Skip to main content
Top
Published in: Antimicrobial Resistance & Infection Control 1/2017

Open Access 01-12-2017 | Research

Antimicrobial use and antimicrobial susceptibility in Escherichia coli on small- and medium-scale pig farms in north-eastern Thailand

Authors: G. Ström, M. Halje, D. Karlsson, J. Jiwakanon, M. Pringle, L.-L. Fernström, U. Magnusson

Published in: Antimicrobial Resistance & Infection Control | Issue 1/2017

Login to get access

Abstract

Background

Intensification of livestock production seen in many low- and middle-income countries is often believed to be associated with increased use of antimicrobials, and may hence contribute to the emergence of antimicrobial resistance. The aim of this study was to map antimicrobial use on small- (n = 25) and medium-scale (n = 27) pig farms in north-eastern Thailand, and to compare antimicrobial susceptibility of commensal Escherichia coli isolated from sows on these farms.

Methods

Information regarding pig husbandry and antimicrobial treatment regimens was obtained by the use of semi-structured questionnaires. Faecal samples were collected from three healthy sows at each farm, and Escherichia coli was cultured and analysed for antimicrobial susceptibility using the broth microdilution method. Multilevel regression models were used to compare antimicrobial susceptibility between isolates from small- and medium-scale farms.

Results

All farms included in the study administered antimicrobials to their sows. Small-scale farmers most commonly (64%) decided themselves when to give antimicrobials and the majority (60%) bought the medicines at the local store or pharmacy, whereas farmers on medium-scale farms always discussed antimicrobial treatment with a veterinarian. Medium-scale farms used a greater diversity of antimicrobials than small-scale farms and did also administer antimicrobials in feed to a higher extent. High levels of antimicrobial resistance to several critically important antimicrobials for human medicine (including ciprofloxacin, streptomycin and ampicillin) were found in isolates from both small- and medium-scale farms. Resistance levels were significantly (P < 0.05) higher in isolates from medium-scale farms for several of the antimicrobials tested, as well as the level of multidrug-resistance (P = 0.026).

Conclusion

The routines regarding access and administration of antimicrobials differed between the small- and medium-scale farms. Although the level of antimicrobial resistance, as well as multidrug-resistance, was higher in isolates from medium-scale farms, it cannot be concluded if this increase is a consequence of a more abundant use of antimicrobials, or a result of differences in administration routines.
Literature
1.
go back to reference WHO. Antimicrobial resistance: global report on surveillance 2014. Geneva: World Health Organization; 2014. WHO. Antimicrobial resistance: global report on surveillance 2014. Geneva: World Health Organization; 2014.
2.
go back to reference Aarestrup FM. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin Pharmacol Toxicol. 2005;96:271–81.CrossRefPubMed Aarestrup FM. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin Pharmacol Toxicol. 2005;96:271–81.CrossRefPubMed
3.
go back to reference Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG Jr. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci U S A. 2002;99:6434–9.CrossRefPubMedPubMedCentral Smith DL, Harris AD, Johnson JA, Silbergeld EK, Morris JG Jr. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria. Proc Natl Acad Sci U S A. 2002;99:6434–9.CrossRefPubMedPubMedCentral
4.
go back to reference van den Bogaard AE, Stobberingh EE. Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents. 2000;14:327–35.CrossRefPubMed van den Bogaard AE, Stobberingh EE. Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents. 2000;14:327–35.CrossRefPubMed
6.
go back to reference Phumart P, Phodha P, Thamlikitkul P, Riewpaiboon P, Prakongsai P. Health and economic impacts of antimicrobial resistant infections in Thailand: a preliminary study. Journal of Health System Research. 2012;6:352–60. Phumart P, Phodha P, Thamlikitkul P, Riewpaiboon P, Prakongsai P. Health and economic impacts of antimicrobial resistant infections in Thailand: a preliminary study. Journal of Health System Research. 2012;6:352–60.
7.
go back to reference Boonyasiri A, Tangkoskul T, Seenama C, Saiyarin J, Tiengrim S, Thamlikitkul V. Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog Glob Health. 2014;108:235–45.CrossRefPubMedPubMedCentral Boonyasiri A, Tangkoskul T, Seenama C, Saiyarin J, Tiengrim S, Thamlikitkul V. Prevalence of antibiotic resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog Glob Health. 2014;108:235–45.CrossRefPubMedPubMedCentral
8.
go back to reference EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control). EU Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2013. EFSA J. 2015; doi:10.2903/j.efsa.2015.4036. EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control). EU Summary Report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2013. EFSA J. 2015; doi:10.​2903/​j.​efsa.​2015.​4036.
9.
go back to reference Marshall BM, Ochieng DJ, Levy SB. Commensals: underappreciated reservoir of antibiotic resistance. Microbe. 2009;4:231–8. Marshall BM, Ochieng DJ, Levy SB. Commensals: underappreciated reservoir of antibiotic resistance. Microbe. 2009;4:231–8.
10.
go back to reference Robinson TP, Bu DP, Carrique-Mas J, Fevre EM, Gilbert M, Grace D, Hay SI, Jiwakanon J, Kakkar M, Kariuki S, Laxminarayan R, Lubroth J, Magnusson U, Thi Ngoc P, Van Boeckel TP, Woolhouse MEJ. Antibiotic resistance: mitigation opportunities in livestock sector development. Animal. 2017;11:1–3.CrossRefPubMed Robinson TP, Bu DP, Carrique-Mas J, Fevre EM, Gilbert M, Grace D, Hay SI, Jiwakanon J, Kakkar M, Kariuki S, Laxminarayan R, Lubroth J, Magnusson U, Thi Ngoc P, Van Boeckel TP, Woolhouse MEJ. Antibiotic resistance: mitigation opportunities in livestock sector development. Animal. 2017;11:1–3.CrossRefPubMed
11.
go back to reference Hughes P, Heritage J. Antibiotic Growth-Promoters in Food Animals. Assessing Quality and Safety of Animal Feeds. FAO Animal Production and Health Papers Series No 160. Rome: Food and Agriculture Organization of the United Nations; 2004. pp. 129–152. Hughes P, Heritage J. Antibiotic Growth-Promoters in Food Animals. Assessing Quality and Safety of Animal Feeds. FAO Animal Production and Health Papers Series No 160. Rome: Food and Agriculture Organization of the United Nations; 2004. pp. 129–152.
12.
go back to reference Tantasuparuk W, Kunavongkrit A. Pig production in Thailand. In: Country report. 2014; 2014. Tantasuparuk W, Kunavongkrit A. Pig production in Thailand. In: Country report. 2014; 2014.
13.
go back to reference Thanapongtharm W, Linard C, Chinson P, Kasemsuwan S, Visser M, Gaughan AE, Epprech M, Robinson TP, Gilbert M. Spatial analysis and characteristics of pig farming in Thailand. BMC Vet Res. 2016;12:218.CrossRefPubMedPubMedCentral Thanapongtharm W, Linard C, Chinson P, Kasemsuwan S, Visser M, Gaughan AE, Epprech M, Robinson TP, Gilbert M. Spatial analysis and characteristics of pig farming in Thailand. BMC Vet Res. 2016;12:218.CrossRefPubMedPubMedCentral
14.
go back to reference Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015;112:5649–54.CrossRefPubMedPubMedCentral Van Boeckel TP, Brower C, Gilbert M, Grenfell BT, Levin SA, Robinson TP, Teillant A, Laxminarayan R. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci U S A. 2015;112:5649–54.CrossRefPubMedPubMedCentral
15.
go back to reference CLSI (Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard. In: CLSI document VET01-A4. Forth ed. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute. CLSI (Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals; approved standard. In: CLSI document VET01-A4. Forth ed. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute.
17.
go back to reference Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistans, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for aquired resistance. Clin Microbiol Infect. 2012;18:268–81.CrossRefPubMed Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistans, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for aquired resistance. Clin Microbiol Infect. 2012;18:268–81.CrossRefPubMed
18.
go back to reference Nhung NT, Cuong NV, Thwaites G, Carrique-Mas J. Antimicrobial usage and antimicrobial resistance in animal production in Southeast Asia: a review. Antibiotics. 2016;5:37.CrossRefPubMedCentral Nhung NT, Cuong NV, Thwaites G, Carrique-Mas J. Antimicrobial usage and antimicrobial resistance in animal production in Southeast Asia: a review. Antibiotics. 2016;5:37.CrossRefPubMedCentral
19.
go back to reference Love DC, Tharavichitkul P, Arjkumpa O, Imanishi M, Hinjoy S, Nelson K, Nachman KE. Antimicrobial use and multidrug-resistant salmonella spp., Escherichia coli, and Enterococcus faecalis in swine from northern Thailand. Thai J Vet Med. 2015;45:43–53. Love DC, Tharavichitkul P, Arjkumpa O, Imanishi M, Hinjoy S, Nelson K, Nachman KE. Antimicrobial use and multidrug-resistant salmonella spp., Escherichia coli, and Enterococcus faecalis in swine from northern Thailand. Thai J Vet Med. 2015;45:43–53.
20.
go back to reference Nguyen NT, Nguyen HM, Nguyen CV, Nguyen TV, Nguyen MT, Thai QH, Ho MH, Thwaites G, Ngo HT, Baker S, Carrique-Mas J. Use of Colistin and other critical antimicrobials on pig and chicken farms in southern Vietnam and its association with resistance in Commensal Escherichia coli bacteria. Appl Environ Microbiol. 2016;82:3727–35.CrossRefPubMedPubMedCentral Nguyen NT, Nguyen HM, Nguyen CV, Nguyen TV, Nguyen MT, Thai QH, Ho MH, Thwaites G, Ngo HT, Baker S, Carrique-Mas J. Use of Colistin and other critical antimicrobials on pig and chicken farms in southern Vietnam and its association with resistance in Commensal Escherichia coli bacteria. Appl Environ Microbiol. 2016;82:3727–35.CrossRefPubMedPubMedCentral
21.
go back to reference Nguyen VT, Carrique-Mas J, Ngo TH, Ho HM, Ha TT, Campbell JI, Nguyen TN, Hoang NN, Pham VM, Wagenaar JA, Hardon A, Thai QH, Schultsz C. Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam. J Antimicrob Chemother. 2015;70:2144–52.CrossRefPubMedPubMedCentral Nguyen VT, Carrique-Mas J, Ngo TH, Ho HM, Ha TT, Campbell JI, Nguyen TN, Hoang NN, Pham VM, Wagenaar JA, Hardon A, Thai QH, Schultsz C. Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam. J Antimicrob Chemother. 2015;70:2144–52.CrossRefPubMedPubMedCentral
22.
go back to reference WHO. Critically important antimicrobials for human medicine – 3rd revision. Geneva: World Health Organization; 2012. WHO. Critically important antimicrobials for human medicine – 3rd revision. Geneva: World Health Organization; 2012.
23.
go back to reference Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.CrossRefPubMed Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16:161–8.CrossRefPubMed
24.
go back to reference Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymixine resistance: knows and unknowns. Int J Antimicrob Agents. 2016;48:583–91.CrossRefPubMed Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymixine resistance: knows and unknowns. Int J Antimicrob Agents. 2016;48:583–91.CrossRefPubMed
25.
go back to reference Malhotra-Kumar S, Xavier BB, Das AJ, Lammens C, Hoang HTT, Pham NT, Goossens H. Colistin-resistant Escherichia coli harbouring mcr-1 isolated from food animals in Hanoi, Vietnam. Lancet Infect Dis. 2016;16:286–7.CrossRefPubMed Malhotra-Kumar S, Xavier BB, Das AJ, Lammens C, Hoang HTT, Pham NT, Goossens H. Colistin-resistant Escherichia coli harbouring mcr-1 isolated from food animals in Hanoi, Vietnam. Lancet Infect Dis. 2016;16:286–7.CrossRefPubMed
26.
go back to reference Burow E, Simoneit C, Tenhagen BA, Kasbohrer A. Oral antimicrobials increase antimicrobial resistance in porcine E. coli - a systematic review. Prev Vet Med. 2014;113:364–75.CrossRefPubMed Burow E, Simoneit C, Tenhagen BA, Kasbohrer A. Oral antimicrobials increase antimicrobial resistance in porcine E. coli - a systematic review. Prev Vet Med. 2014;113:364–75.CrossRefPubMed
27.
go back to reference Maes D, Deluyker H, Verdonck M, Castryck F, Miry C, Vrijes B, de Kruif A. Herd factors associated with the seroprevalences of four major respiratory pathogens in slaughter pigs from farrow-to-finish pig herds. Vet Res. 2000;31:313–27.CrossRefPubMed Maes D, Deluyker H, Verdonck M, Castryck F, Miry C, Vrijes B, de Kruif A. Herd factors associated with the seroprevalences of four major respiratory pathogens in slaughter pigs from farrow-to-finish pig herds. Vet Res. 2000;31:313–27.CrossRefPubMed
28.
go back to reference Thamlikitkul V, Rattanaumpawan P, Boonyasiri A, Pumsuwan V, Judaeng T, Tiengrim S, Paveenkittiporn W, Rojanasthien S, Jaroenpoj S, Issaracharnvanich S. Thailand antimicrobial resistance containment and prevention program. J Glob Antimicrob Resist. 2015;3:290–4.CrossRefPubMed Thamlikitkul V, Rattanaumpawan P, Boonyasiri A, Pumsuwan V, Judaeng T, Tiengrim S, Paveenkittiporn W, Rojanasthien S, Jaroenpoj S, Issaracharnvanich S. Thailand antimicrobial resistance containment and prevention program. J Glob Antimicrob Resist. 2015;3:290–4.CrossRefPubMed
29.
go back to reference Callens B, Faes C, Maes D, Catry B, Boyen F, Francoys D, de Jong E, Haesebrouck F, Dewulf J. Presence of antimicrobial resistance and antimicrobial use in sows are risk factors for antimicrobial resistance in their offspring. Microb Drug Resist. 2015;21:50–8.CrossRefPubMed Callens B, Faes C, Maes D, Catry B, Boyen F, Francoys D, de Jong E, Haesebrouck F, Dewulf J. Presence of antimicrobial resistance and antimicrobial use in sows are risk factors for antimicrobial resistance in their offspring. Microb Drug Resist. 2015;21:50–8.CrossRefPubMed
30.
go back to reference EFSA (European Food Safety Authority). Manual for reporting on antimicrobial resistance within the framework of directive 2003/99/EC and decision 2013/652/EU for information deriving from the year 2015. In: EFSA supporting publication 2016:EN-990; 2016. p. 35. EFSA (European Food Safety Authority). Manual for reporting on antimicrobial resistance within the framework of directive 2003/99/EC and decision 2013/652/EU for information deriving from the year 2015. In: EFSA supporting publication 2016:EN-990; 2016. p. 35.
Metadata
Title
Antimicrobial use and antimicrobial susceptibility in Escherichia coli on small- and medium-scale pig farms in north-eastern Thailand
Authors
G. Ström
M. Halje
D. Karlsson
J. Jiwakanon
M. Pringle
L.-L. Fernström
U. Magnusson
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Antimicrobial Resistance & Infection Control / Issue 1/2017
Electronic ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-017-0233-9

Other articles of this Issue 1/2017

Antimicrobial Resistance & Infection Control 1/2017 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.