of Diffusion MRI. 2016.
88.
go back to reference Dhollander T, Connelly A. A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+b=0) diffusion MRI data. ISMRM 24th Annual Meeting & Exhibition. 2016. Dhollander T, Connelly A. A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+b=0) diffusion MRI data. ISMRM 24th Annual Meeting & Exhibition. 2016.
89.
go back to reference Dhollander T, Tabbara R, Rosnarho-Tornstrand J, Tournier JD, Raffelt D, Connelly A. Multi-tissue log-domain intensity and inhomogeneity normalisation for quantitative apparent fibre density. ISMRM. 2021. Dhollander T, Tabbara R, Rosnarho-Tornstrand J, Tournier JD, Raffelt D, Connelly A. Multi-tissue log-domain intensity and inhomogeneity normalisation for quantitative apparent fibre density. ISMRM. 2021.
90.
go back to reference Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015;16(3):159–72.PubMedCrossRef Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders. Nat Rev Neurosci. 2015;16(3):159–72.PubMedCrossRef
92.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89.PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89.PubMedCrossRef
93.
go back to reference R Core Team. R language and environment for statistical computing. Austria: R Foundation for Statistical Computing; 2022. R Core Team. R language and environment for statistical computing. Austria: R Foundation for Statistical Computing; 2022.
94.
go back to reference The MathWorks Inc. MATLAB. 7.10.0 ed. Natick, MA. 2010. The MathWorks Inc. MATLAB. 7.10.0 ed. Natick, MA. 2010.
95.
go back to reference Ballabio D. A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure. Chemometr Intell Lab Syst. 2015;149:1–9.CrossRef Ballabio D. A MATLAB toolbox for Principal Component Analysis and unsupervised exploration of data structure. Chemometr Intell Lab Syst. 2015;149:1–9.CrossRef
96.
go back to reference Ilin A, Raiko T. Practical approaches to principal component analysis in the presence of missing values. J Mach Learn Res. 2010;11:1957–2000. Ilin A, Raiko T. Practical approaches to principal component analysis in the presence of missing values. J Mach Learn Res. 2010;11:1957–2000.
97.
go back to reference Tipping ME, Bishop CM. Probabilistic principal component analysis. J R Stat Soc. 1999;61(3):611–22.CrossRef Tipping ME, Bishop CM. Probabilistic principal component analysis. J R Stat Soc. 1999;61(3):611–22.CrossRef
98.
go back to reference Jolliffe I. Principal component analysis. Encyclopedia of statistics in behavioral science. 2005. Jolliffe I. Principal component analysis. Encyclopedia of statistics in behavioral science. 2005.
99.
go back to reference Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44(1):83–98.PubMedCrossRef Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44(1):83–98.PubMedCrossRef
100.
go back to reference Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. Neuroimage. 2010;53(4):1197–207.PubMedCrossRef Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences in brain networks. Neuroimage. 2010;53(4):1197–207.PubMedCrossRef
101.
go back to reference Baggio HC, Abos A, Segura B, Campabadal A, Garcia-Diaz A, Uribe C, et al. Statistical inference in brain graphs using threshold-free network-based statistics. Hum Brain Mapp. 2018;39(6):2289–302.PubMedPubMedCentralCrossRef Baggio HC, Abos A, Segura B, Campabadal A, Garcia-Diaz A, Uribe C, et al. Statistical inference in brain graphs using threshold-free network-based statistics. Hum Brain Mapp. 2018;39(6):2289–302.PubMedPubMedCentralCrossRef
103.
go back to reference Ingram RU, Halai AD, Pobric G, Sajjadi S, Patterson K, Lambon Ralph MA. Graded, multidimensional intra- and intergroup variations in primary progressive aphasia and post-stroke aphasia. Brain. 2020. Ingram RU, Halai AD, Pobric G, Sajjadi S, Patterson K, Lambon Ralph MA. Graded, multidimensional intra- and intergroup variations in primary progressive aphasia and post-stroke aphasia. Brain. 2020.
104.
go back to reference Leyton CE, Hodges JR, McLean CA, Kril JJ, Piguet O, Ballard KJ. Is the logopenic-variant of primary progressive aphasia a unitary disorder? Cortex. 2015;67:122–33.PubMedCrossRef Leyton CE, Hodges JR, McLean CA, Kril JJ, Piguet O, Ballard KJ. Is the logopenic-variant of primary progressive aphasia a unitary disorder? Cortex. 2015;67:122–33.PubMedCrossRef
105.
go back to reference Matias-Guiu JA, Diaz-Alvarez J, Cuetos F, Cabrera-Martin MN, Segovia-Rios I, Pytel V, et al. Machine learning in the clinical and language characterisation of primary progressive aphasia variants. Cortex. 2019;119:312–23.PubMedCrossRef Matias-Guiu JA, Diaz-Alvarez J, Cuetos F, Cabrera-Martin MN, Segovia-Rios I, Pytel V, et al. Machine learning in the clinical and language characterisation of primary progressive aphasia variants. Cortex. 2019;119:312–23.PubMedCrossRef
106.
go back to reference Husain M. Transdiagnostic neurology: neuropsychiatric symptoms in neurodegenerative diseases. Brain. 2017;140(6):1535–6.PubMedCrossRef Husain M. Transdiagnostic neurology: neuropsychiatric symptoms in neurodegenerative diseases. Brain. 2017;140(6):1535–6.PubMedCrossRef
107.
go back to reference Kamath V, Sutherland ER, Chaney GA. A meta-analysis of neuropsychological functioning in the logopenic variant of primary progressive aphasia: comparison with the semantic and non-fluent variants. J Int Neuropsychol Soc. 2019:1–9. Kamath V, Sutherland ER, Chaney GA. A meta-analysis of neuropsychological functioning in the logopenic variant of primary progressive aphasia: comparison with the semantic and non-fluent variants. J Int Neuropsychol Soc. 2019:1–9.
108.
go back to reference Humphreys GF, Jackson RL, Lambon Ralph MA. Overarching principles and dimensions of the functional organization in the inferior parietal cortex. Cereb Cortex. 2020;30(11):5639–53.PubMedPubMedCentralCrossRef Humphreys GF, Jackson RL, Lambon Ralph MA. Overarching principles and dimensions of the functional organization in the inferior parietal cortex. Cereb Cortex. 2020;30(11):5639–53.PubMedPubMedCentralCrossRef
109.
go back to reference Humphreys GF, Lambon Ralph MA. Fusion and fission of cognitive functions in the human parietal cortex. Cereb Cortex. 2015;25(10):3547–60.PubMedCrossRef Humphreys GF, Lambon Ralph MA. Fusion and fission of cognitive functions in the human parietal cortex. Cereb Cortex. 2015;25(10):3547–60.PubMedCrossRef
110.
go back to reference Ramanan S, Bellana B. A domain-general role for the angular gyrus in retrieving internal representations of the external world. J Neurosci. 2019;39(16):2978–80.PubMedPubMedCentralCrossRef Ramanan S, Bellana B. A domain-general role for the angular gyrus in retrieving internal representations of the external world. J Neurosci. 2019;39(16):2978–80.PubMedPubMedCentralCrossRef
111.
go back to reference Ramanan S, Piguet O, Irish M. Rethinking the role of the angular gyrus in remembering the past and imagining the future: the contextual integration model. Neuroscientist. 2018;24(4):342–52.PubMedCrossRef Ramanan S, Piguet O, Irish M. Rethinking the role of the angular gyrus in remembering the past and imagining the future: the contextual integration model. Neuroscientist. 2018;24(4):342–52.PubMedCrossRef
112.
go back to reference Igelstrom KM, Graziano MSA. The inferior parietal lobule and temporoparietal junction: A network perspective. Neuropsychologia. 2017;105:70–83.PubMedCrossRef Igelstrom KM, Graziano MSA. The inferior parietal lobule and temporoparietal junction: A network perspective. Neuropsychologia. 2017;105:70–83.PubMedCrossRef
113.
go back to reference Krishnan K, Machulda MM, Whitwell JL, Butts AM, Duffy JR, Strand EA, et al. Varying degrees of temporoparietal hypometabolism on FDG-PET reveal amyloid-positive logopenic primary progressive aphasia is not a homogeneous clinical entity. J Alzheimers Dis. 2017;55(3):1019–29.PubMedPubMedCentralCrossRef Krishnan K, Machulda MM, Whitwell JL, Butts AM, Duffy JR, Strand EA, et al. Varying degrees of temporoparietal hypometabolism on FDG-PET reveal amyloid-positive logopenic primary progressive aphasia is not a homogeneous clinical entity. J Alzheimers Dis. 2017;55(3):1019–29.PubMedPubMedCentralCrossRef
114.
go back to reference Mazzeo S, Polito C, Lassi M, Bagnoli S, Mattei M, Padiglioni S, et al. Loss of speech and functional impairment in Alzheimer’s disease-related primary progressive aphasia: predictive factors of decline. Neurobiol Aging. 2022;117:59–70.PubMedCrossRef Mazzeo S, Polito C, Lassi M, Bagnoli S, Mattei M, Padiglioni S, et al. Loss of speech and functional impairment in Alzheimer’s disease-related primary progressive aphasia: predictive factors of decline. Neurobiol Aging. 2022;117:59–70.PubMedCrossRef
115.
go back to reference Tetzloff KA, Duffy JR, Clark HM, Strand EA, Machulda MM, Schwarz CG, et al. Longitudinal structural and molecular neuroimaging in agrammatic primary progressive aphasia. Brain. 2018;141(1):302–17.PubMedCrossRef Tetzloff KA, Duffy JR, Clark HM, Strand EA, Machulda MM, Schwarz CG, et al. Longitudinal structural and molecular neuroimaging in agrammatic primary progressive aphasia. Brain. 2018;141(1):302–17.PubMedCrossRef
116.
go back to reference Wilson SM, Galantucci S, Tartaglia MC, Gorno-Tempini ML. The neural basis of syntactic deficits in primary progressive aphasia. Brain Lang. 2012;122(3):190–8.PubMedPubMedCentralCrossRef Wilson SM, Galantucci S, Tartaglia MC, Gorno-Tempini ML. The neural basis of syntactic deficits in primary progressive aphasia. Brain Lang. 2012;122(3):190–8.PubMedPubMedCentralCrossRef
117.
go back to reference Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT. The neural and computational bases of semantic cognition. Nat Rev Neurosci. 2017;18(1):42–55.CrossRef Lambon Ralph MA, Jefferies E, Patterson K, Rogers TT. The neural and computational bases of semantic cognition. Nat Rev Neurosci. 2017;18(1):42–55.CrossRef
119.
go back to reference Catricala E, Conca F, Fertonani A, Miniussi C, Cappa SF. State-dependent TMS reveals the differential contribution of ATL and IPS to the representation of abstract concepts related to social and quantity knowledge. Cortex. 2020;123:30–41.PubMedCrossRef Catricala E, Conca F, Fertonani A, Miniussi C, Cappa SF. State-dependent TMS reveals the differential contribution of ATL and IPS to the representation of abstract concepts related to social and quantity knowledge. Cortex. 2020;123:30–41.PubMedCrossRef
120.
go back to reference Catricala E, Della Rosa PA, Plebani V, Vigliocco G, Cappa SF. Abstract and concrete categories? Evidences from neurodegenerative diseases. Neuropsychologia. 2014;64:271–81.PubMedCrossRef Catricala E, Della Rosa PA, Plebani V, Vigliocco G, Cappa SF. Abstract and concrete categories? Evidences from neurodegenerative diseases. Neuropsychologia. 2014;64:271–81.PubMedCrossRef
121.
go back to reference Conca F, Borsa VM, Cappa SF, Catricala E. The multidimensionality of abstract concepts: a systematic review. Neurosci Biobehav Rev. 2021;127:474–91.PubMedCrossRef Conca F, Borsa VM, Cappa SF, Catricala E. The multidimensionality of abstract concepts: a systematic review. Neurosci Biobehav Rev. 2021;127:474–91.PubMedCrossRef
122.
go back to reference Jefferies E, Lambon Ralph MA. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain. 2006;129(Pt 8):2132–47.PubMedCrossRef Jefferies E, Lambon Ralph MA. Semantic impairment in stroke aphasia versus semantic dementia: a case-series comparison. Brain. 2006;129(Pt 8):2132–47.PubMedCrossRef
123.
go back to reference Funayama M, Nakagawa Y, Yamaya Y, Yoshino F, Mimura M, Kato M. Progression of logopenic variant primary progressive aphasia to apraxia and semantic memory deficits. BMC Neurol. 2013;13:158.PubMedPubMedCentralCrossRef Funayama M, Nakagawa Y, Yamaya Y, Yoshino F, Mimura M, Kato M. Progression of logopenic variant primary progressive aphasia to apraxia and semantic memory deficits. BMC Neurol. 2013;13:158.PubMedPubMedCentralCrossRef
124.
go back to reference Lukic S, Mandelli ML, Welch A, Jordan K, Shwe W, Neuhaus J, et al. Neurocognitive basis of repetition deficits in primary progressive aphasia. Brain Lang. 2019;194:35–45.PubMedPubMedCentralCrossRef Lukic S, Mandelli ML, Welch A, Jordan K, Shwe W, Neuhaus J, et al. Neurocognitive basis of repetition deficits in primary progressive aphasia. Brain Lang. 2019;194:35–45.PubMedPubMedCentralCrossRef
126.
go back to reference Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–39.PubMedCrossRef Baddeley A. Working memory: looking back and looking forward. Nat Rev Neurosci. 2003;4(10):829–39.PubMedCrossRef
127.
go back to reference Smith EE, Jonides J, Marshuetz C, Koeppe RA. Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci U S A. 1998;95(3):876–82.PubMedPubMedCentralCrossRef Smith EE, Jonides J, Marshuetz C, Koeppe RA. Components of verbal working memory: evidence from neuroimaging. Proc Natl Acad Sci U S A. 1998;95(3):876–82.PubMedPubMedCentralCrossRef
128.
go back to reference Eikelboom WS, Janssen N, Jiskoot LC, van den Berg E, Roelofs A, Kessels RPC. Episodic and working memory function in Primary Progressive Aphasia: a meta-analysis. Neurosci Biobehav Rev. 2018;92:243–54.PubMedCrossRef Eikelboom WS, Janssen N, Jiskoot LC, van den Berg E, Roelofs A, Kessels RPC. Episodic and working memory function in Primary Progressive Aphasia: a meta-analysis. Neurosci Biobehav Rev. 2018;92:243–54.PubMedCrossRef
129.
go back to reference Ogar JM, Dronkers NF, Brambati SM, Miller BL, Gorno-Tempini ML. Progressive nonfluent aphasia and its characteristic motor speech deficits. Alzheimer Dis Assoc Disord. 2007;21(4):S23-30.PubMedCrossRef Ogar JM, Dronkers NF, Brambati SM, Miller BL, Gorno-Tempini ML. Progressive nonfluent aphasia and its characteristic motor speech deficits. Alzheimer Dis Assoc Disord. 2007;21(4):S23-30.PubMedCrossRef
130.
go back to reference Josephs KA, Duffy JR, Strand EA, Whitwell JL, Layton KF, Parisi JE, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain. 2006;129(Pt 6):1385–98.PubMedCrossRef Josephs KA, Duffy JR, Strand EA, Whitwell JL, Layton KF, Parisi JE, et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain. 2006;129(Pt 6):1385–98.PubMedCrossRef
131.
go back to reference Clark DG, Charuvastra A, Miller BL, Shapira JS, Mendez MF. Fluent versus nonfluent primary progressive aphasia: a comparison of clinical and functional neuroimaging features. Brain Lang. 2005;94(1):54–60.PubMedCrossRef Clark DG, Charuvastra A, Miller BL, Shapira JS, Mendez MF. Fluent versus nonfluent primary progressive aphasia: a comparison of clinical and functional neuroimaging features. Brain Lang. 2005;94(1):54–60.PubMedCrossRef
132.
go back to reference Ash S, Evans E, O’Shea J, Powers J, Boller A, Weinberg D, et al. Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology. 2013;81(4):329–36.PubMedPubMedCentralCrossRef Ash S, Evans E, O’Shea J, Powers J, Boller A, Weinberg D, et al. Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology. 2013;81(4):329–36.PubMedPubMedCentralCrossRef
133.
134.
go back to reference Halai AD, Woollams AM, Lambon Ralph MA. Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: Revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex. 2017;86:275–89.PubMedPubMedCentralCrossRef Halai AD, Woollams AM, Lambon Ralph MA. Using principal component analysis to capture individual differences within a unified neuropsychological model of chronic post-stroke aphasia: Revealing the unique neural correlates of speech fluency, phonology and semantics. Cortex. 2017;86:275–89.PubMedPubMedCentralCrossRef
135.
go back to reference Roncero C, Kniefel H, Service E, Thiel A, Probst S, Chertkow H. Inferior parietal transcranial direct current stimulation with training improves cognition in anomic Alzheimer’s disease and frontotemporal dementia. Alzheimers Dement (N Y). 2017;3(2):247–53.PubMedCrossRef Roncero C, Kniefel H, Service E, Thiel A, Probst S, Chertkow H. Inferior parietal transcranial direct current stimulation with training improves cognition in anomic Alzheimer’s disease and frontotemporal dementia. Alzheimers Dement (N Y). 2017;3(2):247–53.PubMedCrossRef
136.
go back to reference de Aguiar V, Rofes A, Wendt H, Ficek BN, Webster K, Tsapkini K. Treating lexical retrieval using letter fluency and tDCS in primary progressive aphasia: a single-case study. Aphasiology. 2022;36(3):353–79.CrossRef de Aguiar V, Rofes A, Wendt H, Ficek BN, Webster K, Tsapkini K. Treating lexical retrieval using letter fluency and tDCS in primary progressive aphasia: a single-case study. Aphasiology. 2022;36(3):353–79.CrossRef
137.
go back to reference Taylor-Rubin C, Croot K, Nickels L. Speech and language therapy in primary progressive aphasia: a critical review of current practice. Expert Rev Neurother. 2021;21(4):419–30.PubMedCrossRef Taylor-Rubin C, Croot K, Nickels L. Speech and language therapy in primary progressive aphasia: a critical review of current practice. Expert Rev Neurother. 2021;21(4):419–30.PubMedCrossRef
138.
go back to reference Gallee J, Volkmer A. Role of the speech-language therapist/pathologist in primary progressive aphasia. Neurol Clin Pract. 2023;13(4):e200178.PubMedCrossRef Gallee J, Volkmer A. Role of the speech-language therapist/pathologist in primary progressive aphasia. Neurol Clin Pract. 2023;13(4):e200178.PubMedCrossRef
Metadata
Title
The neural substrates of transdiagnostic cognitive-linguistic heterogeneity in primary progressive aphasia
Authors
Siddharth Ramanan
Ajay D. Halai
Lorna Garcia-Penton
Alistair G. Perry
Nikil Patel
Katie A. Peterson
Ruth U. Ingram
Ian Storey
Stefano F. Cappa
Eleonora Catricala
Karalyn Patterson
James B. Rowe
Peter Garrard
Matthew A. Lambon Ralph
Publication date
01-12-2023
Publisher
BioMed Central
Keyword
Aphasia
Published in
Alzheimer's Research & Therapy / Issue 1/2023
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-023-01350-2

Other articles of this Issue 1/2023

Alzheimer's Research & Therapy 1/2023 Go to the issue