Skip to main content
Top
Published in: Alzheimer's Research & Therapy 1/2024

Open Access 01-12-2024 | Aphasia | Research

Heterogeneity and overlap in the continuum of linguistic profile of logopenic and semantic variants of primary progressive aphasia: a Profile Analysis based on Multidimensional Scaling study

Authors: Gaia Chiara Santi, Francesca Conca, Valentina Esposito, Cristina Polito, Silvia Paola Caminiti, Cecilia Boccalini, Carmen Morinelli, Valentina Berti, Salvatore Mazzeo, Valentina Bessi, Alessandra Marcone, Sandro Iannaccone, Se-Kang Kim, Sandro Sorbi, Daniela Perani, Stefano F. Cappa, Eleonora Catricalà

Published in: Alzheimer's Research & Therapy | Issue 1/2024

Login to get access

Abstract

Background

Primary progressive aphasia (PPA) diagnostic criteria underestimate the complex presentation of semantic (sv) and logopenic (lv) variants, in which symptoms partially overlap, and mixed clinical presentation (mixed-PPA) and heterogenous profile (lvPPA +) are frequent. Conceptualization of similarities and differences of these clinical conditions is still scarce.

Methods

Lexical, semantic, phonological, and working memory errors from nine language tasks of sixty-seven PPA were analyzed using Profile Analysis based on Multidimensional Scaling, which allowed us to create a distributed representation of patients’ linguistic performance in a shared space. Patients had been studied with [18F] FDG-PET. Correlations were performed between metabolic and behavioral data.

Results

Patients’ profiles were distributed across a continuum. All PPA, but two, presented a lexical retrieval impairment, in terms of reduced production of verbs and nouns. svPPA patients occupied a fairly clumped space along the continuum, showing a preponderant semantic deficit, which correlated to fusiform gyrus hypometabolism, while only few presented working memory deficits. Adjacently, lvPPA + presented a semantic impairment combined with phonological deficits, which correlated with metabolism in the anterior fusiform gyrus and posterior middle temporal gyrus. Starting from the shared phonological deficit side, a large portion of the space was occupied by all lvPPA, showing a combination of phonological, lexical, and working memory deficits, with the latter correlating with posterior temporo-parietal hypometabolism. Mixed PPA did not show unique profile, distributing across the space.

Discussion

Different clinical PPA entities exist but overlaps are frequent. Identifying shared and unique clinical markers is critical for research and clinical practice. Further research is needed to identify the role of genetic and pathological factors in such distribution, including also higher sample size of less represented groups.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14.PubMedPubMedCentralCrossRef Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14.PubMedPubMedCentralCrossRef
3.
go back to reference Conca F, Esposito V, Giusto G, Cappa SF, Catricalà E. Characterization of the logopenic variant of primary progressive aphasia: a systematic review and meta-analysis. Ageing Res Rev. 2022;82:101760.PubMedCrossRef Conca F, Esposito V, Giusto G, Cappa SF, Catricalà E. Characterization of the logopenic variant of primary progressive aphasia: a systematic review and meta-analysis. Ageing Res Rev. 2022;82:101760.PubMedCrossRef
4.
go back to reference Teichmann M, Kas A, Boutet C, Ferrieux S, Nogues M, Samri D, et al. Deciphering logopenic primary progressive aphasia: a clinical, imaging and biomarker investigation. Brain. 2013;136(11):3474–88.PubMedCrossRef Teichmann M, Kas A, Boutet C, Ferrieux S, Nogues M, Samri D, et al. Deciphering logopenic primary progressive aphasia: a clinical, imaging and biomarker investigation. Brain. 2013;136(11):3474–88.PubMedCrossRef
5.
go back to reference Mesulam MM, Weintraub S. Is it time to revisit the classification guidelines for primary progressive aphasia? Neurology. 2014;82(13):1108–9.PubMedCrossRef Mesulam MM, Weintraub S. Is it time to revisit the classification guidelines for primary progressive aphasia? Neurology. 2014;82(13):1108–9.PubMedCrossRef
6.
go back to reference Vonk JMJ, Jonkers R, Hubbard HI, Gorno-Tempini ML, Brickman AM, Obler LK. Semantic and lexical features of words dissimilarly affected by non-fluent, logopenic, and semantic primary progressive aphasia. J Int Neuropsychol Soc. 2019;25(10):1011–22.PubMedPubMedCentralCrossRef Vonk JMJ, Jonkers R, Hubbard HI, Gorno-Tempini ML, Brickman AM, Obler LK. Semantic and lexical features of words dissimilarly affected by non-fluent, logopenic, and semantic primary progressive aphasia. J Int Neuropsychol Soc. 2019;25(10):1011–22.PubMedPubMedCentralCrossRef
7.
go back to reference Kamath V, Sutherland ER, Chaney GA. A meta-analysis of neuropsychological functioning in the logopenic variant of primary progressive aphasia: comparison with the semantic and non-fluent variants. J Int Neuropsychol Soc. 2020;26(3):322–30.PubMedCrossRef Kamath V, Sutherland ER, Chaney GA. A meta-analysis of neuropsychological functioning in the logopenic variant of primary progressive aphasia: comparison with the semantic and non-fluent variants. J Int Neuropsychol Soc. 2020;26(3):322–30.PubMedCrossRef
8.
go back to reference Wilson SM, Galantucci S, Tartaglia MC, Gorno-Tempini ML. The neural basis of syntactic deficits in primary progressive aphasia. Brain Lang. 2012;122(3):190–8.PubMedPubMedCentralCrossRef Wilson SM, Galantucci S, Tartaglia MC, Gorno-Tempini ML. The neural basis of syntactic deficits in primary progressive aphasia. Brain Lang. 2012;122(3):190–8.PubMedPubMedCentralCrossRef
9.
go back to reference Croot K, Ballard K, Leyton CE, Hodges JR. Apraxia of speech and phonological errors in the diagnosis of nonfluent/agrammatic and logopenic variants of primary progressive aphasia. J Speech Lang Hear Res. 2012;55(5):1562–73.CrossRef Croot K, Ballard K, Leyton CE, Hodges JR. Apraxia of speech and phonological errors in the diagnosis of nonfluent/agrammatic and logopenic variants of primary progressive aphasia. J Speech Lang Hear Res. 2012;55(5):1562–73.CrossRef
10.
go back to reference Harciarek M, Kertesz A. Primary progressive aphasias and their contribution to the contemporary knowledge about the brain-language relationship. Neuropsychol Rev. 2011;21(3):271–87.PubMedPubMedCentralCrossRef Harciarek M, Kertesz A. Primary progressive aphasias and their contribution to the contemporary knowledge about the brain-language relationship. Neuropsychol Rev. 2011;21(3):271–87.PubMedPubMedCentralCrossRef
11.
go back to reference Ingram RU, Halai AD, Pobric G, Sajjadi S, Patterson K, Lambon Ralph MA. Graded, multidimensional intra- and intergroup variations in primary progressive aphasia and post-stroke aphasia. Brain. 2020;143(10):3121–35.PubMedPubMedCentralCrossRef Ingram RU, Halai AD, Pobric G, Sajjadi S, Patterson K, Lambon Ralph MA. Graded, multidimensional intra- and intergroup variations in primary progressive aphasia and post-stroke aphasia. Brain. 2020;143(10):3121–35.PubMedPubMedCentralCrossRef
12.
go back to reference Eikelboom WS, Janssen N, Jiskoot LC, van den Berg E, Roelofs A, Kessels RPC. Episodic and working memory function in primary progressive aphasia: a meta-analysis. Neurosci Biobehav Rev. 2018;1(92):243–54.CrossRef Eikelboom WS, Janssen N, Jiskoot LC, van den Berg E, Roelofs A, Kessels RPC. Episodic and working memory function in primary progressive aphasia: a meta-analysis. Neurosci Biobehav Rev. 2018;1(92):243–54.CrossRef
13.
go back to reference Harris JM, Saxon JA, Jones M, Snowden JS, Thompson JC. Neuropsychological differentiation of progressive aphasic disorders. J Neuropsychol. 2019;13(2):214–39.PubMedCrossRef Harris JM, Saxon JA, Jones M, Snowden JS, Thompson JC. Neuropsychological differentiation of progressive aphasic disorders. J Neuropsychol. 2019;13(2):214–39.PubMedCrossRef
14.
go back to reference Amici S, Brambati SM, Wilkins DP, Ogar J, Dronkers NL, Miller BL, et al. Anatomical correlates of sentence comprehension and verbal working memory in neurodegenerative disease. J Neurosci. 2007;27(23):6282–90.PubMedPubMedCentralCrossRef Amici S, Brambati SM, Wilkins DP, Ogar J, Dronkers NL, Miller BL, et al. Anatomical correlates of sentence comprehension and verbal working memory in neurodegenerative disease. J Neurosci. 2007;27(23):6282–90.PubMedPubMedCentralCrossRef
15.
go back to reference Watanabe H, Hikida S, Ikeda M, Mori E. Unclassified fluent variants of primary progressive aphasia: distinction from semantic and logopenic variants. Brain Commun. 2022;4(3):1–14.CrossRef Watanabe H, Hikida S, Ikeda M, Mori E. Unclassified fluent variants of primary progressive aphasia: distinction from semantic and logopenic variants. Brain Commun. 2022;4(3):1–14.CrossRef
16.
go back to reference Leyton CE, Ballard KJ, Piguet O, Hodges JR. Phonologic errors as a clinical marker of the logopenic variant of PPA. Neurology. 2014;82(18):1620–7.PubMedCrossRef Leyton CE, Ballard KJ, Piguet O, Hodges JR. Phonologic errors as a clinical marker of the logopenic variant of PPA. Neurology. 2014;82(18):1620–7.PubMedCrossRef
17.
go back to reference Leyton CE, Hodges JR, McLean CA, Kril JJ, Piguet O, Ballard KJ. Is the logopenic-variant of primary progressive aphasia a unitary disorder? Cortex. 2015;67:122–33.PubMedCrossRef Leyton CE, Hodges JR, McLean CA, Kril JJ, Piguet O, Ballard KJ. Is the logopenic-variant of primary progressive aphasia a unitary disorder? Cortex. 2015;67:122–33.PubMedCrossRef
19.
go back to reference Josephs KA, Duffy JR, Strand EA, Machulda MM, Vemuri P, Senjem ML, et al. Progranulin-associated PiB-negative logopenic primary progressive aphasia. J Neurol. 2014;261(3):604–14.PubMedPubMedCentralCrossRef Josephs KA, Duffy JR, Strand EA, Machulda MM, Vemuri P, Senjem ML, et al. Progranulin-associated PiB-negative logopenic primary progressive aphasia. J Neurol. 2014;261(3):604–14.PubMedPubMedCentralCrossRef
20.
go back to reference Saracino D, Ferrieux S, Noguès-Lassiaille M, Houot M, Funkiewiez A, Sellami L, et al. Primary progressive aphasia associated with GRN mutations: new insights into the nonamyloid logopenic variant. Neurology. 2021;97(1):E88-102.PubMedCrossRef Saracino D, Ferrieux S, Noguès-Lassiaille M, Houot M, Funkiewiez A, Sellami L, et al. Primary progressive aphasia associated with GRN mutations: new insights into the nonamyloid logopenic variant. Neurology. 2021;97(1):E88-102.PubMedCrossRef
22.
go back to reference Mesulam M, Rogalski E, Wieneke C, Cobia D, Rademaker A, Thompson C, et al. Neurology of anomia in the semantic variant of primary progressive aphasia. Brain. 2009;132(9):2553–65.PubMedPubMedCentralCrossRef Mesulam M, Rogalski E, Wieneke C, Cobia D, Rademaker A, Thompson C, et al. Neurology of anomia in the semantic variant of primary progressive aphasia. Brain. 2009;132(9):2553–65.PubMedPubMedCentralCrossRef
23.
go back to reference Mesulam MM, Wieneke C, Hurley R, Rademaker A, Thompson CK, Weintraub S, et al. Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain. 2013;136(2):601–18.PubMedPubMedCentralCrossRef Mesulam MM, Wieneke C, Hurley R, Rademaker A, Thompson CK, Weintraub S, et al. Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain. 2013;136(2):601–18.PubMedPubMedCentralCrossRef
24.
go back to reference Catricalà E, Santi GC, Polito C, Conca F, Esposito V, Caminiti SP, et al. Comprehensive qualitative characterization of linguistic performance profiles in primary progressive aphasia: a multivariate study with FDG-PET. Neurobiol Aging. 2022;120:137–48.PubMedCrossRef Catricalà E, Santi GC, Polito C, Conca F, Esposito V, Caminiti SP, et al. Comprehensive qualitative characterization of linguistic performance profiles in primary progressive aphasia: a multivariate study with FDG-PET. Neurobiol Aging. 2022;120:137–48.PubMedCrossRef
25.
go back to reference Mesulam M-M, Wieneke C, Hurley R, et al. Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain. 2013;136(2):601–18. Mesulam M-M, Wieneke C, Hurley R, et al. Words and objects at the tip of the left temporal lobe in primary progressive aphasia. Brain. 2013;136(2):601–18.
26.
go back to reference Matias-Guiu JA, Díaz-Álvarez J, Cuetos F, Cabrera-Martín MN, Segovia-Ríos I, Pytel V, et al. Machine learning in the clinical and language characterisation of primary progressive aphasia variants. Cortex. 2019;119:312–23.PubMedCrossRef Matias-Guiu JA, Díaz-Álvarez J, Cuetos F, Cabrera-Martín MN, Segovia-Ríos I, Pytel V, et al. Machine learning in the clinical and language characterisation of primary progressive aphasia variants. Cortex. 2019;119:312–23.PubMedCrossRef
27.
go back to reference Hendriks S, Peetoom K, Bakker C, van der Flier WM, Papma JM, Koopmans R, et al. Global prevalence of young-onset dementia: a systematic review and meta-analysis. JAMA Neurol. 2021;78(9):1080–90.PubMedCrossRef Hendriks S, Peetoom K, Bakker C, van der Flier WM, Papma JM, Koopmans R, et al. Global prevalence of young-onset dementia: a systematic review and meta-analysis. JAMA Neurol. 2021;78(9):1080–90.PubMedCrossRef
28.
go back to reference Catricalà E, Gobbi E, Battista P, Miozzo A, Polito C, Boschi V, et al. SAND: a screening for aphasia in NeuroDegeneration. Development and normative data. Neurol Sci. 2017;38(8):1469–83.PubMedCrossRef Catricalà E, Gobbi E, Battista P, Miozzo A, Polito C, Boschi V, et al. SAND: a screening for aphasia in NeuroDegeneration. Development and normative data. Neurol Sci. 2017;38(8):1469–83.PubMedCrossRef
29.
go back to reference Patel N, Peterson KA, Ingram RU, Storey I, Cappa SF, Catricala E, et al. A “Mini Linguistic State Examination” to classify primary progressive aphasia. Brain Commun. 2022;4(2):1–11.CrossRef Patel N, Peterson KA, Ingram RU, Storey I, Cappa SF, Catricala E, et al. A “Mini Linguistic State Examination” to classify primary progressive aphasia. Brain Commun. 2022;4(2):1–11.CrossRef
30.
go back to reference Kim SK, Annunziato RA, Olatunji BO. Profile analysis of treatment effect changes in eating disorder indicators. Int J Methods Psychiatr Res. 2018;27(2):1–8.CrossRef Kim SK, Annunziato RA, Olatunji BO. Profile analysis of treatment effect changes in eating disorder indicators. Int J Methods Psychiatr Res. 2018;27(2):1–8.CrossRef
31.
go back to reference Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 1964;29(1):1–27. Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 1964;29(1):1–27.
32.
go back to reference Akbay T, Sıvacı SY, Akbay L. Investigation of teacher candidates’ 21st century learner skills via PAMS. Elem Educ Online. 2020;19(3):1498–508. Akbay T, Sıvacı SY, Akbay L. Investigation of teacher candidates’ 21st century learner skills via PAMS. Elem Educ Online. 2020;19(3):1498–508.
33.
go back to reference Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36(12):2103–10.PubMedCrossRef Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36(12):2103–10.PubMedCrossRef
34.
go back to reference Catricalà E, Polito C, Presotto L, Esposito V, Sala A, Conca F, et al. Neural correlates of naming errors across different neurodegenerative diseases: an FDG-PET study. Neurology. 2020;95:2816–30.CrossRef Catricalà E, Polito C, Presotto L, Esposito V, Sala A, Conca F, et al. Neural correlates of naming errors across different neurodegenerative diseases: an FDG-PET study. Neurology. 2020;95:2816–30.CrossRef
35.
go back to reference Perani D, Della Rosa PA, Cerami C, Gallivanone F, Fallanca F, Vanoli EG, et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. NeuroImage Clin. 2014;6:445–54 Available from: https://www.sciencedirect.com/science/article/pii/S2213158214001636 .PubMedPubMedCentralCrossRef Perani D, Della Rosa PA, Cerami C, Gallivanone F, Fallanca F, Vanoli EG, et al. Validation of an optimized SPM procedure for FDG-PET in dementia diagnosis in a clinical setting. NeuroImage Clin. 2014;6:445–54 Available from: https://​www.​sciencedirect.​com/​science/​article/​pii/​S221315821400163​6 .PubMedPubMedCentralCrossRef
36.
go back to reference Caminiti SP, Sala A, Presotto L, Chincarini A, Sestini S, Perani D, et al. Validation of FDG-PET datasets of normal controls for the extraction of SPM-based brain metabolism maps. Eur J Nucl Med Mol Imaging. 2021;48(8):2486–99.PubMedCrossRef Caminiti SP, Sala A, Presotto L, Chincarini A, Sestini S, Perani D, et al. Validation of FDG-PET datasets of normal controls for the extraction of SPM-based brain metabolism maps. Eur J Nucl Med Mol Imaging. 2021;48(8):2486–99.PubMedCrossRef
39.
go back to reference Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89.PubMedCrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15(1):273–89.PubMedCrossRef
40.
go back to reference Visser M, Jefferies E, Embleton KV, Ralph MAL. Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J Cogn Neurosci. 2012;24(8):1766–78.PubMedCrossRef Visser M, Jefferies E, Embleton KV, Ralph MAL. Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J Cogn Neurosci. 2012;24(8):1766–78.PubMedCrossRef
41.
go back to reference Crawford JR, Garthwaite PH. Investigation of the single case in neuropsychology: Confidence limits on the abnormality of test scores and test score differences. Vol. 40, Neuropsychologia. Crawford, J. R.: U Aberdeen, King’s Coll, Dept of Psychology, Aberdeen, United Kingdom, AB24 2UB, j.crawford@abdn.ac.uk: Elsevier Science; 2002. p. 1196–208. Crawford JR, Garthwaite PH. Investigation of the single case in neuropsychology: Confidence limits on the abnormality of test scores and test score differences. Vol. 40, Neuropsychologia. Crawford, J. R.: U Aberdeen, King’s Coll, Dept of Psychology, Aberdeen, United Kingdom, AB24 2UB, j.crawford@abdn.ac.uk: Elsevier Science; 2002. p. 1196–208.
42.
go back to reference Boschi V, Catricalà E, Consonni M, Chesi C, Moro A, Cappa SF. Connected speech in neurodegenerative language disorders: a review. Front Psychol. 2017;8:269.PubMedPubMedCentralCrossRef Boschi V, Catricalà E, Consonni M, Chesi C, Moro A, Cappa SF. Connected speech in neurodegenerative language disorders: a review. Front Psychol. 2017;8:269.PubMedPubMedCentralCrossRef
43.
go back to reference Wilson SM, Henry ML, Besbris M, Ogar JM, Dronkers NF, Jarrold W, et al. Connected speech production in three variants of primary progressive aphasia. Brain. 2010;133(7):2069–88.PubMedPubMedCentralCrossRef Wilson SM, Henry ML, Besbris M, Ogar JM, Dronkers NF, Jarrold W, et al. Connected speech production in three variants of primary progressive aphasia. Brain. 2010;133(7):2069–88.PubMedPubMedCentralCrossRef
44.
go back to reference Sajjadi SA, Patterson K, Tomek M, Nestor PJ. Abnormalities of connected speech in semantic dementia vs Alzheimer’s disease. Aphasiology. 2012;26(6):847–66.CrossRef Sajjadi SA, Patterson K, Tomek M, Nestor PJ. Abnormalities of connected speech in semantic dementia vs Alzheimer’s disease. Aphasiology. 2012;26(6):847–66.CrossRef
45.
go back to reference Flanagan EC, Tu S, Ahmed S, Hodges JR, Hornberger M. Memory and orientation in the logopenic and nonfluent subtypes of primary progressive aphasia. J Alzheimer’s Dis. 2014;40(1):33–6.CrossRef Flanagan EC, Tu S, Ahmed S, Hodges JR, Hornberger M. Memory and orientation in the logopenic and nonfluent subtypes of primary progressive aphasia. J Alzheimer’s Dis. 2014;40(1):33–6.CrossRef
46.
go back to reference Janssen N, Kessels RPC, Mars RB, Llera A, Beckmann CF, Roelofs A. Dissociating the functional roles of arcuate fasciculus subtracts in speech production. Cereb Cortex. 2023;33(6):2539–47.PubMedCrossRef Janssen N, Kessels RPC, Mars RB, Llera A, Beckmann CF, Roelofs A. Dissociating the functional roles of arcuate fasciculus subtracts in speech production. Cereb Cortex. 2023;33(6):2539–47.PubMedCrossRef
47.
go back to reference Ash S, Evans E, O’Shea J, Powers J, Boller A, Weinberg D, et al. Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology. 2013;81(4):329–36.PubMedPubMedCentralCrossRef Ash S, Evans E, O’Shea J, Powers J, Boller A, Weinberg D, et al. Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology. 2013;81(4):329–36.PubMedPubMedCentralCrossRef
48.
go back to reference Hillis AE, Wityk RJ, Tuffiash E, Beauchamp NJ, Jacobs MA, Barker PB, et al. Hypoperfusion of Wernicke’s area predicts severity of semantic deficit in acute stroke. Ann Neurol. 2001;50(5):561–6.PubMedCrossRef Hillis AE, Wityk RJ, Tuffiash E, Beauchamp NJ, Jacobs MA, Barker PB, et al. Hypoperfusion of Wernicke’s area predicts severity of semantic deficit in acute stroke. Ann Neurol. 2001;50(5):561–6.PubMedCrossRef
49.
go back to reference Bruffaerts R, Schaeverbeke J, De Weer AS, Nelissen N, Dries E, Van Bouwel K, et al. Multivariate analysis reveals anatomical correlates of naming errors in primary progressive aphasia. Neurobiol Aging. 2020;88:71–82.PubMedCrossRef Bruffaerts R, Schaeverbeke J, De Weer AS, Nelissen N, Dries E, Van Bouwel K, et al. Multivariate analysis reveals anatomical correlates of naming errors in primary progressive aphasia. Neurobiol Aging. 2020;88:71–82.PubMedCrossRef
52.
go back to reference Indefrey P, Levelt WJM. The spatial and temporal signatures of word production components. Cognition. 2004;92(1–2):101–44.PubMedCrossRef Indefrey P, Levelt WJM. The spatial and temporal signatures of word production components. Cognition. 2004;92(1–2):101–44.PubMedCrossRef
53.
go back to reference Buchsbaum BR, Hickok G, Humphries C. Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cogn Sci. 2001;25(5):663–78.CrossRef Buchsbaum BR, Hickok G, Humphries C. Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cogn Sci. 2001;25(5):663–78.CrossRef
54.
go back to reference Jackson RL, Hoffman P, Pobric G, Lambon Ralph MA. The semantic network at work and rest: differential connectivity of anterior temporal lobe subregions. J Neurosci. 2016;36(5):1490–501.PubMedPubMedCentralCrossRef Jackson RL, Hoffman P, Pobric G, Lambon Ralph MA. The semantic network at work and rest: differential connectivity of anterior temporal lobe subregions. J Neurosci. 2016;36(5):1490–501.PubMedPubMedCentralCrossRef
56.
go back to reference Tyler LK, Stamatakis EA, Bright P, Acres K, Abdallah S, Rodd JM, et al. Processing objects at different levels of specificity. J Cogn Neurosci. 2004;16(3):351–62.PubMedCrossRef Tyler LK, Stamatakis EA, Bright P, Acres K, Abdallah S, Rodd JM, et al. Processing objects at different levels of specificity. J Cogn Neurosci. 2004;16(3):351–62.PubMedCrossRef
61.
go back to reference Mazzeo S, Polito C, Padiglioni S, Berti V, Bagnoli S, Lombardi G, et al. Linguistic profiles, brain metabolic patterns and rates of amyloid-β biomarker positivity in patients with mixed primary progressive aphasia. Neurobiol Aging. 2020;96:155–64.PubMedCrossRef Mazzeo S, Polito C, Padiglioni S, Berti V, Bagnoli S, Lombardi G, et al. Linguistic profiles, brain metabolic patterns and rates of amyloid-β biomarker positivity in patients with mixed primary progressive aphasia. Neurobiol Aging. 2020;96:155–64.PubMedCrossRef
62.
go back to reference Emch M, von Bastian CC, Koch K. Neural correlates of verbal working memory: an fMRI meta-analysis. Front Hum Neurosci. 2019;13(June):1–17. Emch M, von Bastian CC, Koch K. Neural correlates of verbal working memory: an fMRI meta-analysis. Front Hum Neurosci. 2019;13(June):1–17.
63.
go back to reference Lukic S, Borghesani V, Weis E, Welch A, Bogley R, Neuhaus J, et al. Dissociating nouns and verbs in temporal and perisylvian networks: Evidence from neurodegenerative diseases. Cortex. 2021;142:47–61.PubMedPubMedCentralCrossRef Lukic S, Borghesani V, Weis E, Welch A, Bogley R, Neuhaus J, et al. Dissociating nouns and verbs in temporal and perisylvian networks: Evidence from neurodegenerative diseases. Cortex. 2021;142:47–61.PubMedPubMedCentralCrossRef
65.
66.
go back to reference Lukic S, Licata AE, Weis E, Bogley R, Ratnasiri B, Welch AE, et al. Auditory verb generation performance patterns dissociate variants of primary progressive aphasia. Front Psychol. 2022;13:1–13.CrossRef Lukic S, Licata AE, Weis E, Bogley R, Ratnasiri B, Welch AE, et al. Auditory verb generation performance patterns dissociate variants of primary progressive aphasia. Front Psychol. 2022;13:1–13.CrossRef
67.
go back to reference Macoir J, Martel-Sauvageau V, Bouvier L, Laforce R, Monetta L. Heterogeneity of repetition abilities in logopenic variant primary progressive aphasia. Dement Neuropsychol. 2021;15(3):405–12.PubMedPubMedCentralCrossRef Macoir J, Martel-Sauvageau V, Bouvier L, Laforce R, Monetta L. Heterogeneity of repetition abilities in logopenic variant primary progressive aphasia. Dement Neuropsychol. 2021;15(3):405–12.PubMedPubMedCentralCrossRef
71.
go back to reference Mack JE, Cho-Reyes S, Kloet JD, Weintraub S, Mesulam MM, Thompson CK. Phonological facilitation of object naming in agrammatic and logopenic primary progressive aphasia (PPA). Cogn Neuropsychol. 2013;30(3):172–93.PubMedCrossRef Mack JE, Cho-Reyes S, Kloet JD, Weintraub S, Mesulam MM, Thompson CK. Phonological facilitation of object naming in agrammatic and logopenic primary progressive aphasia (PPA). Cogn Neuropsychol. 2013;30(3):172–93.PubMedCrossRef
72.
go back to reference Papagno C, Comi A, Riva M, Bizzi A, Vernice M, Casarotti A, et al. Mapping the brain network of the phonological loop. Hum Brain Mapp. 2017;38(6):3011–24.PubMedPubMedCentralCrossRef Papagno C, Comi A, Riva M, Bizzi A, Vernice M, Casarotti A, et al. Mapping the brain network of the phonological loop. Hum Brain Mapp. 2017;38(6):3011–24.PubMedPubMedCentralCrossRef
73.
go back to reference Hinkley LBN, Thompson M, Miller ZA, Borghesani V, Mizuiri D, Shwe W, et al. Distinct neurophysiology during nonword repetition in logopenic and non-fluent variants of primary progressive aphasia. Hum Brain Mapp. 2023;44(14):4833–47.PubMedPubMedCentralCrossRef Hinkley LBN, Thompson M, Miller ZA, Borghesani V, Mizuiri D, Shwe W, et al. Distinct neurophysiology during nonword repetition in logopenic and non-fluent variants of primary progressive aphasia. Hum Brain Mapp. 2023;44(14):4833–47.PubMedPubMedCentralCrossRef
74.
go back to reference Beales A, Whitworth A, Cartwright J, Panegyres PK, Kane RT. Profiling sentence repetition deficits in primary progressive aphasia and Alzheimer’s disease: error patterns and association with digit span. Brain Lang. 2019;194:1–11.PubMedCrossRef Beales A, Whitworth A, Cartwright J, Panegyres PK, Kane RT. Profiling sentence repetition deficits in primary progressive aphasia and Alzheimer’s disease: error patterns and association with digit span. Brain Lang. 2019;194:1–11.PubMedCrossRef
75.
go back to reference Arslan S, Plonka A, Mouton A, Lemaire J, Cogordan MP, Sacco G, et al. Sentence repetition span in primary progressive aphasia and Alzheimer’s disease: insights from preliminary results. Front Commun. 2022;7:934487.CrossRef Arslan S, Plonka A, Mouton A, Lemaire J, Cogordan MP, Sacco G, et al. Sentence repetition span in primary progressive aphasia and Alzheimer’s disease: insights from preliminary results. Front Commun. 2022;7:934487.CrossRef
76.
go back to reference Martin RC, Romani C. Verbal working memory and sentence comprehension: a multiple-components view. Neuropsychology. 1994;8(4):506–23.CrossRef Martin RC, Romani C. Verbal working memory and sentence comprehension: a multiple-components view. Neuropsychology. 1994;8(4):506–23.CrossRef
77.
go back to reference Schwindt GC, Graham NL, Rochon E, Tang-Wai DF, Lobaugh NJ, Chow TW, et al. Whole-brain white matter disruption in semantic and nonfluent variants of primary progressive aphasia. Hum Brain Mapp. 2013;34(4):973–84.PubMedCrossRef Schwindt GC, Graham NL, Rochon E, Tang-Wai DF, Lobaugh NJ, Chow TW, et al. Whole-brain white matter disruption in semantic and nonfluent variants of primary progressive aphasia. Hum Brain Mapp. 2013;34(4):973–84.PubMedCrossRef
Metadata
Title
Heterogeneity and overlap in the continuum of linguistic profile of logopenic and semantic variants of primary progressive aphasia: a Profile Analysis based on Multidimensional Scaling study
Authors
Gaia Chiara Santi
Francesca Conca
Valentina Esposito
Cristina Polito
Silvia Paola Caminiti
Cecilia Boccalini
Carmen Morinelli
Valentina Berti
Salvatore Mazzeo
Valentina Bessi
Alessandra Marcone
Sandro Iannaccone
Se-Kang Kim
Sandro Sorbi
Daniela Perani
Stefano F. Cappa
Eleonora Catricalà
Publication date
01-12-2024
Publisher
BioMed Central
Keyword
Aphasia
Published in
Alzheimer's Research & Therapy / Issue 1/2024
Electronic ISSN: 1758-9193
DOI
https://doi.org/10.1186/s13195-024-01403-0

Other articles of this Issue 1/2024

Alzheimer's Research & Therapy 1/2024 Go to the issue